Improved Cryptographic Technique by Square Matrix with Column Cells and Uniform Point Crossover on Binary Field

Ishrath Jahan ${ }^{1}$, Udayini Chandana ${ }^{2}$
Department of Electronics and Communication Engineering, Stanley College of Engineering and Technology for Women, Hyderabad, India ${ }^{1,2}$

Abstract

A new cryptographic algorithm is introduced. This technique uses three keys for encryption and decryption. A nearby square matrix with few column cells is used to place the input plain text in a unique manner. The left diagonal's positional value will be the key-1 with that key intermediate cipher text is produced. A 7-digit random number is generated as key-2. According to the digits of key-2 the section division, the block division process and the crossover point is finalized. Uniform point crossover is applied on the binary field of intermediate cipher text to produce complex final cipher text.

Keywords: Plain-text, Key, Intermediate Cipher-text, Cipher-text, Encryption, Decryption, Crossover.

I. INTRODUCTION

Cryptography is an indispensable tool for protecting information in computer systems. Cryptography is the study of mathematical techniques related to aspects of information security such as confidentiality, data integrity, entity authentication, and data origin authentication. It is the technique by which the data is encrypted at the transmitter side and is decrypted again at the receiver side keeping the data secure from eavesdropper. It is method where the data is sent in the disguised form only to the intended recipients who can decrypt it and read the message. The encryption and decryption of the plain text (data) is done with the help of keys [1]. The keys are generated by the user or can be calculated or randomly generated depending upon the algorithm used. The data that is transmitted can be sent bit by bit or in blocks to the recipient. The block sizes and the key length are variable and can be fixed by the user at the beginning of the ciphering. Ciphering is the process of conversion of data into disguised form. Cryptographic technique using substitution followed by genetic function has been carried out in different ways [2]. Many genetic algorithm based encryption have been proposed describe a new symmetrical block ciphering system named ICIGA (Improved Cryptography Inspired by Genetic Algorithms) which generates a session key in a random process [3], [4]. ICIGA is an enhancement of the system (GIC) "Genetic algorithms Inspired Cryptography" [5]. Generation of block cipher and stream cipher [6].The Crossover operator has the significance in genetic function algorithms. Two parent blocks are considered and a crossover point is finalized according to the type of the crossover operation being performed. The crossover operation is performed to get the modified child blocks. In GAs different types of crossover are available [7], [8], [9]. A new algorithm for encryption and decryption is introduced. The algorithm is based on the process of substitution and genetic function. In this proposed model the number of letters of input plain text is placed into a cells in a specific manner, and key- 1 is
calculated. By using this key, the plain text is transformed into intermediate cipher text. A key-2 along with genetic function is used to obtain the final cipher text. By doing the inverse operation the plain text is obtained from the final cipher text.

II. THE PROPOSED TECHNIQUE

In the proposed technique, each letter of the input plain text is placed into a matrix of cells according to the number of letters in the input plain text. If the number of letters in the input plain text is a square number then they are placed in a square matrix. If the number of letter of input plain text is not a square number then a nearby least square matrix with column cells should be selected to place the plain text. The arrangement of letters of input plain text into a square matrix with column cells is shown in Figure-1.

Figure-1. Pattern for arranging plain text in matrix of cells
The three keys are used in this technique. The key-1 is generated by adding positional value ($\mathrm{A}=1$, $B=2, \ldots \ldots . Z=26$) of letters placed in left diagonal position of the matrix of cells. Each of the positional value of letters in the matrix is then added with Key-1 to generate intermediate cipher text. The intermediate cipher text will be the new string of characters different from the plain text. The intermediate cipher text will be converted into a binary code of 64-bits of ASCII value. A 7-digit random
number is generated as key-2. The first digit of the key-2 is the section number by which all the bits are divided into sections. The each section will be divided into blocks according to the last 6 digits of random number. Genetic function uniform point crossover is performed on blocks of bits of each section. If the total block number of a section is even, each block crossed over with the next block to produce level-1 modified blocks otherwise first block, N block (where N is odd) and second block, fourth block is crossed over and so on to produce Level 1 modified blocks. The number of blocks in each section will be key- 3 of the proposed technique.

III. FLOW CHART REPRESENTATION OF UNIFORM POINT CROSSOVER GENETIC FUNCTION

The block diagram of crossover when the number of blocks in each section is even is shown in Figure - 2. Each block is denoted by a number.
$\mathrm{N}=$ even number.

Figure - 2. Representation of crossover if the number of blocks is even

The block diagram of crossover when the number of blocks in each section is odd is shown in Figure - 3. Each block is denoted by a number. $\mathrm{N}=$ odd number.

Figure - 3. Representation of crossover if the number of blocks is odd

IV. EXAMPLE

A. Encryption

Let the Plain text is:
SPAINRUSSIAINDIAGERMANYSINGAPORE. Size of the plain text is 32 . A nearby least square matrix to 32 is 5*5 is selected along with 7 column cells to place the plain text in the cells which is shown in the Figure-4.

S	P	I	U	A	A	A
A	N	S	I	G	N	N
R		N	E	Y	G	
I	D	R	S	A	O	
I	M	I	P	R	E	

Figure - 4. Arrangement of 32 characters of plain text into of cells

Key $1=$ Position Value of 'S' + Position Value of ' N ' + Position Value of ' N ' + Position Value of ' S ' + Position Value of 'R' $=19+14+14+19+18=84 \quad$ [Where, $A=1 \ldots \ldots \ldots \ldots z=26]$

The Key 1 will be added with each letter's position value to generate the intermediate cipher text.
$\mathbf{S}=19+84=103=\mathbf{Y}, \mathrm{P}=16+84=100=\mathbf{V}, \mathrm{A}=1+84$ $=85=\mathbf{G}, \mathrm{I}=9+84=93=\mathbf{O}, \mathrm{N}=14+84=98=\mathbf{T}, \mathrm{R}=$ $18+84=102=\mathbf{X}, \mathrm{U}=21+84=105=\mathbf{A}, \mathrm{S}=19+84=$ $103=\mathbf{Y}, \mathrm{S}=19+84=103=\mathbf{Y}, \mathrm{I}=9+84=93=\mathbf{O}, \mathrm{A}=$ $1+84=85=\mathbf{G}, \mathrm{I}=9+84=93=\mathbf{O}, \mathrm{N}=14+84=98=$ $\mathbf{T}, \mathrm{D}=4+84=88=\mathbf{J}, \mathrm{I}=9+84=93=\mathbf{O}, \mathrm{A}=1+84=$ $85=\mathbf{G}, \mathrm{G}=7+84=91=\mathbf{M}, \mathrm{E}=5+84=89=\mathbf{K}, \mathrm{R}=18$ $+84=102=\mathbf{X}, \mathbf{M}=13+84=97=\mathbf{S}, \mathrm{A}=1+84=85=$ $\mathbf{G}, \mathrm{N}=14+84=98=\mathbf{T}, \mathrm{Y}=25+84=109=\mathbf{E}, \mathrm{S}=19+$ $84=103=\mathbf{Y}, \mathrm{I}=9+84=93=\mathbf{O}, \mathrm{N}=14+84=98=\mathbf{T}, \mathrm{G}$ $=7+84=91=\mathbf{M}, \mathrm{A}=1+84=85=\mathbf{G}, \mathrm{P}=16+84=$ $100=\mathbf{V}, \mathrm{O}=15+84=99=\mathbf{U}, \mathrm{R}=18+84=102=\mathbf{X}, \mathrm{E}$ $=5+84=89=\mathbf{K}$

Intermediate cipher text: YVOAGGGGTYOMTTXYTKEMOJXYGUOSOVXK Intermediate cipher text in cells is shown in Figure-5.

Y	V	O	A	G	G	G
G	T	Y	O	M	T	T
X	Y	T	K	E	M	
O	J	X	Y	G	U	
O	S	O	V	X	K	

Figure-5. Arrangement Intermediate cipher text in cells
Each letter of the matrix is represented in 64 bits Binary code of ASCII value. So that, total bits number of intermediate cipher text will be: $32 * 64$ bits $=2048$ bits as shown Table-1.

TABLE I
REPRESENTATION OF INTERMEDIATE CIPHER IN 64 BITS BINARY CODE OF ASCII VALUE

Chara cter	Binary Code(64-bits) of ASCII value
Y	000000000000000000000000000000000 0000000000000000000000001011001
V	000000000000000000000000000000000 0000000000000000000000001010110
O	000000000000000000000000000000000 0000000000000000000000001001111
A	000000000000000000000000000000000 0000000000000000000000001000001
G	00000000000000000000000000000000 0000000000000000000000001000111
G	000000000000000000000000000000000 0000000000000000000000001000111
G	000000000000000000000000000000000 0000000000000000000000001000111

G	000000000000000000000000000000000
	0000000000000000000000001000111
T	000000000000000000000000000000000
	0000000000000000000000001010100
Y	000000000000000000000000000000000
	0000000000000000000000001011001
O	000000000000000000000000000000000
	0000000000000000000000001001111
M	000000000000000000000000000000000
	0000000000000000000000001001101
T	$000000000000000000000000000000000$
	0000000000000000000000001010100
T	000000000000000000000000000000000
	00000000000000001010100
X	000000000000000000000000000000000
	0000000000000000000000001011000
Y	000000000000000000000000000000000
	0000000000000000000000001011001
T	000000000000000000000000000000000
	0000000000000000000000001010100
K	000000000000000000000000000000000
	0000000000000000000000001001011
E	000000000000000000000000000000000
	0000000000000000000000001000101
M	000000000000000000000000000000000
	0000000000000000000000001001101
O	000000000000000000000000000000000
	0000000000000000000000001001111
J	000000000000000000000000000000000
	0000000000000000000000001001010
X	000000000000000000000000000000000
	0000000000000000000000001011000
Y	000000000000000000000000000000000
	0000000000000000000000001011001
G	000000000000000000000000000000000
	0000000000000000000000001000111
U	000000000000000000000000000000000
	0000000000000000000000001010101
O	000000000000000000000000000000000
	0000000000000000000000001001111
S	000000000000000000000000000000000
	0000000000000000000000001010011
O	000000000000000000000000000000000
	0000000000000000000000001001111
V	000000000000000000000000000000000
	0000000000000000000000001010110
X	000000000000000000000000000000000
	0000000000000000000000001011000
K	000000000000000000000000000000000
	0000000000000000000000001001011

Binary representation of intermediate cipher text is:
000 00000000001011001000000000000000000000000000000 00000000000000000000000000010101100000000000000 00100 1111000 00000000000000100000100000000000000000000000000 00000000000000000000000000000001000111000000000

000 01000111000000000000000000000000000000000000000 00000000000000000010001110000000000000000000000 00000000000000000000000000000000000100011100000 000 00000101010000000000000000000000000000000000000 00000000000000000000001011001000000000000000000 00000000000000000000000000000000000000010011110 000 00000000010011010000000000000000000000000000000 00000000000000000000000000101010000000000000000 0001010 100 00000000000001011000000000000000000000000000000 00000000000000000000000000000010110010000000000 000 1010100 00000000000000000100101100000000000000000000000 00000000000000000000000000000000001000101000000 000 00001001101000000000000000000000000000000000000 00000000000000000000010011110000000000000000000 00000000000000000000000000000000000000100101000 000 00000000101100000000000000000000000000000000000 00000000000000000000000001011001000000000000000 0010001 11000 00000000000010101010000000000000000000000000000 00000000000000000000000000000100111100000000000 001 010011000 00000000000000001001111000000000000000000000000 00000000000000000000000000000000010101100000000 000 000101100 000000000000000000001001011

A 7-digit random number is generated as key-2. The key-2 generated is: 6543278 . Depending upon the digits of key-2 the 2048 bits of intermediate cipher text will be divided into sections and blocks.

The first digit of key- 2 is 6 i.e., they are divided into 6 sections and each section will be further divided into 5,4 , $3,2,7,8$ blocks respectively as $5,4,3,2,7,8$ are the next digits of key-2.

Section 1 is divided into 5 blocks.
Section 2 is divided into 4 blocks Section 3 is divided into 3 blocks. Section 4 is divided into 2 blocks. Section 5 is divided into 7 blocks. Section 6 is divided into 8 blocks.

Each section contains $(2048 / 6)=341$ bits
Discard the remainder $(2048 \% 6)=2$ bits for future use.
Last 2 bits ' 11 ' will be discarded from the intermediate cipher as the remainder is 2 .

Section 1 (Each Block contains(341/5) bits or 68 bits with 1				
remainder				
Block 1	Block 2	Block 3	Block 4	Block 5
00000000	00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000100	01000111
00000000	00000101	01001111	00010000	00000000
01011001	01100000	00000000	00000000	00000000
0000	0000	0000	0000	00001

Section 2 (Each Block contains(341/4) bits or 85 bits with 1 remainder			
Block 1	Block 2	Block 3	Block 4
0000000000	0000000000	1000000000	0000000000
0000000000	0000010001	0000000000	0000000000
0000000000	1100000000	0000000000	0000000000
0000001000	0000000000	0000000000	0000000101
1110000000	0000000000	0000000000	1001000000
0000000000	0000000000	0000000010	0000000000
0000000000	0000000000	1010000000	0000000000
0000000000	0000000001	0000000000	0000000000
00000	00011	00000	000000

block	block	Blod3
оо00000000000		о⿰亻0<000
1011110000000	¢00000000000	о00000
оо0000000000	101000000000	¢00000000000
1000000000	с00000000000	101100000
¢00000000000	5000	ооо000000000
000001011010000		¢00000
	coomolatio	
0000000	¢000000	00000

Section $4($ Each Block contains(341/2) bits or 170 bits with 1 remainder	
Block 1	Block 2
100000000000000000000000	00000000000000001000101
000000000000000000000000	00000000000000000000000
000000000010101000000000	00000000000000000000000
000000000000000000000000	00000000000100110100000
000000000000000000000000	00000000000000000000000
001001011000000000000000	00000000000000000000000
000000000000000000000000	00000010011110000000000
00	0000000000

Section 5 (Each Block contains(341/7) bits or 48 bits with 5 remainder						
Block 1	Block 2	Block 3	Block 4	Block 5	Block 6	Block 7
			00000			00000
00000	00000	00000	00000	00000	00000	10101
00000	00000	10110	00000	00000	00000	01000
00000	00000	00000	00000	00000	00000	00000
00000	00000	00000	01011	00000	00000	00000
00000	00000	00000	00100	00000	00000	00000
00000	00000	00000	00000	00000	00000	00000
00000	00000	00000	00000	00000	00000	00000
00100	00000	00000	00000	00100	00000	00000
10100	00000	00000	000	01110	00000	00000
000	000	000		000	000	000

Section 6 (Each Block contains(341/8) bits or 42 bits with 5 remainder							
Block1	Block2	Block3	Block4	Block5	Block6	Block7	Block8
0000	0000	0110	0000	0000	1011	0000	0000
0000	0000	0000	0000	0000	0000	0000	0000
0000	0000	0000	0000	0000	0000	0000	0000
0000	0000	0000	0000	0000	0000	0000	0000
1001	0000	0000	0010	0000	0000	0000	0000
1110	0000	0000	0111	0000	0000	1011	0000
0000	0000	0000	1000	0000	0000	0000	0000
0000	0000	0000	0000	0000	0000	0000	0000
0000	0000	0000	0000	0000	0000	0000	0000
0000	0010	0000	0000	0000	0000	0000	0000
00	10	00	00	10	00	00	0010

The block number of each section is the crossover point. ' X ' is the symbol represents the crossover operation. In the first section there are 5 blocks so the uniform crossover operation is performed from $5^{\text {th }}$ bit as shown below.

Section 1: Number of Blocks 5 (Odd)

Block 1 X Block 5
$0000^{(1)} 0000^{(2)} 0000^{(3)} 0000^{(4)} 0000^{(5)} 0000^{(6)} 0000^{(7)} 0000^{(8)}$ $0000^{(9)} 0000^{(10)} 0000^{(11)} 0000^{(12)} 0000^{(13)} 0000^{(14)} 0101^{(15)}$ $1001^{(16)} 0000^{(17)}$
X
$0000^{(1)} 0000^{(2)} \quad 0000^{(3)} \quad 0000^{(4)} \quad 0000^{(5)} \quad 0000^{(6)} \quad 0000^{(7)}$ $\frac{0000^{(8)}}{00000^{(9)}} \frac{0000^{(10)}}{00100^{(11)}} \underline{0111^{(12)}} \underline{0000^{(13)}} 0000^{(14)}$ $0000^{(15)} 0000^{(16)} 0000^{(17)} \underline{1}^{1(18)}$
$0000^{(1)} 0000^{(1)} 0000^{(2)} 0000^{(2)} 0000^{(3)} \quad 0000^{(3)} 0000^{(4)}$ $0000^{(4)} \quad 0000^{(5)} \quad 0000^{(5)} \quad 0000^{(6)} \quad 0000^{(6)} 0000^{(7)} 0000^{(7)}$ $0000^{(8)} 0000^{(8)} 0000^{(9)}$
(Block 1.1)
$\begin{array}{ll}0000^{(9)} & 0000^{(10)} \\ 0000^{(13)} & 0000^{(13)} \frac{0000^{(10)}}{0000^{(14)}} 0000^{(11)} 0000^{(14)} \frac{0100^{(11)}}{0101^{(15)}} 0000^{(12)} 000^{(15)} \frac{0111^{(12)}}{1001^{(16)}}\end{array}$ $0000^{(16)} 0000^{(17)} \underline{0000^{(17)}} \underline{1^{(18)}}$
(Block 1.5)
Block 2 X Block 4
00 0000000000000101011000000000

X
$\underline{0000} \underline{0000} \underline{0000} \underline{0000} \underline{0000} \underline{0000} \underline{0000} \underline{0000} \underline{0000} \underline{0000}$ $\underline{0000} 0100 \underline{0001} \underline{0000} \underline{0000} \underline{0000} \underline{0000}$
$0000 \underline{0000} 0000 \underline{0000} 0000 \underline{0000} 0000 \underline{0000} 0000 \underline{0000}$ $0000 \underline{0000} 0000 \underline{0000} 0000 \underline{0000} 0000$ (Block 1.2)
$\underline{0000} 0000 \underline{0000} 0000 \underline{0000} 0000 \underline{0100} 0000 \underline{0001} 0101$ 0000
$0110 \underline{0000} 0000 \underline{0000} 0000 \underline{0000}$ (Block 1.4)
Block 1.3 is same as Block 3 of section 1 .

Section 2: Number of Blocks 4 (Even)

Block 1 X Block 2
000000000000000000000000000000000000100 011100000000000000000000000000000000000 0000000
X
$000 \underline{000} \underline{000} \underline{000} \underline{000} \underline{100} \underline{011} \underline{100} \underline{000} \underline{000} \underline{000} \underline{000} \underline{000}$ $\underline{000} \underline{000} \underline{000}$ $\underline{010} \underline{001} 1$
$000 \underline{000} 000 \underline{000} 000 \underline{000} 000 \underline{000} 000 \underline{000} 000 \underline{100} 000$ $\underline{011} 000 \underline{100} 000 \underline{000} 000 \underline{000} 000 \underline{000} 000 \underline{000} 100 \underline{000}$ $011 \underline{000} 1$ (Block 2.1)
$00 \underline{000} 000 \underline{000} 000 \underline{000} 000 \underline{000} 000 \underline{000} 000 \underline{000} 000 \underline{000} \underline{1} 0 \underline{0} 0 \underline{0} 0 \underline{0} 0 \underline{1} 0 \underline{0} 0 \underline{1} 0 \underline{0} 0 \underline{0}$ 000000000000000000000000000000000010000 $\underline{001} 0 \underline{1}$ (Block 2.2)

Block 3 X Block 4
100000000000000000000000000000000000000 000000000000000000010101000000000000000 0000000

X

$\underline{000} \underline{000} \underline{010}$ $\underline{110} \underline{010} \underline{000} \underline{000}$ $\underline{000} \underline{000} \underline{00}$
$0 \underline{0} 0 \underline{0} 0$ O 0
$\underline{0} 0 \underline{0} 1 \underline{0} 0 \underline{0} 1 \underline{0} 0 \underline{0} 1 \underline{0} 0 \underline{0} 0 \underline{0}$ $0 \underline{0} 0 \underline{0} 0$ $\underline{1000} 0 \underline{1} 0 \underline{1}$ (Block 4.1)
$0 \underline{0} 0 \underline{1} 0 \underline{0} 0$ 00
$\underline{0} 0 \underline{0} 0 \underline{0}$ $0 \underline{0}$
$100 \underline{000} 000 \underline{000} 000 \underline{000} 000 \underline{000} 000 \underline{000} 000 \underline{000} 000$ $\underline{000} \overline{000} \underline{000} \overline{000} \underline{000} \overline{000} \underline{000} \overline{000} \underline{000} \overline{000} \underline{000} \overline{000} \underline{010}$

0001100

(Block 2.3)
00010000000000000000000000000010000101
$\underline{000} 000 \underline{000} 000 \underline{000} 000 \underline{000} 000 \underline{000} 000 \underline{000} 000 \underline{000}$
000000000 (Block 2.4)

Section 3: Number of Blocks 3 (Odd)

Block 1 X Block 3
00000000000000010011110000000000000000
00000000000000000000000000000000000000
0001001101000000000000000000000000000
X
$\underline{00} \underline{00} \underline{00} 0000 \underline{00} 0000 \underline{00} \underline{00} 00 \underline{00} \underline{00} \underline{00} 00 \underline{00} \underline{00} \underline{00} \underline{00}$
$\underline{00} \underline{00} \underline{00} \underline{01} \underline{01} \underline{10} \underline{00} \underline{00}$
$\underline{00} \underline{00} \underline{01} \underline{01} \underline{10}$ -
$00 \underline{00} 00 \underline{00} 00 \underline{00} 00 \underline{00} 00 \underline{00} 00 \underline{00} 00 \underline{00} 01 \underline{00} 00 \underline{00} 11$ $\underline{00} \overline{11} \underline{00} \overline{00} \underline{00}$ $00 \underline{00} 00 \underline{00} 00 \underline{00} 00 \underline{01} 00 \underline{01} 00 \underline{10} 00 \underline{00} 00 \underline{00} 00 \underline{00} 0$

(Block 3.1)

0000000000000000000000000000000000000 00000001000000110001000000000000000000 0000000000000000000000000000000100010 100 (Block 3.3)

Block 3.2 is same as Block 2 of section 3.

Section 4: Number of Blocks 2 (Even)

Block 1 X Block 2

1000000000000000000000000000000 0000000000000000000000000001010 1000000000000000000000000000000 0000000000000000000000000000010 01011000000000000000000000000000 00000000000000
X
$\underline{0} \underline{0} \underline{1} \underline{0} \underline{1} \underline{0} \underline{0} \underline{0} \underline{0} \underline{0} \underline{0} \underline{0} \underline{0}$
$\underline{0} \underline{0} \underline{0}$
$\underline{0} \underline{0} \underline{1} \underline{0} \underline{1} \underline{1} \underline{0} \underline{1} \underline{0} \underline{0} \underline{0} \underline{0} \underline{0} \underline{0}$ $\underline{0} \underline{0} \underline{0}$ $\underline{0} \underline{0} \underline{1} \underline{0} \underline{1} \underline{1} \underline{1} \underline{1} \underline{0} \underline{0} \underline{0}$
Q $\underline{0} \underline{0} \underline{0} \underline{0} \underline{0} \underline{0} \underline{0} \underline{0}$
$\underline{0} \underline{0} \underline{0} \underline{0} \underline{0}$
$1 \underline{0} 0 \underline{0} 0$ 00
$0 \underline{0} 0 \underline{0} 0 \underline{0} 0 \underline{0} 1 \underline{0} 0 \underline{0} 0 \underline{0} 1 \underline{0} 0 \underline{0} 1 \underline{0} 1 \underline{0} 0 \underline{0} 0 \underline{0} 0 \underline{0} 0 \underline{0} 0$ 00
$\underline{0} 0 \underline{0} 0 \underline{1} 0 \underline{0} 0 \underline{0} 0 \underline{1} 0 \underline{1} 0 \underline{1}$ 01
$0 \underline{0} 0 \underline{0} 0$ $\underline{0} 0$

Section 5: Number of Blocks 7 (Odd)
Block 1 X Block 7
000000000000000000000000000000000000010010 100000
X
$\underline{000001} \underline{010101} \underline{000000} \underline{000000} \underline{000000} \underline{000000} \underline{000000}$ 00000000000
$000000 \underline{000001} 000000 \underline{010101} 000000 \underline{000000} 000000$ 000000 (Block 5.1)
$000000 \underline{000000} 000000 \underline{000000} 010010 \underline{000000} 100000$ $\underline{000000} \underline{00000}$ (Block 5.7)

Block 2 X Block 6
00 000000
X
$\underline{000000} \underline{000000} \underline{000000} \underline{000000} \underline{000000} \underline{000000} \underline{000000}$ 000000
$000000 \underline{000000} 000000 \underline{000000} 000000 \underline{000000} 000000$
000000 (Block 5.2)
$000000 \underline{000000} 000000 \underline{000000} 000000 \underline{000000} 000000$ 000000 (Block 5.6)

Block 3 X Block 5
000001011000000000000000000000000000000000 000000
X
$\underline{000000} \underline{000000} \underline{000000} \underline{000000} \underline{000000} \underline{000000} \underline{010001}$ 110000
$000001000000011000 \underline{000000} 000000 \underline{000000} 000000$ 000000 (Block 5.3)
$000000 \underline{000000} 000000 \underline{000000} 000000 \underline{010001} 000000$ 110000 (Block 5.5)
Block 5.4 is same as Block 4 of section 5.

Section 6: Number of Blocks 8 (Even)

Block 1 X Block 2
000000000000000010011110000000000000000000
X
$\underline{0000000} \underline{0000000} \underline{0000000} \underline{0000000} \underline{0000000} \underline{0001010}$ International Journal of Advanced Research in Computer and Communication Engineering Vol. 3, Issue 7, July 2014

000000000000000000000000000000100110000000

(Block 6.1)

$1100000 \underline{0000000} 0000000 \underline{0000000} 0000000 \underline{0001010}$ (Block 6.2)

Block 3 X Block 4
011000000000000000000000000000000000000000 X
$\underline{0000000} 0000000 \underline{0000100} 1111000 \underline{0000000} 0000000$ $011000000000000000000 \underline{0000000} 00000000000100$ (Block 6.3)
$0000000 \underline{1111000} 0000000 \underline{0000000} 0000000 \underline{0000000}$ (Block 6.4)

Block 5 X Block 6
0010 X
$1011000 \underline{0000000} \underline{0000000} \underline{0000000} \underline{0000000} \underline{0000000}$
000000010110000000000000000000000000000000
(Block 6.5)
$0000000 \underline{0000000} 0000000 \underline{0000000} 0000010 \underline{0000000}$ (Block 6.6)

Block 7 X Block 8
000000000000000000001011000000000000000000

X

$00000000000000 \underline{0000000} \underline{0000000} \underline{0000000} \underline{0000000}$ 10010
000000000000000000000000000000000010000000 (Block 6.7)
$0110000 \underline{0000000} 0000000 \underline{0000000} 0000000 \underline{0000000}$ 10010 (Block 6.8)

Now concatenate all the modified blocks and discarded bits'11' to produce the final cipher text. The total number of bits in final cipher text is 2048. The 2048 bits will be divided into 32 blocks each of 64 bits. The decimal equivalent of each number is shown below:

1) 000 $000000000000000000000=0$
2) 000 $000000000000000000000=0$
3) 000 $000000000000001001111=79$
4) 0000000000000000000000000000000000000100000 $000010101000001100000=67194976$
5) 0000000000000000000000000000000001000000011 $100000000000000000101=1081081861$
6) 0000100100000000000000000000000000000000000 $000000000001000000110=648518346341351942$
7) 0010000000000000000000000000010000001100010 $000000000000000000000=2305843026599084032$
8) 000 $000000000010000001011=1035$
9) 000 $000000000000000000000=0$
10) 0000000000010000110000010000000000000000000 $000000010000101000000=4715805371539776$
11) 000 $000000000000000000000=0$
12) 0000000100000011001100000000000000000000000 $000000000000000000001=72954795526193152$
13) 0000010001001000000000000000000000000000000 $000000000000001010100=19281035904679941$
14) 000 $000000000000001010100=84$
15) 000 $000000000000010000001=129$
16) 1000100000000000000000000000000000000000000 $000000000001000101001=9799832789158199849$
17) 0000000000000000000000000000000010000000100 $010000000000000000000=2156396544$
18) 000 $000000001000100010000=4368$
19) 0000000000000000000000000000000010000010100 $010000000000000000000=2189950976$
20) 000 $000000001000001000101=4165$
21) 0000000000000000000000000000000010000010101 $010000000000000000000=2192048128$
22) 0000000000000000000000000000000100000001010 $100000000000000000000=4316987392$
23) 000 $000000000000001000000=64$
24) 01100 $000000000000001011001=6917529027641081945$
25) 000 $000000001000100000011=4355$
26) 000 $000000000000000000000=0$
27) 0000000000000100100000001000000000000000000 $000000000000000000000=1267187151011840$
28) 0000000100110000000110000000000000000000000 $000000000000001010011=85594781199106131$
29) 0000000000000000000000000000000000001000000 $000111100000000000000=134463488$
30) 0000000000000000000000001011000000000000000 $000000000000000000000=755914244096$
31) 0000000000000000000000000000100000000000000 $000000000000000000000=34359738368$
32) 0000000100000000110000000000000000000000000 $000000000000001001011=72268700270461003$

The final cipher text is
$\begin{array}{lllll}0 & 0 & 79 & 67194976 & 1081081861 \\ 648518346341351942\end{array}$ $2305843026599084032 \quad 1035 \quad 0 \quad 4715805371539776 \quad 0$ 729547955261931521928103590467994184129 $979983278915819984921563965444368 \quad 2189950976$ $4165 \quad 2192048128 \quad 4316987392 \quad 64$ $6917529027641081945 \quad 4355 \quad 0 \quad 1267187151011840$ $85594781199106131 \quad 134463488 \quad 755914244096$ 3435973836872268700270461003

B. Decryption

At the decryption side, the input is the final cipher text obtained from the encryption.

Key- $1=84$, key $-2=6543278$. Again by using key- 2 the cipher text is divided into sections and blocks. Each section consists of $(2048 / 6)=341$ bits and the remainder ' 11 ' is discarded for future use.

Section 1 (Each Block contains(341/5) bits or 68 bits with 1				
remainder				
Block 1	Block 2	Block 3	Block 4	Block 5
00000000	00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000	00000000
000000000	00000000	00000000	00000000	01000000
00000000	00000000	00000000	01000000	01110000
00000000	00000000	00000000	00010101	00000000
00000000	00000000	00000000	00000110	00000101
000000000	00000000	01001111	00000000	00001001
00000000	00000000	00000000	00000000	00000000
0000	0000	0000	0000	00001

Section 2 (Each Block contains(341/4) bits or 85 bits with 1 remainder

Block 1	Block 2	Block 3	Block 4
0000000000	0000000000	1000000000	0001000000
0000000000	0000000000	0000000000	0000000000
0000000000	0000000000	0000000000	0000000000
0001000000	0000000000	0000000000	1000010100
1100010000	0000000000	0000000000	0000000000
0000000000	0000000000	0000000000	0000000000
0000000000	0000000000	0000000000	00000000000
0010000001	0000010000	0000001000	0000000000
10001	00101	01100	000000

Section 3 (Each Block contains(341/3) bits or 113 bits with 2						
remainder			$	$	Block 1	
:---:	:---:					

Section 4 (Each Block contains(341/2) bits or 170 bits with 1 remainder	
Block 1	Block 2
10000000000000000000000	00010000000000000000000
000000000100000001000100	000000000000000000000000
00000000000000000000000	00000000000000000000000
000000000000000000000000	001000001000101000000000
000000000000000000001000	000000000000000000000001
10001000000000000000000	000001010101000000000000
000000000000000001000001	000000000000000000000000
01	000

Section 5 (Each Block contains(341/7) bits or 48 bits with 5							
Block							
1	2	3	4	5	6	7	
00000	00000	00000	00000	00000	00000	00000	
00000	00000	10000	00000	00000	00000	00000	
01000	00000	00011	00000	00000	00000	00000	
00001	00000	00000	00000	00000	00000	00000	
01010	00000	00000	01011	00000	00000	00000	
00000	00000	00000	00100	00000	00000	10010	
00000	00000	00000	00000	01000	00000	00000	
00000	00000	00000	00000	10000	00000	01000	
00000	00000	00000	00000	00110	00000	00000	
000	000	000	000	000	000	00000	
						000	

Section 6 (Each Block contains(341/8) bits or 42 bits with 5 remainder							
Block1	Block2	Block3	Block4	Block5	Block6	Block7	Block8
0000	1100	0110	0000	0000	0000	0000	0110
0000	0000	0000	0001	0001	0000	0000	0000
0000	0000	0000	1110	0110	0000	0000	0000
0000	0000	0000	0000	0000	0000	0000	0000
0000	0000	0000	0000	0000	0000	0000	0000
0000	0000	0000	0000	0000	0000	0000	0000
0000	0000	0000	0000	0000	0000	0000	0000
0010	0000	0000	0000	0000	0000	0000	0000
0110	0000	0000	0000	0000	0100	0010	0000
0000	001010	0001	0000	0000	0000	0000	0000
00		00	00	00	00	00	0010
							010

The uniform point crossover is applied on the blocks of every section to generate intermediate cipher text.

Section 1: Number of Blocks 5 (Odd)

Block 1 X Block 5
$0000^{(1)} 0000^{(2)} 0000^{(3)} 0000^{(4)} 0000^{(5)} 0000^{(6)} 0000^{(7)} 0000^{(8)}$ $0000^{(9)} 0000^{(10)} 0000^{(11)} 0000^{(12)} 0000^{(13)} 0000^{(14)} 0000^{(15)}$ $0000^{(16)} 0000^{(17)}$

X
$\underline{0000^{(1)}} \quad \underline{0000^{(2)}} \quad \underline{0000^{(3)}} \quad \underline{0000^{(4)}} \quad \underline{0100^{(5)}} \quad \underline{0000^{(6)}} \quad \underline{0111^{(7)}}$
 $0000^{(15)} 0000^{(16)} 0000^{(17)} \frac{1^{(18)}}{000}$
$0000^{(1)} 0000^{(3)} 0000^{(5)}-0000^{(7)} 0000^{(9)} 0000^{(11)} 0000^{(13)}$ $0000^{(15)} \quad 0000^{(17)} \underline{0000^{(2)}} \underline{0000^{(4)}} \underline{0000^{(6)}} \underline{0000^{(8)}} \underline{0000^{(10)}}$ $0101^{(12)} 1001^{(14)} 0000^{(16)}$ (Block 1.1)
$0000^{(2)} \frac{0000^{(4)}}{0000^{(6)}} 0000^{(8)} 0000^{(10)} 0000^{(12)} 0000^{(14)}$
$0000^{(16)} \underline{0000^{(1)}} \underline{0000^{(3)}} \frac{0100^{(5)}}{0111^{(7)}} \underline{0000^{(9)}} \underline{0000^{(11)}}$ $0000^{(13)} \underline{0000^{(15)}} \underline{0000^{(17)}} 1^{\frac{118)}{(18)} \text { (Block 1.5) }}$

Block 2 X Block 4
00 0000000000000000000000000000
X
$\underline{0000} \underline{0000} \underline{0000} \underline{0000} \underline{0000} \underline{0000} \underline{0100} \underline{0000} \underline{0001} \underline{0101}$ $\underline{0000}$
011000000000000000000000
00 $\underline{0000} \underline{0000} \underline{0000} \underline{0101} \underline{0110} \underline{0000} \underline{0000 \text { (Block 1.2) }}$
$00000000000000000000000000000000 \underline{0000} \underline{0000}$ $\underline{0000} \underline{0100} \underline{0001} \underline{0000} \underline{0000} \underline{0000} \underline{0000(B l o c k ~ 1.4)}$

Block 1.3 is same as Block 3 of section 1.

Section 2: Number of Blocks 4 (Even)

Block 1 X Block 2
000000000000000000000000000000000100000 011000100000000000000000000000000100000 0110001
X
$\underline{00} 000 \underline{000} 000000 \underline{000} 000 \underline{000} 000 \underline{000} 000 \underline{000} 000$ $\underline{000} \underline{000} \underline{010}$ 00000101
000000000000000000000000000000000000100 $011100 \underline{000} \underline{000}$ $\underline{000} 0000$ (Block 2.1)

000000000000000100011100000000000000000 $000000 \underline{000} \underline{000}$ 0100011 (Block 2.2)

Block 3 X Block 4
100000000000000000000000000000000000000 000000000000000000000000000000000000010 0001100
X
$\underline{00} \underline{010} \underline{000} \underline{000} \underline{000} \underline{000} \underline{000} \underline{000} \underline{000} \underline{000} \underline{010} \underline{000} \underline{101}$ $\underline{000} \underline{000} \underline{000}$ $\underline{000} \underline{000} \underline{0} \underline{00}$

100000000000000000000000000000000000000 $0000 \underline{000} \underline{000} \underline{000} \underline{000} \underline{000} \underline{010} \underline{101} \underline{000} \underline{000} \underline{000} \underline{000} \underline{000}$ 0000000
(Block 2.3)
000000000000000000000000000000000000010 $110 \underline{010} \underline{000} \underline{000}$ $\underline{000} \underline{000} \underline{00}$ (Block 2.4)

Section 3: Number of Blocks 3 (Odd)

Block 1 X Block 3
00000000000000000000000000000100000011
00110000000000000000000000000000000000 0000000000000001000100100000000000000 X
$\underline{0} 00 \underline{00} \underline{00}$ 00000001000000110001000000000000000000
0000000000000000000000000000000100010 $\underline{10} 0$
00000000000000010011110000000000000000
00000000000000000000000000000000000000
$0001001101000000 \underline{00} \underline{0}$

(Block 3.1)

00000000000000000000000000000000000000
00000001011000000000000000000000000000 $00 \underline{00} \underline{01} \underline{01} \underline{10}$ $\underline{0}$

(Block 3.3)

Block 3.2 is same as Block 2 of section 3
Section 4: Number of Blocks 2 (Even)
Block 1 X Block 2
1000000000000000000000000000000 0010000000100010000000000000000 0000000000000000000000000000000 0000000000000000000000010001000 1000000000000000000000000000000 000000100000101

X

$\underline{0} \underline{0} \underline{0} \underline{1} \underline{0} \underline{0}$
$\underline{0} \underline{0} \underline{0}$
OOOOQOQOQOOQ1000001000101000000 $\underline{0} \underline{0} \underline{1} \underline{0} \underline{0} \underline{0} \underline{0}$ $\underline{1} \underline{0} \underline{0} 1 \underline{0} \underline{1}$
$\underline{0} \underline{0} \underline{0}$
00000000
1000000000000000000000000000000
0000000000000000000000000001010 1000000000000000000000000000000
$\underline{0} \underline{0} \underline{1} \underline{0}$
$\underline{0} \underline{1} \underline{0} \underline{1} \underline{0} \underline{0}$ $0 \underline{0} 0000000$
00000 (Block 4.1)

0000000000000000100010100000000 0000000000000000000000000000000 $00000000000000000010011 \underline{0} \underline{1} \underline{0} \underline{0} \underline{0} \underline{0} \underline{0}$ $\underline{0} \underline{0} \underline{0}$ $\underline{0} \underline{0} \underline{1} \underline{0} \underline{1} \underline{1} \underline{1} \underline{1} \underline{0} \underline{0} \underline{0} \underline{0}$

0000000000000000 (Block 4.2)

Section 5: Number of Blocks 7 (Odd)

Block 1 X Block 7
000000000001000000010101000000000000000000 000000

X
$\underline{000000} \underline{000000} \underline{000000} \underline{000000} \underline{010010} \underline{000000} \underline{100000}$ 00000000000
000000000000000000000000000000000000010010 100000 (Block 5.1)
$000001010101000000000000 \underline{000000} \underline{000000} \underline{000000}$ 00000000000 (Block 5.7)
Block 2 X Block 6
00 000000

X
$\underline{000000} \underline{000000} \underline{000000} \underline{000000} \underline{000000} \underline{000000} \underline{000000}$ 000000
$000000000000000000000000 \underline{000000} \underline{000000} \underline{000000}$ 000000 (Block 5.2)
$000000000000000000000000 \underline{000000} \underline{000000} \underline{000000}$ 000000 (Block 5.6)

Block 3 X Block 5
000001000000011000000000000000000000000000 000000
X
000000000000000000000000000000010001000000 110000
000001011000000000000000000000000000000000
000000 (Block 5.3)
$000000000000000000000000 \underline{000000} \underline{000000} \underline{010001}$ 110000 (Block 5.5)

Block 5.4 is same as Block 4 of section 5.
Section 6: Number of Blocks 8 (Even)
Block 1 X Block 2
000000000000000000000000000000100110000000 X
1100000000000000000000000000000000000001010 0000000000000000100111100000000000000000000 (Block 6.1)
$000000000000000000000 \underline{0000000 \underline{0000000} \underline{0001010}}$
(Block 6.2)
Block 3 X Block 4
011000000000000000000000000000000000000100 X

000000011110000000000000000000000000000000 011000000000000000000000000000000000000000 (Block 6.3)
$000000000000000000100 \underline{1111000} \underline{0000000} \underline{0000000}$

(Block 6.4)

Block 5 X Block 6
000000010110000000000000000000000000000000
X

000000000000000000000000000000000100000000 0010 (Block 6.5)
$101100000000000000000 \underline{0000000} \underline{0000000} \underline{0000000}$ (Block 6.6)

Block 7 X Block 8
000000000000000000000000000000000010000000 X
$\underline{0110000} \underline{0000000} \underline{0000000} \underline{0000000} \underline{0000000} \underline{0000000}$ 10010
$000000000000000000001 \underline{0110000} \underline{0000000} \underline{0000000}$
(Block 6.7)
00 10010
(Block 6.8)
Concatenate all the modified blocks along with the discarded bits ' 11 ' to produce the intermediate cipher text. Now the total 2048 bits of intermediate cipher text will be divided into 32 blocks of 64bits.

TABLE II
REPRESENTATION OF 64 BITS BINARY CODE OF INTERMEDIATE CIPHER IN CHARACTERS

Binary Code(64-bits) of ASCII value	Charac ter
00000000000000000000000000000000000 000000000000000000000001011001	Y
000000000000000000000000000000000 00000000000000000000001010110	V
0000000000000000000000000000000000 000000000000000000000001001111	O
000000000000000000000000000000000 00000000000000000000001000001	A
0000000000000000000000000000000000 000000000000000000000001000111	G
0000000000000000000000000000000000 00000000000000000000001010100	T
0000000000000000000000000000000000 000000000000000000000001011001	Y
0000000000000000000000000000000000 000000000000000000000001001111	O
000000000000000000000000000000000 00000000000000000000001001101	M
0000000000000000000000000000000000 000000000000000000000001010100	T
00000000000000000000000000000000 000000000000001010100	T
0000000000000000000000000000000000 000000000000000000000001011000	X
0000000000000000000000000000000000 00000000000000000000001011001	Y
0000000000000000000000000000000000	T
(

000000000000000000000001010100	
00000000000000000000000000000000 000000000000000000000001001011	K
000000000000000000000000000000000 000000000000000000000001000101	E
0000000000000000000000000000000000 000000000000000000000001001101	M
00000000000000000000000000000000 000000000000000000000001001111	O
0000000000000000000000000000000000 000000000000000000000001001010	J
0000000000000000000000000000000000 00000000000000000000001011000	X
0000000000000000000000000000000000 000000000000000000000001011001	Y
0000000000000000000000000000000000 000000000000000000000001000111	G
0000000000000000000000000000000000 000000000000000000000001010101	U
0000000000000000000000000000000000 000000000000000000000001001111	O
00000000000000000000000000000000 000000000000000000000001010011	S
0000000000000000000000000000000000 000000000000000000000001001111	O
0000000000000000000000000000000000 00000000000000000000001010110	V
00000000000000000000000000000000	
00000000000000000000001011000	

Intermediate cipher text is:

YVOAGGGGTYOMTTXYTKEMOJXYGUOSOVXK

Substitute the intermediate cipher text by its positional values and subtract it by key-1 to obtain the plain text. As the subtraction of intermediate cipher by key- 1 results a negative number, adding the intermediate cipher text with 78,104 is desirable $(26+26+26=78,26+26+26+26=104)$. $\mathrm{Y}=(25+78)-84=19=\mathbf{S}, \mathrm{V}=(22+78)-84=16=\mathbf{P}, \mathrm{O}$ $=(15+78)-84=9=\mathbf{I}, \mathrm{A}=(1+104)-84=21=\mathbf{U}, \mathrm{G}=$ $(7+78)-84=1=\mathbf{A}, G=(7+78)-84=1=\mathbf{A}, G=(7+78)$ $-84=1=\mathbf{A}, \mathrm{G}=(7+78)-84=1=\mathbf{A}, \mathrm{T}=(20+78)-84$ $=14=\mathbf{N}, \mathrm{Y}=(25+78)-84=19=\mathbf{S}, \mathrm{O}=(15+78)-84=$ $9=\mathbf{I}, \mathrm{M}=(13+78)-84=7=\mathbf{G}, \mathrm{T}=(20+78)-84=14=$ $\mathbf{N}, \mathrm{T}=(20+78)-84=14=\mathbf{N}, \mathrm{X}=(24+78)-84=18=\mathbf{R}$, $\mathrm{Y}=(25+78)-84=19=\mathbf{S}, \mathrm{T}=(20+78)-84=14=\mathbf{N}, \mathrm{K}$ $=(11+78)-84=5=\mathbf{E}, \mathrm{E}=(5+104)-84=25=\mathbf{Y}, \mathrm{M}=$ $(13+78)-84=7=\mathbf{G}, \mathrm{O}=(15+78)-84=9=\mathbf{I}, \mathrm{J}=$ $(10+78)-84=4=\mathbf{D}, \mathrm{X}=(24+78)-84=18=\mathbf{R}, \mathrm{Y}=$ $(25+78)-84=19=\mathbf{S}, \mathrm{G}=(7+78)-84=1=\mathbf{A}, \mathrm{U}=$ $(21+78)-84=15=\mathbf{O}, \mathrm{O}=(15+78)-84=9=\mathbf{I}, \mathrm{S}=$ $(19+78)-84=13=\mathbf{M}, \mathrm{O}=(15+78)-84=9=\mathbf{I}, \mathrm{V}=$ $(22+78)-84=16=\mathbf{P}, \mathrm{X}=(24+78)-84=18=\mathbf{R}, \mathrm{K}=$ $(11+78)-84=5=\mathbf{E}$

Now, each character obtained is placed in the cells and the plain text is obtained from the proposed technique as shown in Figure-6.

International Journal of Advanced Research in Computer and Communication Engineering Vol. 3, Issue 7, July 2014

S	P	I	U	A	A	A
A	N	S	I	G	N	N
R	S	N	E	Y	G	
I	D	R	S	A	O	
I	M	I	P	R	E	

Figure-6. Arrangement of decrypted characters in the cells to obtain the plain text

Plaintext:
SPAINRUSSIAINDIAGERMANYSINGAPORE

V. SYNTHESIS RESULTS AND COMPARISON

The synthesis results for transmitting a 16 characters input plain text BIOTECHNOLOGICAL using three different crossover operations i.e., single, double and uniform point crossover is observed. The synthesis results and comparison is shown in the Table-3.

TABLE-3
SYNTHESIS RESULTS OF VARIOUS CROSSOVER OPERATIONS

Device Utilization	Single Point Crossover	Double Point Crossover	Uniform Point Crossover
No. of slices (14752)	11877	4646	4660
No. of 4 input LUTs (29504)	22572	8657	8676
No. of Bonded IOBs	2048	2048	2048
Combinational Path Delay in ns	68.332	54.820	54.764

The synthesis results for transmitting a 18 characters input plain text ALLROADSLEADTOROME using three different sizes of matrix i.e., square, rectangular, matrix with different number of cells (as used in the proposed technique) is observed. The synthesis results and comparison is shown in the Table-4.

TABLE-4
SYNTHESIS RESULTS OF DIFFERENT SIZE OF MATRICES

Device Utilization	Square Matrix	Rectangular Matrix	Least Square Matrix with Column Cells
No. of slices (14752)	17218	12497	12427
No. of 4 input LUTs (29504)	32796	23762	23646
No. of Bonded IOBs	3200	2304	2304
Combinational Path Delay in ns	66.010	68.644	64.619

The synthesis results for transmitting a input plain text using different digits of key-2 is observed. The synthesis results shown below in the Table-5.

TABLE-5
SYNTHESIS RESULTS OF DIFFERENT DIGITS OF
KEY-2

Device Utilizatio n	Different Key-2 Used			
	4532	65743	7654321	843217695
No. of slices (14752)	11072	11072	11072	11072
No. of 4 input LUTs (29504)	21069	21069	21069	21069
No. of Bonded IOBs	2048	2048	2048	2048
Delay in ns	64.119	64.119	64.119	64.119

VI. CONCLUSION

From the synthesis results of Section V, it is observed that

1) By using the uniform point crossover the more complex cipher text is generated with minimum device utilization and better delay performance. [TABLE-3]
2) To transmit a string of characters which is not a square number for example 18 characters, a $5 * 5$ square matrix is used. Out of the 25 available cells of the square matrix only 18 cells are used to place the characters and the other cells are kept empty to transmit 64 bits of 0 (zero) unnecessarily.
A rectangular matrix of size $6 * 3$ is also used to tranmit the 18 characters.
A nearby least square matrix to 18 is $4 * 4$ square matrix with 2 column cells is used to tranmit the same 18 characters which results in minimum device utilization with better delay performance [TABLE-4]
3) The algorithm is also performed using different digits of key-2. It is observed that using various values of key- 2 does not change the delay or device utilization ratio but using a larger key- 2 value consisting of different numbers in it makes the data more secure. [TABLE-5]
4) Thus in the proposed technique a uniform point crossover operation is performed which uses the nearby least square matrix with column cells according to the number of characters in the input plain text. The uniform point crossover has been proved to generate complex cipher text which makes the algorithm susceptible from the attacker. A 7-digit key-2 with different numbers in its digit is used to make the algorithm more secure.

TABLE-6 SYNTHESIS RESULTS OF PROPOSED AND EXISTING ALGORITHM

Device Utilization	Existing Algorithm	Proposed Algorithm
No. of slices	26168	21982
No. of 4 input LUTs	49758	41765
No. of Bonded IOBs	4608	4096
Combinational Path Delay in ns	59.012	53.074

The Table-6 shows the synthesis results for transmitting 32 characters using the proposed algorithm and compares it with the existing algorithm. The existing algorithm ${ }^{[1]}$ uses the square matrix with single point crossover and a 5digit key-2 for transmission of 32 characters. It is observed that by using the proposed technique the device utilization ratio is comparatively less with minimum combinational path delay.

VII. FUTURE SCOPE

The cryptographic algorithm can be performed using different crossover operators to obtain less combinational path delay with minimum device utilization. The different size of matrices can be tried for implementation. The fitness test can be applied to take the fittest modified block to generate more complex cipher text. Different types of crossover operations can be performed on blocks of different sections to make the algorithm more complex.

REFERENCES

[1] Dr. Subhranil Som, Ms. Mandira Banerjee,"Cryptographic Technique by Square Matrix and Single Point Crossover on Binary Field", 2013.
[2] S. Som, M. Banerjee, "Cryptographic Technique Using Substitution through Circular Path Followed By Genetic Function", CCSN2012, 1st International conference on Computing, Communication and Sensor Network, November 22nd and 23rd, 2012, Roukela, India. Accepted
[3] Poonam Garg, "Genetic algorithms and simulated annealing: a comparison between three approaches for the crypto analysis of transposition cipher" IMT, INDIA-2004.
[4] A.J.Bagnall, "The Applications of Genetic Algorithms in Cryptanalysis", School of Information Systems, University Of East Anglia, 1996.
[5] N.Koblitz, "A Course in Number Theory and Cryptography", Springer-Verlag, New York, Inc., 1994
[6] Menzes A. J., Paul, C., Van Dorschot, V., Vanstone, S. A.,
[7] "Handbook of Applied Cryptography", CRS Press 5th Printing; 2001.
[8] National Bureau Standards, "Data Encryption Standard (DES)," FIPS Publication 46; 1977.
[9] Tragha A., Omary F., Mouloudi A.,"ICIGA: Improved Cryptography Inspired by Genetic Algorithms", Proceedings of the International Conference on Hybrid Information Technology (ICHIT'06), pp. 335-341, 2006.
[10] Melanie Mitchell, "An introduction to Genetic Algorithms". A Bradford book.
[11] H. Bhasin and S. Bhatia, "Application of Genetic Algorithms in Machine learning", IJCSIT, Vol. 2 (5), 2011.
[12] Dr. G. Raghavendra, Nalini N, "a new encryption and decryption algorithm combining the features of genetic algorithm (GA) and cryptography" NIE, Mysore.
[13] A. J. Bagnall, "the application of genetic algorithms in cryptanalysis" School of information system, University of East Anglia, 1996.

BIOGRAPHIES

Ishrath Jahan received the B. Tech degree in Electronics and Communication Engineering from Shadan Womens College of Engineering and Technolo gy. She is pursuing Masters in Embedded Systems from Stanley College of Engineering and Technology for Women, Hyderabad, India.

Udayini Chandana received the B.E. degree in Electronics and Communication Engineering from Andhra University, India and the M.S. degree in Electrical Engineering from the University of Houston, Texas, USA, in 1994 and 1996 respectively. She worked in the software industry for a period of more than 4 years on various platforms as a System Analyst. Since 2011, she has been with Stanley College of Engineering and Technology for Women, Hyderabad, India, where she is currently an Assistant Professor. Her research interests include Digital Electronics and Image Processing Systems.

