
ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 7, July 2014

Copyright to IJARCCE www.ijarcce.com 7531

Towards an Ethernet Learning Switch and

Bandwidth Optimization using POX Controller

Abhishek Bagewadi
1
, Dr. K N Rama Mohan Babu

2

M.Tech Student, Department Of ISE, Dayananda Sagar College of Engineering, Bangalore, Karnataka, India 1

Professor, Deptartment of ISE, Dayananda Sagar College of Engineering, Bangalore, Karnataka, India 2

Abstract: Software Defined Networking (SDN) is an emerging network architecture where network control is

decoupled from forwarding and is directly programmable. It promises to dramatically simplify the network

management and enable innovation through network programmability. The POX is one of the open source SDN

controller and a platform for the rapid development and prototyping of network control software. This paper proposes a

set of rules which are defined in the POX controller and based on which the Ethernet switch will take the appropriate

decisions during transmission of data packets in the network. The method is proposed to optimize the bandwidth of the
network using the iPerf tool. Then the method of assigning priority to the network packets based on different fields in

the open flow table is presented. Also described the process of defining different rules set in each switch in the

network. The experimental results show that the utilization of bandwidth increases and the average Round-Trip Time

(RTT) time decreases for the POX controller.

Keywords: Software Defined Networking, POX Controller, Openflow, Mininet, Ethernet Switch

I. INTRODUCTION

Traditional network architectures are ill-suited to meet the

requirements of today’s enterprises, carriers, and end

users. Due to the broad industry effort spearheaded by the
Open Networking Foundation (ONF), Software-Defined

Networking (SDN) is transforming networking

architecture. In SDN architecture, the control and data

planes are decoupled, the network intelligence and state

are centralized logically and the underlying network

infrastructure is abstracted from the applications. As a

result, the enterprises and carriers gain unprecedented

network control, programmability and automation which

enables them to build highly scalable and flexible

networks that readily adapt to changing business

requirements.

SDN is currently attracting significant attention from both

academia and industry. A group of network operators,

service providers, and vendors have recently created the

Open Network Foundation, an industrial driven

organization, to promote SDN and standardize the Open

Flow protocol. On the academic side, the Open Flow

Network Research Center [11] has been created with a

focus on SDN research. There have also been

standardization efforts on SDN at the IETF and IRTF.

The main idea is to allow software developers to rely on
network resources in the same easy manner as they do on

storage and computing resources. The architecture of SDN

is shown in figure 1. In SDN [2], the network intelligence

is logically centralized in software-based controllers (at

the control plane), and the network devices become simple

packet forwarding devices (the data plane) that can be

programmed via an open interface.

In addition to abstracting the network, SDN architecture
also supports a set of APIs [10] that make it possible to

implement common network services including bandwidth

management, traffic engineering, routing, multicast,

storage optimization, access control, security, quality of

service, processor and energy usage, and all forms of the
policy management which will help to meet the business

objectives.

Fig. 1. The architecture of SDN [2]

POX [12] is a open source SDN controller and a platform

for the rapid development and prototyping of network

control software using Python. It is mainly used for

research purposes in the field of SDN. POX can “Run

anywhere”. It can bundle with install-free PyPy runtime

for easy deployment. It specifically targets Linux, Mac OS

and windows. The POX contains reusable sample

components for path selection, topology discovery, etc. It

also supports GUI and visualization tools.

The field of software defined networking is quite recent

and it is growing at a very fast pace. Still, there are lot of

important research challenges need to be addressed. In this

paper we proposes a set of rules which are defined in the

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 7, July 2014

Copyright to IJARCCE www.ijarcce.com 7532

POX controller and based on which the Ethernet switch

will take the appropriate decisions during transmission of

data packets in the network.

The method is presented to optimize the bandwidth of the

network using the iPerf tool. Then the method of

assigning priority to the network packets based on

different fields in the open flow table is described. Also

discussed the process of defining different rules set in each

switch in the network.

Open Flow [1] is the first standard communications

interface defined between the control and forwarding

layers of an SDN architecture. Open Flow allows the
direct access and manipulation of the forwarding plane of

network devices such as switches and routers, both

physical and virtual (hypervisor based). It is the absence of

an open interface to the forwarding plane that has led to

the characterization of today’s networking devices as

monolithic, closed, and mainframe like. Open Flow is one

of the standard protocols available and a protocol like

Open Flow is required to move the network control out of

the networking switches to logically centralized control

software [9].

Fig. 2. The Openflow Architecture

The OpenFlow protocol [4] is a key enabler for software-

defined networks and currently is the one of the

standardized SDN protocol that allows direct manipulation

of the forwarding plane of network devices. It was initially

applied to Ethernet-based networks and then the

OpenFlow switching extended to a much broader set of

use cases. OpenFlow SDNs can be deployed on existing

networks, both physical nand virtual. Network devices
support OpenFlow forwarding and also traditional

forwarding, which makes it easy for the enterprises and

carriers to progressively introduce OpenFlow-based SDN

technologies, even in multivendor network environments.

Mininet is a network emulator. It executes a collection of

end-hosts, routers, switches and links on a Linux kernel. It

utilizes the lightweight virtualization to form a single

system which looks like a complete network, running on

the same system, kernel and user code. A Mininet host

behaves like a real machine. The ssh protocol is used and

it is used to run arbitrary programs (including the network
services implemented on the underlying Linux system).

The programs execution will send packets through the

Ethernet interface, with the specified link speed and delay.

Packets get processed by the Ethernet switch, router, or the
middle box with the given amount of queuing. When the

two programs, like an iperf client and server

communicates through the Mininet, the measured

performance should match with the two native machines.

In short, Mininet's virtual hosts, switches, links, and

controllers are the real thing – they are just created using

software rather than hardware – and for the most part their

behavior is similar to discrete hardware elements. It is

possible to create a Mininet network that resembles a

hardware network, or a hardware network that resembles a

Mininet network and to run the applications and the binary
code on either platform.

The rest of this paper is organized as follows. Section II

discuss some of the related work. Section III describes the

proposed method. Section IV discuss the evaluation

procedure and performance results and section V discuss

the conclusion and future work.

II. RELATED WORK

Ethane [13], the predecessor of NOX and OpenFlow, is an

early flow-based networking technology for creating

secure enterprise networks. Ethane shows that by
restricting reachability in the network before an identity is

authenticated by a central controller, strong security

policies can be enforced in the network. Ethane does not

considers exploiting parallelism in their designs.

NOX [7] is a platform for building network control

applications which extends the Ethane work in two

dimensions. First, it attempts to scale the centralized

paradigm to very large systems. The second extension is

allowing general programmatic control of the network.

The Ethane systems were designed around a single
application: identity-based access control. NOX provides a

general programming interface that makes it easier to

support current management tasks and possible to provide

more advanced management functionality.

Maestro [3] shows how the fundamental problem of

performance bottleneck in controller is resolved by
parallelism. Maestro provides a simple programming

model for programmers and exploits parallelism together

with additional throughput optimization techniques. The

throughput of Maestro can achieve near linear scalability

on an eight core server machine.

HyperFlow [14] aims at improving the performance of the

OpenFlow control plane. However, HyperFlow takes a

completely different approach by extending NOX to a

distributed control plane. By synchronizing network-wide
state among distributed controller machines in the

background through a distributed file system, HyperFlow

ensures that the processing of a particular flow request is

localizable to an individual controller machine. The

techniques employed by HyperFlow are orthogonal to the

design of the controller and they can also enhance Maestro

to become fully distributed to attain even higher overall

scalability.

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 7, July 2014

Copyright to IJARCCE www.ijarcce.com 7533

DIFANE [15] provides a way to achieve efficient rule

based policy enforcement in a network by performing

policy rules matching at the switches themselves.
DIFANE's network controller installs policy rules in

switches and does not need to be involved in matching

packets against these rules as in OpenFlow. However,

OpenFlow is more flexible since its control logic can

realize behaviors that cannot be easily achieved by a set of

relatively static policy rules installed in switches.

Ultimately, the techniques proposed by DIFANE to

offload policy rules matching onto switches and our

techniques to increase the performance of the controller

are highly complementary: Functionalities that can be

realized by DIFANE can be off-loaded to switches, while
functionalities that require central controller processing

can be handled efficiently by Maestro.

Beacon [6] is a Java-based open source OpenFlow

controller. Beacon explored new areas of the OpenFlow

controller design space, with a focus on being developer

friendly, high performance and having the ability to start

and stop existing and new applications at runtime. Beacon

showed high performance and was able to scale linearly

with multiple processing cores.

In the above mentioned papers, some of the issues have
not been addressed such as the bandwidth optimization in

POX controller, reducing the RTT time to increase the

transmission rate and avoiding the network congestion.

III. PROPOSED METHOD

In this section, the proposed methods are described to

enhance the bandwidth utilization and to decrease the RTT

time. First, the algorithm is provided for the Ethernet

Switch that results in reduction of RTT time. Then the

approach of bandwidth optimization using the iperf tool

and the assignment of priority to the data packets is
discussed. Finally, the method is discussed for avoiding

the network congestion by defining a set of rules for the

switches in the network .

A. Ethernet Learning Switch

Fig. 3. Experiment testbed topology

The behavior of the OpenFlow switch to an intelligent
(learning) Ethernet switch is changed and enhanced. Let us

review the operation of a learning switch. When a packet

arrives to any port of the learning switch, it can learn that

the sending host is located on the port on which the packet

has arrived. So, it can simply maintain a lookup table that
associates the MAC address of the host with the port on

which they are connected to the switch. So the switch

stores the source MAC address of the packet, along with

the incoming port in its lookup table. Upon receiving a

packet, the switch looks up the destination MAC address

of the packet and in case of a match, the switch figures out

the output port and instead of flooding the packet, it

simply sends the packet to its correct destination host

(through the looked up port).The algorithm is described as

follows :

Algorithm : Ethernet Learning Switch

For each packet from the switch,

(1) Use source address and switch port to update the

lookup table.

(2) if Ethertype is LLDP(0X88cc)

(3) Drop the packet //Don't forward the link-local traffic

(4) else if destination address is multicast,

(5) Flood the packets.

(6) else if the output port is same as input port

(7) Drop the packets.

(8) else if lookup table contains port for the destination

address,
(9) Send the packet to the destination address.

(10) else if lookup table does not contain destination

address port

(11) Flood the packet

(12) else install the flow table entry in the switch.

A. Bandwidth Optimization

Iperf [16] is a commonly used network testing tool that

can create Transmission Control Protocol (TCP) and User

Datagram Protocol (UDP) data streams and measure the

throughput of a network that is carrying them. Iperf allows
the user to set various parameters that can be used for

testing a network, or for optimizing and tuning the

network. The iPerf tool is used to optimize the bandwidth

and the formula used for the calculation is :

A=((L+E+I+U)/L)*R

A=Actual link bandwidth in bits/second

L=Value given to iperf’s “-l” parameter

E=Size of Ethernet framing

I=IPv4 header size

U=UDP header size
R=bits/second value reported by iPerf

The bandwidth optimization was done using the

hierarchical token bucket concept. The Hierarchical Token

Bucket (HTB) is a faster replacement for the class-based

queueing (CBQ)queuing discipline in Linux.

HTBs help in controlling the use of the outbound

bandwidth on a given link. HTB allows the usage of one

single physical link to simulate multiple slower links and

to send different kinds of traffic on different simulated

links. HTB is very useful to limit the client's

upload/download rate. Thus, the limited client cannot

saturate the total bandwidth.

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 7, July 2014

Copyright to IJARCCE www.ijarcce.com 7534

B. Priority assignment of packets

The priority is assigned to the network packets based on

the mac address and port. Higher the number, higher will
be the priority. The packet is matched against the flow

table and the highest priority flow entry that matches the

packet is selected. The network topology used in tree

topology. All the packets are of IPv4(0x0800). Each

switch in the network contains a hash table which contains

the mac address and port number. The priority is assigned

to the network packets based on destination address and

port. Consider the following scenario with reference to

figure 3: The network packets are assigned with highest

priority that contains the destination address of h3. Let

assume that video data is more critical than audio data.
The source host say h1, sends audio data to the destination

say h4, and meanwhile at the same time, h1 sends the

video data to h3. Since h3 has highest priority, the audio

data will be sent first to destination h3 and then video data

is sent to h4.

Thus depending on the importance of the application, the

priority is assigned to the network packets w.r.t particular

destination and/or port. This functionality plays a crucial

role in transmission of time-sensitive data such as online

transactions.

C. Avoidance of network congestion

The network congestion is one of the common problem

faced during transmission of data. The network congestion

occurs when a link carries large amount of data which

results in deterioration of quality of services. This results

in packet loss, queueing delay or the blocking of new

connections. So to prevent this problem, an approach is

proposed by defining different rules set in the switches.

Whenever there is congestion in the network, the

controller sends instructions to the switches based on the

defined rules to find an alternative path to send the data
which prevents network congestion.

The defined rules contain different parameters like

bandwidth, delay, timeout and priority. Depending on the

network traffic, different values are assigned which will

help to avoid the network congestion. The delay and

bandwidth can be increased and the queue size can be
decreased. After certain time, if an alternative network

path is not found then all the packets will be dropped and

the source once again has to send the data. The controller

will send instructions to the switch to send the data to the

destination. If there is network traffic in one path, an

alternative path is selected for transmission of data based

on the rules defined in the switches. If there is no such

path available then the controller instructs the switch to

increase the delay and bandwidth or to drop the packets

based on the network traffic. The discussed approach will

help in reducing the network congestion in mass call event

situation in telephony networks (particularly mobile
phones).

IV. PERFORMANCE AND EVALUATION

To evaluate the OpenFlow controller’s performance, the

scenario was built on a virtualized network using Mininet

[8]. In this scenario, a host generates traffic to cross the

entire network topology simulating a production network.

The experiment was built over VMware Workstation. In

the virtualized environment, Mininet was used. Mininet is
a network emulator used to create SDNs scenario in Linux

environment. The Mininet system permits the specification

of a network interconnecting “virtualized” devices. Each

network device, hosts, switches and controller are

virtualized and communicate via Mininet. A Python script

is used to create the topology in Mininet and the traffic

flows setup are received from a remote OpenFlow

controller. Therefore, the test environment implements and

performs the actual protocol stacks that communicate with

each other virtually. The Mininet environment allows the

execution of real protocols in a virtual network.

A. Evaluation Procedure

Fig. 4. Experiment testbed setup with 10 switches

To define the experiment, initially it is necessary to

specify the hosts and network that will be used. The

OpenFlow controller has the responsibility to define the

best path to connect all hosts. To evaluate the controller

performance it was included into the experimental testbed

topology shown on figure 4, that creates and sends a large

amount of OpenFlow messages to the controller in order to
test its performance. The experiment execution results in

obtaining the number of OpenFlow messages, the

controller can support per second, besides the messages

sent by actual switches or virtualized switches in Mininet.

The tests with the Mininet, simulated the presence of 60

switches, in the topology created on Mininet. In each

round, 10 switches are used to test the performance and in

these tests, the average RTT in milliseconds and

bandwidth were calculated. Finally, the graph of average

RTT and bandwidth were plotted for different number of

switches.

In the OpenFlow network, when a host tries to send data

packets to the destination address, and the switch has no

such address in its flow table, the switch makes a query to

the OpenFlow controller [5]. The controller will decide

what action would be applied to this flow, e.g., choose the

path from source to the destination to forward the packets

to destination host.

To optimize the memory usage in the switches, a timeout
(in our experiment 10 seconds) sets the removal of this

entry on its flow table, forcing the path to rebuild

whenever it is necessary.

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 7, July 2014

Copyright to IJARCCE www.ijarcce.com 7535

B. Results

The performance test result is shown in the following

Graphs (figure 5 and figure 6). They show the
performance in terms of bandwidth utilization and

average RTT using the POX controller in mininet

environment.

Fig. 5. Bandwidth utilization in POX controller

The above graph shows the bandwidth utilization in

traditional network and openflow network using POX

controller. As shown in the above graph, the bandwidth is

efficiently utilized in openflow network than in traditional

network. The average bandwidth utilization is increased

by about 18%. As the number of switches in the network
increases, the bandwidth in openflow network varies

largely.

Fig. 6. Average RTT in ms using POX controller

The above graph shows the average RTT in milliseconds

in traditional network and openflow network using POX

controller. As shown in the above graph, the RTT is

reduced in openflow network compared to the traditional
network. The average RTT is reduced by about 23%. As

the number of switches in the network increases, the RTT

value in openflow network varies largely. The RTT is one

of the important parameter that decides the transmission

rate of data. Lower the RTT value, faster will be the

transmission rate.

The above two figures, Figure 5 and Figure 6 shows the

clear indication of effective bandwidth utilization and

resource utilization during transmission of data packets.

The effectivity of bandwidth while transmitting over the
network results in better usage of CPU, heap memory and

disk capacity utilization.

V. CONCLUSION AND FUTURE WORK

Software Defined Networking is a promising paradigm for

future network management, and OpenFlow is emerging
as a successful industry-supported SDN building block. In

this paper, a set of rules for an Ethernet switch and the

process of optimization of bandwidth in a POX controller

using mininet are discussed. The set of rules defined in the

POX controller reduces the transmission time by about

23% and increases the performance of the network by

about 18%. Also, described about assigning the priority to

the network packets and how different rules are set for the

switches to avoid the network congestion.

As future work, the discussed approach can be
implemented in real-time network. In addition, a new

approach can be designed to assign priority to the network

packets dynamically and the implementation of different

functionalities in multiple openflow controllers.

REFERENCES
[1] N.McKeown et al.; T. Anderson; H. Balakrishnan; G. Parulkar;

L.Peterson; J. Rexford; S. Shenker and J. Turner (2008):

“OpenFlow: Enabling Innovation in Campus Networks”,

ACMSIGCOMM Computer Communication Review, 38(2):69–74.

[2] “Software-Defined Networking: The New Norm for Networks”,

ONF White Paper, April 13, 2012

[3] Z. Cai et al.; A. Cox and T. Ng (2010): “Maestro: A system for

scalable openflow control” Technical Report TR10-08, Rice

University.

[4] Marcial P Fernandez (2013): “Comparing OpenFlow Controller

Paradigms Scalability: Reactive and Proactive” IEEE 27th

International Conference on Advanced Information Networking and

Applications, pp 1009-1016.

[5] Advait Dixit et al., Fang Hao, Sarit Mukherjee, T.V. Lakshman,

Ramana Kompella (2013): “Towards an Elastic Distributed SDN

Controller” HotSDN’13Hong Kong, China.

[6] David Erickson(2013):“The Beacon OpenFlow Controller”,

HotSDN’13, Hong Kong, China, pp. 13-18.

[7] N. Gude et al., T. Koponen, J. Pettit, B. Pfaff, M. Casado, N.

McKeown, and S. Shenker (2008): “Nox:towards an operating

system for networks”, ACMSIGCOMM Computer Communication

Review, 38(3):105–110

[8] Bob Lantz et al., Brandon Heller, and Nick McKeown(2010):“A

network in a laptop: rapid prototyping for software-defined

networks”, In Proceedings of the Ninth ACM SIGCOMM

Workshop on Hot Topics in Networks.

[9] Adrian Lara et al., Anisha Kolasani, and Byrav

Ramamurthy(2014):“Network Innovation using OpenFlow: A

Survey”, IEEE Communications Surveys & Tutorials, VOL. 16,

No. 1,Pp 493-512

[10] HIDEyuki Shimonishi et al., Yasuhito Takamiya, Yasunobu Chiba,

Kazushi Sugyo, Youichi Hatano,Kentaro Sonoda, Kazuya Suzuki,

Daisuke Kotani, and Ippei Akiyoshi(2012):“Programmable

Network Using OpenFlow for Network Researches and

Experiments”, The Sixth International Conference on Mobile

Computing and Ubiquitous Networking.

[11] Open Networking Research Center (ONRC): http://onrc.net

[12] Pox: http://www.noxrepo.org/pox/about-pox/

[13] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo,

Nick McKeown, and Scott Shenker. “Ethane: taking control of the

enterprise”, SIGCOMM '07: Proceedings of the 2007 conference on

Applications, technologies, architectures, and protocols for

computer communications, pages 1.12, New York, NY, USA, 2007.

ACM.

[14] Amin Tootoonchian and Yashar Ganjali.“Hyperflow: A distributed

control plane for openflow”. INM/WREN, 2010.

[15] M. Yu, J. Rexford, M.J. Freedman, and J. Wang. “Scalable flow-

based networking with DIFANE”, Proc. ACM SIGCOMM, August

2010.

[16] Iperf : http://iwl.com/white-papers/iperf

