
ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

Vol. 3, Issue 10, October 2014

Copyright to IJARCCE www.ijarcce.com 8237

Efficiency of Parallel Algorithms on Multi Core

Systems Using OpenMP

Sheela Kathavate
1
, N.K. Srinath

2

Associate Professor, Department of CSE, Sir M. Visvesvaraya Institute of Technology, Bangalore, India1

Professor and Dean, Department of CSE, R.V. College of Engineering, Bangalore, India2

Abstract: The improvement in performance gained by the use of a multi core processor depends very much on the

software algorithms used and their implementation. In particular, possible gains are limited by the fraction of the

software that can be run in parallel simultaneously on multiple cores and this effect is described by Amdahl's law. Most

applications, however, are not accelerated so much unless programmers invest a prohibitive amount of effort in re-

factoring the whole problem. In order to exploit the complete capabilities of multi core systems, applications have to

become increasingly parallel in nature. Writing parallel program is not an easy task. OpenMP programming model

helps in creating multithreaded applications for the existing sequential programs. This paper analyses the performance
improvement of a parallel algorithm on multi core systems. The experimental results shows Significant speed up

achieved on multi core systems with the parallel algorithm.

Keywords: Multi core Systems, OpenMP, Parallel algorithms, Performance analysis, speedup

I. INTRODUCTION

There is a continual demand for greater computational

power from computer systems than is currently possible.
Every new performance advance in processors leads to

another level of greater performance demands from

businesses and consumers [1]. Numerical simulation of

scientific and engineering problems require great

computational speed. These problems often need huge

quantities of repetitive calculations on large amounts of

data to give valid results and the computations must be

completed within a reasonable time period. Multicore and

multithreaded CPUs have become the new approach to

obtaining increases in CPU performance [2] and the result

is the invention of parallel computing which can be
broadly classified as multi-processor and multi core

systems. A multicore is an architecture design that places

multiple processors on a single die (computer chip). Each

processor is called a core. This concept is called chip

multi-processing (CMP). Presently, the CMP has become

the preferred method for improving the overall system

performance. It is inevitable that paradigm shift from

writing sequential code to parallel has to happen.

Optimally, the speed-up from parallelization would be

linear—doubling the number of processing elements

should halve the runtime, and doubling it a second time

should again halve the runtime. However, very few
parallel algorithms achieve optimal speed-up. Most of

them have a near-linear speed-up for small numbers of

processing elements, which

flattens out into a constant value for large number of

processing elements. The potential speed-up of an

algorithm on a parallel computing platform is given by

Amdahl's law, originally formulated by Gene Amdahl in

the 1960s. It states that a small portion of the program

which cannot be parallelized will limit the overall speed-

up available from parallelization. A program solving a

large mathematical or engineering problem will typically

consist of several parallelizable parts and several non-

parallelizable (sequential) parts. If α is the fraction of

running time a program spends on non-parallelizable parts,

then:

𝐥𝐢𝐦
𝑷→∞

𝟏
𝟏−𝜶

𝑷
+ 𝜶

=
𝟏

𝜶

is the maximum speed-up with parallelization of the
program, with P being the number of processors used. If

the sequential portion of a program accounts for 10% of

the runtime (α = 0.1), we can get no more than a 10×

speed-up, regardless of how many processors are added.

This puts an upper limit on the usefulness of adding more

parallel execution units.

The level to which an existing application can be

parallelized is very important. Programmers must be

capable of finding the best places in the application that

can be divided into equal work load which can run at the

same time and determine when exactly the threads can

communicate with each other [3]. Matrix multiplication is
one good application that falls in this category and is also

required as a fundamental computation for many scientific

and engineering applications. In this paper, we have

considered parallelizing matrix multiplication program

and see the performance improvement on different core

configurations.

The paper is configured as follows: section 2 gives an

overview of OpenMP, section 3 gives the related work in

this field, section 4 gives the algorithm and experimental

setup, section 5 gives result analysis and section 6 gives

the conclusion and the future work.

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

Vol. 3, Issue 10, October 2014

Copyright to IJARCCE www.ijarcce.com 8238

II. OPENMP

OpenMP is an application program standard (specification)

for a set of compiler directives, library routines, and

environment variables that can be used to specify shared

memory parallelism in Fortran 77/90 and C/C++ programs.

OpenMP uses multiple, parallel threads to accomplish
parallelism. It uses the concept of fork and join model as

shown in figure 1. OpenMP has been very successful in

exploiting structured parallelism in applications [4].

A thread is a single sequential flow of control within a

program. OpenMP simplifies parallel application

development by hiding many of the details of thread

management and communication. It uses a directive-based

method to explicitly

Figure 1. Fork and Join Model

tell the compiler how to distribute programs across parallel

threads. OpenMP-enabled compilers include ones from

Intel and Portland group, and open sourced GNU. Serial

code statements usually don't need modification. OpenMP

allows code to be parallelized incrementally, one

subroutine/function or even one loop at a time. The

directives are easy to apply and make the code easy to

understand and maintain. OpenMP is widely available and

used, mature, lightweight, and ideally suited for multi-core

architectures. Data can be shared or private in the

OpenMP memory model. When data is private it is visible
to one thread only, when data is public it is global and

visible to all threads. OpenMP divides tasks into threads; a

thread is the smallest unit of a processing that can be

scheduled by an operating system. The master thread

assigns tasks unto worker threads. Afterwards, they

execute the task in parallel using the multiple cores of a

processor.

III. RELATED WORK

 In [4], the authors present the efforts of the OpenMP 3.0
sub-committee in designing, evaluating and seamlessly

integrating the tasking model into the OpenMP

specification. The design goals and key features of the

tasking model, is discussed which includes a rich set of

examples and an in-depth discussion of the rationale

behind various design choices. The prototype

implementation of the tasking model with existing models

is built and it is evaluated on a wide range of applications.

The comparison shows that the OpenMP tasking model

provides expressiveness, flexibility, and huge potential for

performance and scalability.

In [5], the authors design an OpenMP implementation

capable of using large pages and evaluate the impact of

using large page support available in most modern
processors on the performance and scalability of parallel

OpenMP applications. Results show an improvement in

performance of up to 25% for some applications. It also

helps improve the scalability of these applications. In [6],

the ―The Game of Life‖ problem is written using OpenMP

and MPI and run on Sun E3000 and OpenMP does better

compared to MPI. In [8], the calculation of pi and

Gaussian Elimination algorithms are tested with and

without OpenMP and the speedup achieved with

parallelization is better.

IV. ALGORITHM AND EXPERIMENTAL SETUP

In this analysis, we have implemented both the sequential

and parallel algorithms for matrix multiplication. The

matrices used are both square matrices. First, the

sequential code is executed and the time taken for

multiplying the matrices are taken. Then the program

segment which can be parallelized is divided into threads
by using the OpenMP compiler construct. Here each

thread runs independent of other threads. The program is

written in such a way that it uses the number of threads

based on the available cores in the underlying hardware.

Once the number of threads is known, the parallel task is

divided into that many threads and each thread runs on an

individual core.

The sequential and the parallel code with OpenMP are

executed on Intel Pentium CPU G630 which has dual

cores and also on Intel i7 processor which has dual cores

and each core can execute 2 logical threads using Intel’s
hyper threading(HTT) technology. For each matrix

dimension, the results are taken three times and the

average time taken to execute the program is calculated.

The main objective here is to get a better performance as

the number of cores increase. An overview of this work is

shown in Figure 2.

Figure 2. Overview of the proposed work

The sequential and the parallel algorithms are explained in

(a) and (b):

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

Vol. 3, Issue 10, October 2014

Copyright to IJARCCE www.ijarcce.com 8239

Algorithms:

(a). Matrix_Multiplication (int size) (without OpenMP)

Where size represents the size of the matrix.

Step 1: Declare variables to store allocated memory

Step 2: Declare variables to input matrix size like (m*p)

and (q*n)

Step 3: Declare variable to calculate the time difference

between the start and end of the execution.

Step 4: Accept number of rows and columns.

Step 5: Allocate dynamic memory for matrix one. {

a = (int *) malloc (10*m)

for (i=0; i< n; i++){

 a [i] = (int *) malloc (10*n)

}

Step 6: Allocate dynamic memory for matrix two.

Step 7: Allocate dynamic memory for resultant matrix.

Step 8: Start the timer.

 start = clock ();

Step 9: Initialize first, second and resultant matrix.

 for (i=0; i<m; i++) {

 for (j=0; j<p; j++) {

 a[i][j] = i+j;

 }

 }

Step 10: Do naive matrix multiplication.

 for (i=0; i<m; i++) {

 for(j=0;j<p; j++) {

for(k=0;k<n; k++) {

 c[i][j]=c[i][j]+a[i][k]*b[k][j];

}

 }

 }

Step 11: End the timer.

 end = clock ();

Step 12: Calculate the difference in start and end time.

 diff = (end – start) / CLOCKS_PER_SECOND;

Step 13: Free memory for matrix one.

 free (a);

Step 14: Free memory for matrix two.

Step 15: Free memory for the resultant matrix.

Step 16: Print the time required for program execution.

(b). Matrix_Multiplication (int size, int n) (with

OpenMP)

 Where size represents the size of the matrices and n

represents the number of threads.

Step 1: Declare variables to store allocated memory

Step 2: Declare variables to input matrix size as m, p, q, n
and variables to be used by OpenMP functions as nthreads,

tid, and chunk.

Step 3: Declare variable to calculate the starting and

ending time for computation.

Step 4: Accept number of rows and columns.

Step 5: Allocate dynamic memory for matrix one.

a = (int *) malloc (10*m){

for (i=0; i< n; i++){

 a[i]=(int *) malloc(10*n)

 }

}

Step 6: Allocate dynamic memory for matrix two.

Step 7: Allocate dynamic memory for the resultant matrix.

Step 8: Start the timer

 double start = omp_get_wtime ()

Step 9: The Actual Parallel region starts here

 #pragma omp parallel shared (a, b, c, nthreads, chunk)

 private (tid, i, j, k) {

 tid = omp_get_thread_num ()

 if (tid == 0) {

 nthreads = omp_get_num_threads ()

 printf nthreads

 }

Step 10: Initializing first matrix.

Step 11: Initializing second matrix.

Step 12: Print Thread starting matrix multiply.

 #pragma omp for schedule (static, chunk)

 for (i=0; i<m; i++){

 for (j=0; j<p; j++){

 for (k=0; k<n; k++){

 c[i][j]=c[i][j]+a[i][k]*db[k][j]

 }

 }

 }

Step 13: end the timer

 double end = omp_get_wtime ()

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

Vol. 3, Issue 10, October 2014

Copyright to IJARCCE www.ijarcce.com 8240

Step 14: Store the difference

 diff = end – start

Step 15: Free memory

 for(i=0;i<m; i++){

 free (a)

 }

Step 16:

 free (b)

Step 17:

 free (c)

Step 18: Print the time required for computation.

V. EXPERIMENTAL RESULTS

The sequential and parallel matrix multiplication programs
were run on Intel Pentium (two logical threads) and i7

processor (four logical threads) systems and the

corresponding time taken for the execution is taken. The

run time results are as shown in Table 1 and the

corresponding graph is shown in figure 3.

TABLE 1

EXECUTION TIME FOR MATRIX MULTIPLICATION

Data Set

(n*n) *

(n*n)

Sequential

Program

Parallel

Program

with Two

Cores

Parallel

Program

with Four

Logical

Threads 500*500 1.44 1.1 1.02

1000*1000 15.40 9.73 8.75

1500*1500 58.75 30.82 22.63

2000*2000 133.71 74.03 52.50

2500*2500 281.11 157.80 111.50

3000*3000 461.24 243.05 217.70

3500*3500 942.47 480.27 330.78

4000*4000 1345.06 726.50 526.04

The speedup achieved with two logical threads and four
logical threads is shown in Table 2 and the corresponding

graph is s3hown in Figure 4.

TABLE 2

SPEEDUP CHART FOR MATRIX MULTIPLICATION

Data Set Two Cores
Four Logical

Processors

500*500 1.31 1.41

1000*1000 1.58 1.76

1500*1500 1.91 2.60

2000*2000 1.81 2.55

2500*2500 1.78 2.52

3000*3000 1.72 2.12

3500*3500 1.96 2.85

4000*4000 1.85 2.67

Figure 4: Speedup Graph for Matrix Multiplication

VI. CONCLUSION AND FUTURE WORK

From the results obtained from the experimental analysis,
the matrix multiplication algorithm with OpenMP

performs better than the sequential algorithm. The

maximum speedup achieved with two cores is 1.96 which

is almost twice the speed of the execution with sequential

algorithm and with four logical processors is almost three

times. This clearly indicates that as the number of cores

increase, the computation time taken by an algorithm is

also less. This analysis is done on a small data set. As the
matrix size becomes large and as the number of cores

increase, parallel programs written with OpenMP gives

much better performance.

Once the application is parallelized using OpenMP, it can

be still improved using Intel’s Vtune Amplifier tool. The

applications written in OpenMP can be further analysed

for fine tuning by hotspots analysis provided by the tool. Figure 3: Performance Analysis of Matrix

Multiplication Algorithm

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering

Vol. 3, Issue 10, October 2014

Copyright to IJARCCE www.ijarcce.com 8241

The tool also gives hardware level details like cache

performance, individual core analysis etc. which helps the

application developer to improve the algorithm and also

the performance.

REFERENCES

[1] R. Ramanathan. Intel multi-core processors: Making the move to

quad core and beyond. Technology@Intel Magazine, Dec 2006.

[2] Sodan, A.C, Machina J, Deshmeh A, Macnaughton K, ―Parallelism

via multithreaded and Multicore CPUs‖, IEEE Computer Socoety,

Volume: 43, issue: 3, pp. 24-32, Mar. 2010.

[3] D. Geer, ―Chip Makers Turn to Multicore Processors,‖ IEEE

Computer Society, vol. 38, pp. 11-13, May. 2005.

[4] Ayguade, E. Copty, N., Duran, A., Hoeflinger, J. ―The Design of

OpenMP tasks‖, IEEE Transactions on Parallel and Distributed

systems, volume: 20, Issue: 3, pp. 404-418, June 2008.

[5] Noronha R. and Panda D.K, ―Improving Scalability of Open MP

Applications on Multi-core Systems Using Large Page Support‖,

IEEE Computer, 2007.

[6] Paul Graham, Edinburgh, "A Parallel Programming Model for

Shared Memory Architectures", Parallel Computing Center, The

University of Edinburgh, March 2011.

[7] D. Dheeraj, B. Nitish, Shruti Ramesh, "Optimization of Automatic

Conversion of Serial C to Parallel OpenMP", International

Conference on Cyber-Enabled Distributed Computing and

Knowledge Discover, PES Institute of Technology Bangalore,

India, Dec 2012.

[8] J. Breckling Sanjay Kumar Sharma, Dr. Kusum Gupta,

"Performance Analysis of Parallel Algorithms on Multi-core

System using OpenMP Programming Approaches", International

Journal of Computer Science, Engineering and Information

Technology (IJCSEIT), Vol.2, No.5, October 2012.

