
ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 3, Issue 11, November 2014

Copyright to IJARCCE www.ijarcce.com 8379

Analysis of Query Using Join and Semi-join

Gurminder Singh Boparai
1
, Satish Kumar

2

Research Scholar, Department of Computer Science and Engineering, G.I.M.E.T, Amritsar, Punjab1

Assistant Professor, Department of Computer Science and Engineering, G.I.M.E.T, Amritsar, Punjab2

Abstract: Database is the collection of files or table and Database Management System is used to manage the overall

activities of the database. We have two approaches for storing and managing database namely Centralised Database

management system and Distributed Database management system. Query Processing and its optimization is one of the

major key areas of Distributed Database Systems. Query optimization is much more difficult in Distributed Database as

compared to the Centralised Database System. This literature review paper is based in the query optimization in

Distributed Database System. It mainly focused on to analyse the performance and behaviour of the use of semi-joins

and joins. Various factors are considered like CPU cost, I/O cost, Total Cost, Response time and Total time etc.

Minimizing the amount of data transmission is important to reduce the query processing cost. To minimize this

communication cost, the exhaustive enumerative technique has used to bring dynamism in determining the sub

operations (join or semi join) to various sites.

Keywords: OSP, semi join, distributed database, enumerative

I. INTRODUCTION
Distributed Database is defined as the collection of

logically interrelated data distributed over several sites. It

is developed to meet the organisational structure of

distributed enterprises and to develop the efficient

techniques for processing complex queries in cost efficient

manner. An objective of DDBMSs is to present an easy

interface to the users so that they can access the databases as if

there were a single database. Another important objective of

DDBMS is to process distributed queries efficiently in

addition to providing availability and reliability. To

process the data located at different locations is distributed
data processing. Distributed data processing is needed

because of changing business requirements, which have

made distributed data processing cost [1].

A distributed database is more popular because it

improves system performance, reliability, availability and

modularity in distributed system. The data distribution

problem and query processing are the critical issues in

distributed database. Database system performance is

effective depends on join operator. The allocation of

operations or sub queries involved in a particular query to

the various sites of a network is one of the important
components of distributed query processing and query

optimization. The query is broken into various sub

operations like selection or projections join and semi join

and these operations performed at many different sites of

network in different sequences. OSP and OAP are the two

components of query optimization. OSP requires the

optimal sequence of operations for example Join order

sequence. OAP requires optimal placement of these

operations to different site [1].

Join is the primary target of query optimizer because of

the high evaluation costs. Many algorithms have been

proposed for the exploitation of join operations in
distributed database. The important task of these

algorithms is to reduce the size of data transmitted through

the communication network. Sending all the relations to

one site and executing join there is one straightforward

approach but due to high transmission cost it is not good.

Significant research effort have been made in order to

reduce cost, there are two approaches join sequence and

semi join strategies.

II. DISTRIBUTED QUERY PROCESSING
Distributed query processing is retrieval of data from

different sites in a distributed database Query processing is

much more difficult in distributed environment than in

centralized environment because a large number of

parameters affect the performance of distributed queries,

relations may be fragmented and/or replicated, and

considering many sites to access, query response time may

become very high. This reduces the amount of irrelevant

data accessed by the applications of the database, thus

reducing the number of disk accesses. The fragments that

accessed by queries are needed to be allocated to the
DDBs sites so as to reduce the communication cost during

the applications execution and handle their operational

processing The main objective of query processing is to

transform the high level query (relational calculus) into

efficient execution strategy expressed in equivalent low

level query (into relational algebra+ communication

operators) on local databases. It must achieve both

correctness and efficiency. Since data is geographically

distributed in distributed relational database system, the

processing of a distributed query is composed of the

following three phases:

 Local processing phase

 Reduction phase

 Final processing phase

The local processing phase basically involves local

processing such as selections and projections. The

reduction phase uses a sequence of reducers (i.e. semi joins

and joins) to reduce the size of relations. The final

processing phase sends all resulting relations to the

assembly site where the final result of the query is constructed.

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 3, Issue 11, November 2014

Copyright to IJARCCE www.ijarcce.com 8380

Fig 1: Distributed Query Optimization Model [3]

III. RELATED WORK

Lin Zhou, et al (2012) describes analysis of the query

optimization process based on semi join operation

combined with practical operation. Here semi joins

operations are used to improve time response performance

of a query and reduce communication cost. The goal of

query optimization operations is to reduce the volume of
data and the cost for process. In this paper, the connection

process is expressed by semi joins and then cost

estimation is done. They compare the cost and results

between two different semi joins operation methods and

prove that the query methods are can affect the execution

speed of the system directly. [4]

Manik Sharma, et al (2012) focus is given on computing

and analyzing the performance of joins and semi joins in

distributed database system. The various metrics that are

considered like query cost, memory used, CPU cost, I/O

cost, bytes transferred from one site to another, total time
and response time. In this paper, a experimental analysis

is done in which query is implement and execute using

three different joins and using semi join. They conclude

that, In case of data transmission, semi join give is more

useful than join. It reduces the amount of data

transferred. In regard to cost, the use of semi join is

beneficial if the cost to produce and send it to other site is

less than the cost of sending the whole operand relation

and of doing the actual join. In regard to total time, the

query executed with semi join possess lesser total time

when data transfer is used. Joins gives its best in data

transmission when a relation having lower cardinality is

transmitted to the location where relation of upper

cardinality and larger tuple size is placed. Further one is

able to conclude that semi joins are beneficial if the
transmission cost is main consideration otherwise joins

will be preferred. [5]

Xiao feng Li, Dong Li, et al (2010) is based on study of

some common optimization algorithm based on multi

relation semi join is put forward to apply to this situation

that takes buffer zone of distributed database system as the

final assembly station of intermediate result query. The

experiment proves that query that query optimization

algorithm based on multi relation semi join reduces the

data volume of intermediate result and effectively

decreases the overall cost of network communications. [6]

Pawandeep Kaur, et al (2013) presents the join query
optimization in Distributed databases. One method for the

join query is first to transfer the data from servers to client site

and then insert the data into client database, after that

join query is performed. Proposed method will directly

perform the join query on the client site after fetching from

servers site and it will not insert the data into client database. By

the proposed method, insertion time of data into client

database will be deducted. So, this method will optimize

the join query in distributed databases. [7]

Sunita M. Mahan, Vaishali P. jadhav (2013) “tri-variate

optimization strategies of semi join technique on
distributed databases” (2013) mentioned the use of semi

join operation. Beneficial semi join operation reduces the

amount of data transmission required to perform the join

sequences. The problem of finding an optimal strategy to

minimize data transmission cost in distributed database

systems, even with one join attribute is problem

determining the optimal sequence of join operations in

query optimization leads to exponential complexity. To

deal with this problem, there is a need of develop a

heuristic approach to solve the problem. [8]

Manik Sharma, et al (2013) focus is on design and
analysis of DSS queries. The selected set of DSS queries

are simulated by using exhaustive enumerative technique

and genetic approach under serial and parallel processing

environment. The simulation results show that an

exhaustive enumeration approach provides optimized

solution but takes huge time for complex DSS queries

(Hours, Days, Month or Even Years), hence it is infeasible

to implement this approach for optimizing a set of DSS

queries. On the other hand genetic algorithms optimize

DSS Queries very quickly but show loss in accuracy and

quality of solution as compare to exhaustive enumerative

approach. Further the parallel execution of the different
sub operations of a DSS query significantly reduces the

total cost of system resources. [9]

Abhijeet Raipurkar, G.R. Bamnote (2013) focus is given

on Query processing in a distributed system requires the

transmission of data between computers in a network. Two

cost measures, response time and total time are used to

judge the quality of a distribution strategy. They presented

various algorithms are used that derive distribution

strategies which have minimal response time and minimal

total time, for a special class of queries. The optimal

algorithms are used as a basis to develop a general query

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 3, Issue 11, November 2014

Copyright to IJARCCE www.ijarcce.com 8381

processing algorithm. The integration of a query

processing subsystem into a distributed database

management system is used for analyzing query response
time across fragmentations of global relations. Distributed

query processing is an important factor in the overall

performance of a distributed database system. [10]

In this simulator, a distributed query is broken down into

various sub operations like Selections, Projection or

Joins/Semi-joins etc. to be performed in a particular

order[11]. Then these ordered sub-query operations may

be performed at many different sites of the network in

many different permutation & combinations of the sites of

existing computer network. Experiments were conducted

after running the simulator enumerative on an
experimental set of Wisconsin benchmark Database

Queries. Exhaustive enumerative approach (for sub-query

operation allocation) is coded in PASCAL programming

Language. The total cost of a distributed query is

composed of I/O cost, CPU cost and communication cost.

A detailed analysis of the results of one of the query is

explained in the following section. Structure of Wisconsin

Database Tables (Bi) [12], communication and I/O

coefficient’s matrices are shown below.

Cardinality: 10,000, Tuple Size: 40bytes, Table Size: 100
Kilobytes, Block Size: 4Kb, Table Size: 100 Blocks

TABLE I: Table as per Relations Bi’s Design

TABLE II: Relation Bi’s Statistics

In this paper, communication coefficients matrices, I/O

Coefficient’s matrices, number of blocks and number of

sites have taken. The below tables show the different

matrices we have taken in our experiment. Table III show
the communication between the six sites, I/O and the CPU

coefficients. Table IV represents the allocation of the data

to which site. Table V represents the intermediate

fragments used in various operations.

TABLE III: CPU,I/O, Communication Coefficients

TABLE IV: Data Allocation Matrix

IV. EXPERIMENTAL QUERY

The Query we considered for our experiment operates on 4

base relations. There are 12 operations and the fragments
generated in solving the Query are 15. The query tree

which represents the execution of the experimental query

is shown in figure 2. The different no. of operations and

fragments gives the ides of the execution of the query we

have taken

.

Fig 2: Query Tree

A. The Query Tree Description

No. Of Operations: 12(O1 – O12)
 (Tree Nodes)
No. Of Selections: 4 (O1 – O4)
No. Of Projections: 4 (O5 – O8)
No. Of Joins: 3 (O9 – O11)
Final Operation 1 (O12)
Send the query result to the query originating site
No. Of Intermediate Fragments: 15 (Tree Edges, Including 7
Base Relations)

Unique (0 –

9999)

Twos

(0 –

1)

Ten

s

(0-

10)

Hundre

ds

(0 – 99)

FiveHun

ds

(0 –

499)

Thousands

(0 – 999)

7 0 1 11 4 999

111 1 4 2 3 4

9998 1 9 4 444 111

777 0 3 98 499 45

10,000 Tuples

..

.......etc

Relati

ons

Bi

Cardin

ality

Tuple Size

(bytes)

Relation

Size

(Kilobytes

)

Relation Size

(Blocks) 1Block

= 4 kb

B1-

B7

10,000 40 400 100

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 3, Issue 11, November 2014

Copyright to IJARCCE www.ijarcce.com 8382

TABLE V: Fragment Operation Matrix

sub queries→

↓fragments

SELECTIONS & PROJECTIONS JOINS

1 2 3 4 5 6 7 8 9 10 11 12

f1 1 0 0 0 0 0 0 0 0 0 0 0

f2 0 1 0 0 0 0 0 0 0 0 0 0

f3 0 0 1 0 0 0 0 0 0 0 0 0

f4 0 0 0 1 0 0 0 0 0 0 0 0

f5 0 0 0 0 1 0 0 0 0 0 0 0

f6 0 0 0 0 0 1 0 0 0 0 0 0

f7 0 0 0 0 0 0 1 0 0 0 0 0

f8 0 0 0 0 0 0 0 1 0 0 0 0

f9 0 0 0 0 0 0 0 0 1 0 0 0

f10 0 0 0 0 0 0 0 0 1 0 0 0

f11 0 0 0 0 0 0 0 0 0 1 0 0

f12 0 0 0 0 0 0 0 0 0 1 0 0

f13 0 0 0 0 0 0 0 0 0 0 1 0

f14 0 0 0 0 0 0 0 0 0 0 1 0

f15 0 0 0 0 0 0 0 0 0 0 0 0

f16 0 0 0 0 0 0 0 0 0 0 0 1

V. ANALYSIS AND DISCUSSION OF

ANALYTICAL RESULTS

In this section various experiments using join are analysed

and observations are made to study the effect of

fluctuations on the exhaustive enumerative solution. It has

been shown earlier that the total cost consists of CPU, I/O

and communication cost. The objective of this section is to

study the variations of cost in different scenarios. The
results are shown below:

A. Scenario:

The size of each fragment, called size (Fj), must be

defined since it plays a major role when computing the

communication cost. In this scenario, fragment size is

considered as parameter. The fragment size in case of join

[13] is more than in case of semi joins

B. Estimated Intermediate fragment sizes with Semi

Joins:

Operation 1: (𝜎) B1 →f5; Size: 100

x 0.7(ρs) = 70 blocks

Operation 2: (𝜎) B2 →f6; Size: 100

x 0.7(ρs) = 70 blocks

Operation 3: (𝜎) B3 →f7; Size: 100

x 0.7(ρs) = 70 blocks

Operation 4: (𝜎) B4 → f8; Size: 100

x 0.7(ρs) = 70 blocks

Operation 5: 𝜋Unique (f5) → f9; Size:

 70 x 0.9 (ρp) = 63 blocks

Operation 6: 𝜋Unique (f6) → f10; Size:

 70 x 0.9(ρp)= 63 blocks

Operation 7: 𝜋Unique (f7) → f11; Size:

 70 x 0.9(ρp) = 63 blocks

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 3, Issue 11, November 2014

Copyright to IJARCCE www.ijarcce.com 8383

Operation 8: 𝜋Unique (f8) → f12; Size:

 70 x 0.9(ρp) = 63 blocks

Operation 9: (f9⋮ 𝑋 ⋮f10) → f13; Size: 63 x

0.2(ρj) =13 blocks

Operation 10: (f11⋮ 𝑋 ⋮f12) →f14; Size: 63 x

0.2(ρj) = 13 blocks

Operation 11: (f13⋮ 𝑋 ⋮ f14) → f15; Size: 50 x

0.2(ρj) = 10 blocks

Operation 12: f15 →Final Result to Query Site.

C. Estimated intermediate fragment sizes with Semi

Joins:

Operation 1: (𝜎) B1 →f5 ; Size: 100

x 0.7(ρs) = 70 blocks

Operation 2: (𝜎) B2 →f6 ; Size: 100

x 0.7(ρs) = 70 blocks

Operation 3: (𝜎) B3 →f7 ; Size: 100

x 0.7(ρs) = 70 blocks

Operation 4: (𝜎) B4 → f8 ; Size: 100

x 0.7(ρs) = 70 blocks

Operation 5: 𝜋Unique (f5) → f9; Size:

 70 x 0.9 (ρp) = 63 blocks

Operation 6: 𝜋Unique (f6) → f10; Size:

 70 x 0.9(ρp)= 63 blocks

Operation 7: 𝜋Unique (f7) → f11; Size:

 70 x 0.9(ρp) = 63 blocks

Operation 8: 𝜋Unique (f8)→ f12; Size: 70 x

0.9(ρp) = 63 blocks

Operation 9: (f9⋮ 𝑋 ⋮f10) → f13; Size: 63 x

0.1(ρj) = 6 blocks

Operation 10: (f11⋮ 𝑋 ⋮f12) →f14; Size: 63 x

0.1(ρj) = 6 blocks

Operation 11: (f13⋮ 𝑋 ⋮ f14) → f15; Size: 50 x

0.1(ρj) = 5 blocks

Operation 12: f15 →Final Result to Query Site.

 When fragment size in case of join is [70 70 70

70 63 63 63 63 13 13 10]. The cost calculated in this case

is 360. When fragment size in case of semi join is [70 70

70 70 63 63 63 63 13 13 5]. The cost calculated in this

case is 288.

 When fragment size in case of join is [70 70 70

70 63 63 63 63 13 13 10]. The cost calculated in this case
is 360. When fragment size in case of semi join is [70 70

70 70 63 63 63 63 13 13 5]. The cost calculated in this

case is 288.

 When fragment size in case of join is [70 70 70

70 63 63 63 63 13 13 10]. The cost calculated in this case

is 360. When fragment size in case of semi join is [70 70

70 70 63 63 63 63 13 13 5]. The cost calculated in this

case is 288.

 When fragment size in case of join is [70 70 70

70 63 63 63 63 13 13 10]. The cost Calculated in this case

is 360. When fragment size in case of semi join is [70 70

70 70 63 63 63 63 13 13 5]. The cost calculated in this

case is 288.

Fig 3: Result

The cost calculated in case of join is more than in case of

semi joins. As the fragment size increases, total cost goes

on increasing.

VI. CONCLUSION

The comparative analysis of the Query Processing using

joins and semi joins in Distributed Database Management
System is discussed. The use of joins and semi joins

affects the cost of Query Processing in Distributed DBMS

and the communication cost can be reduced using joins

and semi joins.

REFERENCES

 [1] M. Tamer Ozsu, Patrick Valduriez, “Principles of Distributed

Database Systems”, Third Edition, Springer, 2011

[2] B.M. Monjurul Alom, Frans Henskens and Michael Hannaford “Query Processing

and Optimization in Distributed Database Systems” IJARCCE 2009

[3] Tewari, Preeti. "Query Optimization Strategies in Distributed

Databases."International Journal of Advances in Engineering Sciences

3.3 (2013): 23-29.

[4] Lin Zhou ,Yan Chen,Taoying Li ,Yingying Yu “The semi join query

optimization in distributed database system” CITCS 2012

[5] Manik Sharma, Dr. Gurvinder singh, Rajinder Virk “Analysis of

joins and semi joins in a distributed database query” published in

preceding of International journal of computer application (2012)

[6] Xiaofeng Li,Dong Li,Hong Zhi Gao,Lu Yao “ study of query of

distributed database based on relation semi join” ICCDA 2010

[7] Pawandeep Kaur, Jaspreet Kaur Sahiwal “join query optimization in

distributed databases” Published in the preceding of International

journal of scientific and research publication 2013

[8] Sunita M. Mahan, Vaishali P. jadhav “tri-variate optimization strategies

of semi join technique on distributed databases” International journal

of computer applications (2013) .

[9] Manik Sharma, Dr. Gurvinder singh, Rajinder Virk “Design and

Comparative Analysis of DSS Queries in Distributed Environment”

IEEE (2013)

[10] Abhijeet Raipurkar, G.R. Bamnote “ Query processing in distributed

Database Through Data distribution” IJARCCE 2013

 [11] Ismail O. Hababeh, “A Method for Fragment Allocation Design in the

Distributed Database Systems”, The Sixth Annual U.A.E. University

Research Conference, U.K.

[12] Kahlon, K.S. and Singh, Arjun, “Non-Replicated Dynamic Data

Allocation in Distributed Databases”, in International Journal of

Computer Science and Security, Vol. 9, Sept., 2009, pp. 176-180.

[13] Chen, Ming-Syan, and Philip S. Yu. "Using join operations as

reducers in distributed query processing." Proceedings of the

second international symposium on Databases in parallel and

distributed systems. ACM, 1990.

	The Query Tree Description
	No. Of Operations: 12(O1 – O12)
	(Tree Nodes)
	No. Of Selections: 4 (O1 – O4)
	Operation 12: f15 →Final Result to Query Site.

