
ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 11, November 2014

Copyright to IJARCCE www.ijarcce.com 8561

FUSION: Software System to Model Preferences

of Multiple Users

K.Hussenvalli
1
, Dr. S. Vasundra

2

Dept. Of Computer Science & Engineering, JNTUACEA, Anantapuramu, Andhra Pradesh, India1

Professor, CSE Department, JNTUACEA, Anantapuramu, Andhra Pradesh, India2

Abstract: In present days software systems have turned to Self-adaptive software systems, which are accomplishing

quality of service goals and uncertainty of their environments. An unexpected changes at runtime that disobey the

assumptions made about the interior structure of the system could degrade the correctness of the adaptation
decisions. In several real-world systems, to come pending a goal violation occurs and then reacting to it may be very

costly. In addition, presently Self- adaptive software systems think an only stakeholder, with single utility function. In

this paper, a mechanism called FeatUre-oriented SelfadaptatION (FUSION) framework to extend model multiple users

preferences in terms of multiple utility function, and also we identify the vital challenges in self-adaptation decision

must tackle to enable correctness of Learning adaptation decisions.

Keywords: Model preference, automatic computing, feature-orientation, Resource Adaptation, Self-adaptive Systems,

Software Architecture, product line literature

1. INTRODUCTION

In the present software systems, increasing complexity and

uncertainty and their environments, software engineers

have turned too self-adaptive. The Self-adaptive systems

[4] are expert up-and-coming requirements of

continuously changing environment and that may be

unidentified at design-time. Still different challenges

remain even many researchers have made significant

progress with frameworks and methodologies that

intention the development of self-adaptive systems. The
modern day in engineering self-adaptive software systems

is to make use of a component-and connector view

(architectural representation) of the adaptation decisions.

It require internal arrangement of the managed system, this

is refer as White box approach (architecture-based

adaptation). It is faced with the following problems:

1. Theory drifts. In this technique, may not tolerate

runtime changes, which means simplifying assumptions

certain properties of the internal structure of the

unexpected adaptation decisions inaccurate.

2. Inter-Dependencies. To design adaptive systems
controllable, preponderance of the adaptation can be

internal structural changes accepted independently.

3. Effectiveness. The effectiveness of study and

preparation is principally expensive.

 We present a black-box approach [1] for

engineering self-adaptive systems. It means that the

adaptation decisions are complete using abstractions that

do not want knowledge of the internal structure of the

software system. In this approach results in a clear

separation of models used for goal management and those

used for change management. The approach brings about
three introduce for solving the aforementioned challenges:

(1) The self adaptive software systems that includes

bridges for management architectural mismatches and new

method of modeling on the notion of feature-orientation

from the product line literature [2]. 2) A new method of

assessing and investigation about adaptation decisions

through middleware that supports access to web services.

3) It domain skilled knowledge, represented in feature-

models turn improves the exactness and helpfulness of

adaptation decisions. The outcome of this approach,

entitled FeatUre-oriented Self-adaptatION (FUSION) [3],

which combines feature-models with web services.

The FUSION framework key assistances are as follows:

1. FUSION accommodates dynamics of the system,
even those that are unexpected at Architecture level,

through incremental inspection and orientation.

2. FUSION can be able of ensure stable performance

and keep system goals in and after adaptation.
3. A FUSION uses features and inters feature
dealings to considerably decrease the configuration space
of a sizable system, building runtime study and learning
practicable.

2. BACKGROUND

2.1 Fusion Overview

 In below Figure1 shows the framework as it adapts a
running system collected of a number of features. We

suppose up-and-downs in the running systems are the

intellect that features would be “select” and “deselect” on
engage. FUSION modifies the feature selections to resolve

Quality of Services tradeoffs and satisfy as much goals as

achievable.

FUSION adaptation cycle makes adaptation decisions

using a continuous loop, collects measurements (Metrics)

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 11, November 2014

Copyright to IJARCCE www.ijarcce.com 8562

Figure1 overview of the FUSION framework.

and Supplementary the system via hanging three actions in

the subsequent series:

 Identify achieved utility (i.e., measure of user’s

fulfillment), based going on the metrics derived from the

running system, to elect if a goal violation has occurred.

 Once a goal is violated, Plan discovery for an

optimal feature selection that maximizes the in general

system utility.

 Effect determines a set of enabling/disabling of

features for given a new feature selection, to minimize

destabilize that unhelpfully collision the system’s goals.

In learning cycle (represent in Fig. 1) to study the collision

of adaptation decisions in terms of feature collection on

the system goals. The learning cycle occurs before the

system’s initial production. The system is moreover

replicated in offline mode and metrics equivalent to each

feature selection are together. This metrics is damaged to

instruct FUSION to induce a preface model behavior of

the systems. At runtime, the FUSION learning cycle

constantly executes, and as the dynamics of the system

and its environment modify, the framework tunes itself.

The learning cycle collects such indicators and tunes itself

by executing the following two activities in sequence:

 Based on the collected measurements commencing

the system, Observe detects any up-and-coming patterns

of behavior. An evolving pattern is detected when

predictions set wrong expectations (i.e., inaccurate

forecast of the impact of adaptation on utility).
 Induce learns the new behavior by applying web

services recently collected data and stores a refined model

of the behavior in the knowledge base, which is then used

to make (more) informed adaptation decisions in future

cycles.

 The knowledge base provides input to the both

adaptation and learning cycle. It is stores Quality of

Services goals, all the models concerning to the managed

system, including feature selection, and functions relating

Metrics.

2.2 Fusion Model

This is modeling methodology centerpiece of this
approach. FUSION enables feature-oriented models to

learning effectiveness and identifies key factors in the self

adaptive software system that affects the system goals.

2.2.1 Feature-Oriented Adaptation

 In FUSION, a feature is a piece of adaptation.
A feature provided by the system abstraction of a

capability. A feature is conventionally used for the period

of the requirements phase to model a variation point in the

software system [4]. The Figure2 shows how to select the

features in a system.

Figure2 the features enable, disable adaptation, where

selected features thick borders are selected.

The above Figure2 represents in other manner, feature

model is used to recognize the current system pattern in
terms of a feature selection binary value. In a feature

selection binary value enabled features are set to “1”;

disabled features are set to “0”.

Figure3 the feature are enable, disable adaptation.

For example, In RS would be “1010”, which way that all

features from Figure3 are enabled except Per-Request

Authentication. The adaptation of a system is modeled as a

transition from one feature selection binary value

2.2.2 Goals

In FUSION, the functional or Quality of Services
objectives for a particular execution scenario are set to be
a goal. A goal is nothing but a metric and a utility. A
measurable quantity (e.g. response time) is metric this is
retrieve from running system. The user’s preferences
(satisfaction) express in terms of utility functions.
FUSION seats one restriction on the variety of service
functions: The metric value not acceptable the return
utility value zero, when utility is less than or equal
FUSION takes as violation of the initiates adaptation
associated goal.

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 11, November 2014

Copyright to IJARCCE www.ijarcce.com 8563

2.2.3 Implications of Feature-Oriented Adaptation

In FUSION, the features offer as the edge between the

adaptation logic and the managed system. In this approach

reduces the adaptation space by using feature-oriented

white-box approach, it operates on fully architecture

independent manner. For example, the system with N

different ways of authentication protocols, D components,

which may be executing on P different production

environments that is represent in terms of equation as

follows

(DP ways deployments)N different ways of authentication= DNP

possible configurations

3. PROPOSED SYSTEM

 3.1 Over view

 The proposed system extends FUSION

framework to accommodate with multiple users’

preferences in terms of multidimensional utility functions.

Multiple users make stateless requests [5] to the managed

system, as Figure4 shows. In Managed system components

are implemented in Java and provide remote method

invocation interface for the effective adaption decision for

all users. Each user connected to the managed system. The

managed systems create an object for software system at

the time of deployment, and then for every user request the

managed system create a thread object for each user. We

suppose up-and-downs in the running systems are the

intellect that features would be “select” and “deselect” on

engage for each user. FUSION modifies the feature

selections to resolve Quality of Services tradeoffs and

satisfy as much goals as achievable.

Figure 4 Overview of Extend FUSION framework for

multiple users

3.2 FUSION Adaptation Cycle

 FUSION extended adaptation cycle makes
adaptation decisions using a continuous loop, collects

measurements for each user (Metrics).

 FUSION adopts a core view, which we consider to be the

most reasonable, and achieves the subsequent objectives

are decrease interruption, capable analysis and secure.

3.2.1 Detect

The adaptation cycle is initiated when detect determines

goal violations to achieve utility functions for each user. A
utility function serves for : (1) when the metric values are

unacceptable, returns zero to indicate a violated goal, and

(2) when the metrics satisfy the minimum value i.e. ,

returns a positive value less than one to indicate the user’s
preference for improvement.

3.2.2 Plan

FUSION relies on the Generic procedure to reach the

multiple users’ adaptation objectives:

 Here we use the knowledge base to eliminate all

of the features with no significant impact on the goal. We

consider the list of features that affect a given goal Shared

Features

 Shared Features represents the adaptation

parameters and they can even affects other goals, called to

be the Conflicting Goals, Here we use the knowledge base

to detect the conflicts using backtracking the learned

functions

 3.2.3 Effect

Once the Plan activity had been found a new feature

selection, it is passed to Effect for placing the system in

the target configuration. Effect is responsible for choosing

a path containing several adaptation steps whether

enables/disables the features, toward the new feature

selection. We present a novel algorithm based on A*

search algorithm, that uses the learned knowledge to find

a path that altogether eliminates, and if not possible

minimizes the extent of, goal violations during the

adaptation process. Effect a heuristics based search

algorithm that finds a suitable adaptation path.

3.3 Fusion Learning Cycle

FUSION copes with the changing dynamics of the system

through learning process. Learning process discovers

relationships between features and metrics. Each

relationship is represented as a function that quantifies the

impact of features, along with any other relevant

contextual variables, on a metric.

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 11, November 2014

Copyright to IJARCCE www.ijarcce.com 8564

3.3.1 Observe

 Observe starts the learning cycle. Observe is a

continuous execution of two activities: 1) normalizing raw

metric values to make them suitable for learning, and, 2)

test the accuracy of learned functions. We describe each of

these activities.

3.3.2 Induce

 Induce constructs several functions that estimate the

impact of making a feature selection on the corresponding

metrics at a given execution context. Induce executes two

steps. The first step is a significance test that determines

the features with the most significant impact on each

metric. This allows us to reduce the number of

independent variables that learning needs to consider for

each metric (also known as feature extraction). After the

significance test, we apply the learning, which derives

relationships between metrics and features using the

normalized observations.

 The Database provides input to the both adaptation and

learning cycle. It stores each user details in tables in the

database, and also provide

quality of Services goals, all the models concerning to the

managed system, including feature selection, and

functions relating Metrics.

4 PERFORMANCE ANALYSIS

We simulate extended FUSION framework for multiple

users in Struts MVC framework on top of Java platform

on IDE My Eclipse5.0. We estimate system performance

by using system characteristics like workload known at

run time it supports for larger scale adaption and support

for multi user scheme, it also uses feature-oriented

representations to model variability in the system and its

context. Extended FUSION adopts the similar modeling

methodology. However, in addition to this, features are

units of runtime learning and reasoning in Extended

FUSION also. FUSION itself fits in the goal management

layer. The change management [9] layer is realized on top

of XTEAM [7] an extensible architectural description and

analysis environment. The component control layer is

realized on top of Prism-MW [8]—a middleware

environment aimed at architecture-based software

development.

5 RESULTS

 Tables are used to measure the induced function

parameters and their performance improvement. These

approaches improve Normalization process to multiple

users’ capture the observation records using studentized

residual [6] as follows in the Table1, it represent the

improvement in leaning metrics functions for the self

adaptative systems.

Table1 Learning Metric Factions for users

Significant

 Variable

 Induced Functions

UMG1 UMG2 UMG3 UMG4 ..

 Core 0.124 0.161 1.432 0 ..

 F1 1.654 1.145 2 ..

 F2

…

 F3 0.672

 F4 1

 F5 4

 F6 0.244

 F7 0.163

 F1F3 0.534

 …

…

 … …

…

 …

This Figure 5 represents performance of FUSION’s path

search algorithm in terms of the execution time. FUSION
also takes into consideration the objective of minimizing

utility loss during adaptation, which is ignored in the FC

and K+FC approaches.

Figure5 the result of path searches for different execution

time.

6. CONCLUSION

 We presented approach for engineering self adaptive

systems that brings about two innovations for solving

the aforementioned challenges a new method of modeling
and representing a self-adaptive software systems that

builds on the notions of feature-orientation, assessing

and reasoning about adaptation decisions.

Extended FUSION framework to extend model multiple
users preferences in terms of multiple utility function, and

also we identify the vital challenges in self-adaptation

decision must tackle to enable correctness of Learning
adaptation decisions.

REFERENCES

[1] “FUSION: A Framework for Engineering Self-Tuning Self-

Adaptive Software Systems,” by A. Elkhodary, N. Esfahani, and S.

Malek, Proc. Int’l Symp. The Foundations of Software Eng., pp. 7-

16, 2010.

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 11, November 2014

Copyright to IJARCCE www.ijarcce.com 8565

[2] H. Gomaa, “Designing Software Product Lines with UML: From

Use Cases to Pattern-Based Software Architectures”, illustrated ed.

Addison- Wesley Professional, 2004.

[3] Naeem Esfahani, Ahmed Elkhodary, and Sam Malek “A Learning-

based Framework for Engineering Feature-Oriented Self-Adaptive

Software Systems” IEEE Transactions On Software Engineering,

VOL. 39, NO. 11, November 2013.

[4] M. Salehie and L. Tahvildari, “Self-Adaptive Software: Landscape

and Research Challenges,” ACM Trans. Autonomous Adaptive

Systems, vol. 4, no. 2, pp. 1-42, May 2009.

[5] D. Garlan, S.W. Cheng, A.C. Huang, B. Schmerl, and P. Steenkiste,

“Rainbow: Architecture-Based Self-Adaptation with Reusable

Infrastructure,” Computer, vol. 37, no. 10, pp. 46-54, Oct. 2004.

[6] C. Chatfield, The Analysis of Time Series: An Introduction, sixth

ed. Chapman and Hall/CRC, 2003.

[7] G. Edwards, S. Malek, and N. Medvidovic, “Scenario-Driven

Dynamic Analysis of Distributed Architectures,” Proc. Int’l Conf.

Fundamental Approaches to Software Eng., pp. 125-139, 2007.

[8] S. Malek, M. Mikic-Rakic, and N. Medvidovic, “A Style-Aware

Architectural Middleware for Resource-Constrained, Distributed

Systems,” IEEE Trans. Software Eng., vol. 31, no. 3, pp. 256-272,

Mar. 2005.

[9] J. Kramer and J. Magee, “Self-Managed Systems: An Architectural

Challenge,” Proc. Int’l Conf. Software Eng., pp. 259-268, 2007.

