
ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 11, November 2014

Copyright to IJARCCE www.ijarcce.com 8647

IMPLIMENTATION APPRAOCH FOR

SECURE WEB APPLICATION BY

DIFFERENT PREVENTION STRATERGIES

Vibhakti Mate
1
, Milind Tote

2

Computer Science & Engineering Department, Nuva College of engineering & technology, Nagpur, India 1,2

Abstract: The World Wide Web (WWW) is delivering a broad range of sophisticated web applications for business,

net banking, online shopping etc., However, many web applications go through fast development phases with short

time, making it difficult to eliminate vulnerabilities. This kind of Web applications are target of hackers. From an

application point of view, vulnerability identification are critical and often over looked as a source of risk. OWASP
develop tools and best practices to support developers in the development and operation of secure web applications.

According to OWASP, Web applications vulnerable to attacks such as SQL injection and Cross-Site Scripting, Cross

Site Request Forgery, Broken Authentication and Session management as mention below. In this paper we focus

mainly on some of the security risks listed by OWASP top ten, such as Cross-site scripting, Cross-site request forgery,

Authorization, as well as client side Validations. For the realization of this paper, the new security framework helps to

make the applications more secure against these risks. In this paper we are implementing identification of

vulnerabilities of web application i.e., SQLI, CSRF, XSS and Broken Authentication and session management,

Insecure Cryptographic Storage, Insecure Direct Object References, Failure to Restrict URL Access, Unvalidated

Redirects and Forwards etc., to find out their prevention strategies over existing web application. The main objective of

this paper is to create a secure web application that provide security when user is login or while user is logged on. Web

application must be secure from the attacks that are listed in above section and show how these attacks are used to
compromise user identity and credentials. In this paper we are proposing a framework for building secure and anti-theft

web applications that must be secure from above listed attacks by improving existing web prevention techniques.

Keywords: Vulnerabilities, SQL Injection attack, Cross Site Request Forgery, Cross Site Scripting, Broken

Authentication and Session management, Open Web Application Security Project.

1. INTRODUCTION

The popularity of web applications has increased day by

day, mainly because of its client-server architecture and its

accessibility from all over the world. They are used in

various different environments. As their use in the critical-

environment increases, the sophisticated attacks against

these applications also have increased and securing
applications against these attacks have become very

important. In order to develop high quality dynamic web

applications, the developer uses various Web based

application frameworks. It reduces the burden in the

software development life cycle and still, the most

important aspect that needs to be considered is, how to

provide security to all these applications. We provide

importance of security features in the web based

application framework by the following statements:

Consideration of security in the System Development Life

Cycle is essential to implementing and integrating a
comprehensive strategy for managing risk for all

information technology assets in an organization.

The integration of security in the software development

life cycle of web application, however, still requires a

developer to possess a deep understanding of security

vulnerabilities and attacks.

Web application security must be addressed across the

tiers and at multiple layers. A weakness in any tier or layer

makes your application vulnerable to attack.

The main objective of this project is to create a web

application that provide security when user is login and

while user is logged on. Web application must be secured

from the attacks that are listed below and show how these

attacks are used to compromise user identity and

credentials.

Attacks on Web Application

Most of the attacks on web application are performed to

steal confidential data or to deface website or stealing

session cookies. And reason for this attacks are some

vulnerabilities in web application coding and in

application developing methods. This vulnerabilities from

which on some of very severe damaging attack can be

perform. So while developing application itself developer

can avoid that vulnerability.

Type of Attacks

There are several Web application attacks that can be used

to take control over application or deface application or

stealing confidential data. According to OWASP(Open

Web Application Security Project) there are 8 attacks that

are most severe and dangerous for any web application.

That attacks are as follows[1][15]:

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 11, November 2014

Copyright to IJARCCE www.ijarcce.com 8648

1. SQL Injection Attack

2. Cross-Site Scripting (XSS)

3. Broken Authentication and Session Management

4. Insecure Direct Object References

5. Cross-Site Request Forgery (CSRF)

6. Insecure Cryptographic Storage

7. Failure to Restrict URL Access

8. Unvalidated Redirects and Forwards

2. WEB APPLICATION VULNERABILITIES

Here we are mentioned eight different attacks on web

applications, to show how we can prevent from these to

achieve secure web application.

2.1 SQL-Injection(SQLI):

An SQL injection attack is a type of attack on web

applications that exploits the fact that input provided by

web clients is directly included in the dynamically
generated SQL statement. SQLIA is one of the foremost

threats to web applications. Injection flaws as SQL

injection occur when untrusted data is sent to an

interpreter as part of a command or query. The attacker’s

hostile data can trick the interpreter into executing

unintended commands or accessing unauthorized

data.SQL injection is a technique for maliciously

exploiting applications that use client-supplied data in

SQL statements. Using SQLIAs, an attacker may be able

to read, modify, or even delete query to its underlying

database, the attacker’s embedded commands are executed

by the database and the attack succeeds. The results of
these attacks are often dangerous and can range from

leaking of sensitive data to the destruction of database

contents.

SQL Injection Types:
These are the classification of SQL injection types

according to Halfond, Viegas and Orso researches [2,5].

1. Tautology

2. Logically incorrect queries

3. Union queries

4. Piggy-backed Queries

5. Stored Procedure

6. Blind Injection

7. Timing Attacks

Prevention Strategy:

We propose a newly automated approach for dynamic

detection and prevention of SQLIA. Our approach works

by identifying “trusted” strings in an application and

allowing only these trusted strings to be used to create the

semantically relevant parts of a SQL query such as

keywords or operators. The general mechanism that we

use to implement this approach is based on Regular
Expressions, which marks and tracks certain data in a

program at runtime. The developer sometimes tests the

application by using the Code analysis tool. It traces the

data flow through the application and avoids dynamic

queries approach as well as checks the interpreter. It is

also recommended to use object relational mapping tools

such as hibernate etc. that verifies the input data on the

developer’s behalf. In this, the application uses unverified

data to form the above vulnerable SQL query. The attacker

further modifies the id parameter to ‘or ‘1’=‘1. This

modified query means that, it has to return all the records

from the account tables, instead of returning to only single

records. This weakness discloses the database’s table

information, the complete takeover of the database, and
possibly even the server hosting the database.

2.2.Cross-Site scripting (XSS):

Cross-site scripting is an attack against web applications in

which scripting code is injected into the output of an

application that is then sent to a user’s web browser. In the

browser, this scripting code is executed and used to

transfer sensitive data to a third party i.e., the attacker.

Currently, most approaches attempt to prevent XSS on the

server side by inspecting and modifying the data that is ex-
changed between the web application and the user.

Unfortunately, it is often the case that vulnerable

applications are not fixed for a considerable amount of

time, leaving the users vulnerable to attacks. The solution

presented in this paper stops XSS attacks on the client side

by tracking the flow of sensitive information inside the

web browser. If sensitive information is about to be

transferred to a third party, the user can decide if this

should be permitted or not. As a result, the user has an

additional protection layer when surfing the web, without

depending on the security of the web application[6][9].

Prevention Strategy:

Cross-site scripting is one of the most frequent

vulnerabilities found in modern web applications.

Nevertheless, many service providers are either not willing

or not able to provide sufficient protection to their users.

This paper proposes a novel, client-side solution to this

problem. By modifying the popular Firefox web browser,

we are able to dynamically track the flow of sensitive

values e.g., user cookies on the client side.

Whenever such a sensitive value is about to be transferred

to a third party, the user is given the possibility to stop the

connection. To ensure protection against more subtle types

of XSS attacks that try to leak information through non

dynamic control dependencies, we additionally employ an

auxiliary, efficient static analysis, where necessary. With

this combination of dynamic and static techniques [3,5],

we are able to protect the user against XSS attacks in a

reliable and efficient way.

To validate our concepts, The input validation is a

preferred approach for handling the entrusted data All the
special characters first need to be verified and encoded

before placing them into the output. Otherwise, security

mechanisms can bypass the injected code inside the

documents that were later stored in the web application.

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 11, November 2014

Copyright to IJARCCE www.ijarcce.com 8649

2.3 Cross site request forgery (CSRF):

CSRF is a kind of attack which forces an end user to

execute unwanted action on a web application in which

they were currently authenticated. With a little help of

social engineering like sending a link via email/chat, an

attacker may forces the user of a web application to

execute actions of the attacker's choosing. CSRF

vulnerabilities are very common, and consequences of

such attacks are most serious with financial web- sites. We
propose Browser-Enforced Authenticity Protection

(BEAP), a browser-based mechanism to defend against

CSRF attacks[10]. BEAP infers whether a request reflects

the user’s intention and whether an authentication token is

sensitive, and strips sensitive authentication tokens from

any request that may not reflects the user’s intention. The

inference is based on the information about the request and

heuristics derived from analyzing real-world web

applications.

Prevention Strategy:

The most popular suggestion to prevent CSRF attack is to

append non predictable challenging token with each user’s

request. This happens when the user requests a page from

the server. The server first creates a session instance or

extracts the existing session object for that user from the

maintained session pool. It further generates long and

secure hash based a random token by using a significantly

secure hashed algorithm, such as sha-256 etc. Then it

associates the newly generated random token as a hidden

text field within the session and responds back to the

browser. The browser stores the session cookie inside the
cache and places the random token as a hidden field inside

the web page. The server receives the hidden random

token and a piece of the session on each subsequent

request. Further, it verifies that the session value and

hidden random token are the same as stored in the session

maintained for that user at the server’s side. If they are not

the same then the server responds back with an error

message; otherwise, it generates again a new random

token and follows the same procedure, as described above.

In addition, it is important to consider some of the points

during the generation and maintenance of the token. The
size of the generated token should be immensely long,

secure, and hard to predict by the attacker; otherwise, the

attacker is able to authenticate himself to the server as a

valid user with a random token and session id. However, it

is possible that the XSS flaw can also grab the session

token.

2.4 Broken authentication and Session Management:

Web applications include and cover a number of services

such as commercial transactions and mail exchange. The

deployment of applications via web has many benefits, for
instance (1) it increases the reach of application owners to

the intended users, and (2) reduces the maintenance and

deployment costs. The wide acceptance and usability of

web applications however has brought them into the focus

of cyber attacks of various sorts. Application functions

related to authentication and session management are often

not implemented correctly, allowing attackers to

compromise passwords, keys, session tokens, or exploit

other implementation flaws to assume other users’

identities[7][8].

Prevention Strategy:

In this paper for Session management ,to improve security
we suggest the use of cookies, enforcement of the same

origin policy for the cookies, and usage of SSL for any

traffic comprising of session IDs and credentials.

Technical solutions towards the security of web

applications from broken authentication problems are the

usage of S-HTTP during authentication and

cryptographically protecting user credentials i.e., for

instance by using hashing or encryption. These solutions

protect authentication data but the solution creates

communication overhead and need further

optimization[8].

2.5 Failure to Restrict URL Access

This attack is also called ‘forced browsing’, in which a

brute force method is used to find unprotected pages in the

web application and to access URL links based on specific

information. This risk is indeed as simple as it sounds; the

user is able to access the resources, though they don’t have

enough rights to happens because of the complex security

model used inside a project and the project which is

sometimes difficult for security specialists and developers

to understand. If the complexity of the project increases,
the probability of the error also grows and some pages will

be missed out. Sometimes, the ‘hidden’ or ‘special’ URL

is rendered to the administrator and the special users in the

presentation layer[15].

Prevention Strategy:

The security experts or the developers need to plan

authorization by creating a security matrix that maps the

roles to the functions of the application. The Web

application not only provides access control to the URL,
but also confirms to the business logic residing in the

application. As it generally happened that the access

control is placed into the presentation layer, but it leaves

the business layer unprotected. Moreover, It is also not

sufficient to ensure only once during the process that the

user is authorized to resources and then leaves it

unchecked during the subsequent steps. Otherwise, the

attacker may skip the steps of authorization and forge the

parameter value necessary to continue on the next steps.

One should assume that the users might be aware of the

special or hidden URLs or API and provide protection

against[14].

2.6 Insecure Direct Object References

The Insecure direct object references vulnerability takes

place when the web application exposes references of an

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 11, November 2014

Copyright to IJARCCE www.ijarcce.com 8650

internal implementation of an object, such as a file, URL,

directory, or database key to the users. The attacker can

modify the internal implementation of the object in order

to gain access control on it. The ‘open redirect’ and

‘open directory’ two categories of the vulnerabilities. In

the case of the ‘open redirect’, the user’s request is

redirected to the same or a different web application based

on the parameters that have been passed with the URL.

The ‘directory traversal’ renders the important files or
directory information that is stored in the local machine

where the application is running.

Prevention Strategy:

The best way to protect the application against direct

object reference attacks is through the validation of private

object references. Others include the avoidance of the

exposition of private object references to the users[14].

2.7 Insecure Cryptographic Storage

Many web applications do not properly protect sensitive

data, such as credit cards, SSNs, and authentication

credentials, with appropriate encryption or hashing.

Attackers may steal or modify such weakly protected data

to conduct identity theft, credit card fraud, or other crimes.

In this type Data and Credential are rarely protected with

cryptographic functions because of that Data collected can

be used by attackers i.e. Crimes like Credit Card Fraud.

Mostly common problems aries[14]:

• Not encrypting sensitive data

• Using home grown algorithms
• Insecure use of strong algorithms

• Continued use of proven weak algorithms (MD5, SHA-1,

RC3, RC4, etc.)

• Hard coding keys, and storing keys in unprotected stores

 Prevention Strategy:

Should be protected with cryptographic tools

1. Encryption

• If you need to read and write data: symmetric encryption

(e.g. DES, AES)
• If reading and writing are done by different entities:

asymmetric encryption (e.g. RSA)

2. One-way hash functions

• One input has always the same output

• Impossible to go from the output back to the input

• No collision can be generated (two inputs having the

same output)

• Example : SHA-256

2.8 Unvalidated Redirects and Forwards

Web applications frequently redirect and forward users to
other pages and websites, and use untrusted data to

determine the destination pages. Without proper

validation, attackers can redirect victims to phishing or

malware sites, or use forwards to access unauthorized

pages.If user is sumbitting a request to your webpage,

Attacker links to unvalidated redirect and tricks victims

into clicking it. Link is to a valid site, so the users are

more likely to click on it[14].

Prevention Strategy:

Attempts to install malware or trick victims into disclosing

passwords or other sensitive information. Identify target

URL with all the parameters. URL should contain only
allowed and needed parameters. Avoid redirects and

forwards. Don't involve user calculating the destination

address. If you cannot avoid this, check if the supplied

value is valid and authorized for the user.

3. ENHANCEMENT

Initially, websites were static and the interactions between

users and web servers were very limited. The

implementation of dynamic websites through server side

scripts made it possible to dynamically generate web
pages for interactions between users and web servers.

These advancements in web applications deploy the

occurrence of critical attacks as mentioned by OWASP.

This applications built an architecture, indicate to develop

Secure Software Engineering practices to achieve

vulnerabilities free web application. Here we are

mentioned eight different attacks on web applications, to

show how we can prevent from these to achieve secure

web application.

We propose a new highly automated approach for

dynamic detection and prevention of SQLIAs. Intuitively,

our approach works by identifying “trusted” strings in an
application and allowing only these trusted strings to be

used to create the semantically relevant parts of a SQL

query such as keywords or operators. The general

mechanism that we use to implement this approach is

based on Regular Expressions, which marks and tracks

certain data in a program at runtime.

In this project we have developed a highly automated

approach for protecting Web applications from SQLIAs.

This application consists of 1) Using Regular expressions

to track trusted data at runtime, and 2) Allowing only

trusted data to form the semantically relevant parts of
queries such as SQL keywords and operators. 3) Performs

syntax-aware evaluation of a query string immediately

before the string is sent to the database to be executed. The

project also provides practical advantages over the many

existing techniques whose application requires customized

and complex runtime environments: It is defined at the

application level, requires no modification of the runtime

system, and imposes a low execution overhead.

4. IMPLEMENTATION

With all this theoretical background about basic security
issues, it is time to make something useful out of it. The

beginning of this section describes the architecture of the

newly developed security framework which is describe

below. Implementation of this paper turns the theoretical

design into a working system. Thus it can be considered to

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 11, November 2014

Copyright to IJARCCE www.ijarcce.com 8651

be the most critical stage in achieving a successful new

system and in giving the user, confidence that the new

system will work and be effective.

4.1. Creating secure login script for web application.

4.2. Prevent SQL injection and Cross Site scripting in web

application.

4.3. Secure Session and Token generation for preventing

CSRF attack.
4.4. One time session cookies and use SSL for encrypted

communication.

4.5. Validation of Private Object Reference

4.6. Encrypt password using SHA-256 algorithm

4.7. Creating Security Matrix to Restrict URL

Implementation Description

4.1. Creating secure login script

In each and every web application login is the first and
most important step to authenticate user. So most of the

attacks also performed on login page and that is the reason

why login must be secure and unique.

For creating secure login script username and most

important password must be stored in database with in

hashed form and if it is stored with random salt then if

hacker come to know about password then also he can’t

regenerate password.

For more security immediately after login session must be

start with cookies that will be set until user is logged in.

4.2.Prevent SQL injection and Cross Site scripting

SQL injection and Cross Site scripting attacks are most

dangerous attacks on any web application so prevention

from these attacks are most important.

Input validation is a challenging issue and the primary

burden of a solution falls on application developers.

However, proper input validation is one of your strongest

measures of defense against today's application attacks.

Proper input validation is an effective countermeasure that

can help prevent XSS, SQL injection, buffer overflows,

and other input attacks.
Input validation is challenging because there is not a single

answer for what constitutes valid input across applications

or even within applications. Likewise, there is no single

definition of malicious input. Adding to this difficulty is

that what your application does with this input influences

the risk of exploit.

The following practices improve your Web application's

input validation:

Assume all input is malicious.

Centralize your approach.

Do not rely on client-side validation.

Constrain, reject, and sanitize your input.
SQL Injection and Cross-Site Scripting (XSS) Defense:

Server side defense using Prepared Statement is the most

effective way to protect from SQL Injection, because it

ensures that intent of query is not changed. It is very

important to lockdown database server and to follow the

Principle of Least Privilege . Modern web applications

also rely heavily on caching and database schema design

to improve performance . For prevention code injection

attacks, including SQL Injection and XSS all user data

should be validated. Input validation can be performed

client side using JavaScript, but from security prospective

it is not effective, because it doesn’t provide protection for

server-side code. Despite rule that input must be validated

server-side sometimes validation should be performed
client-side . Web frameworks and filters that offer

automate sanitization to prevent XSS in web applications

are gaining popularity, because manual implementation of

input sanitization in web application is prone to errors.

4.3.Secure Session and Token generation for

preventing CSRF attack

Preventing CSRF requires the inclusion of a unpredictable

token as part of eachtransaction. Such tokens should at a

minimum be unique per user session, but can alsobe
unique per request.

1. The preferred option is to include the unique token in a

hidden field. This causes thevalue to be sent in the body of

the HTTP request, avoiding its inclusion in the

URL,which is subject to exposure.

2.The unique token can also be included in the URL itself,

or a URL parameter.However, such placement runs the

risk that the URL will be exposed to an attacker, thus

compromising the secret token. so token must be kept

hidden.

The Filtering module

The Filtering module is first registered in the Java server
based web application, then it intercepts each incoming

http request and passes that request to the restore view

phase of JS life cycle. It consists of a new tag library

which is responsible for the adding new random tokens in

the JS page upon each new http request from the user.

• Adds a new random token for each form during each http

response;

• Validates the form token with the token stored in the

session for that user in each http request, if the token is

changed or missing, the application will generate the

appropriate exception.
This module provides protection against Cross-site request

forgery (CSRF), since another page would not know the

value of this token and csrfguard from the OWASP does

not offer integration with JSF based web application.

4.4. One time session cookies and use SSL for

encrypted communication.

Web applications are built on the stateless HTTP protocol,

so session management is an application-level

responsibility. Session security is critical to the overall
security of an application.

The following practices improve the security of your Web

application's session management:

Use SSL to protect session authentication cookies.

Encrypt the contents of the authentication cookies.

Limit session lifetime.

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 11, November 2014

Copyright to IJARCCE www.ijarcce.com 8652

Do not pass authentication cookies over HTTP

connections. Set the secure cookie property within

authentication cookies, which instructs browsers to send

cookies back to the server

only over HTTPS connections. Reduce the lifetime of

sessions to mitigate the risk of session hijacking and

replay attacks. The shorter the session, the less time an

attacker has to capture a session cookie and use it to access

your application.

Fig.4.4:Secure Session Formation

4.5. Validation of Private Object Reference

The best way to protect the application against direct

object reference attacks is through the validation of private

object references. Others include the avoidance of the

exposition of private object references to the users. For

example primary keys or filenames use the index, indirect

reference map, or other indirect methods that can be easily
validate. If the user uses

the direct object, then it first ensures that the user is

authorized and then exposed URL with indexing

parameter such as “http://helloworld.com/file.jsp?file=1”

sets the “file” parameter to “1” value. If the application

exposes direct references to the database structures, then it

ensures that Sql statements and other database access

methods only allow authorized records.

Fig.4.5 Validation of Private Object Reference

4.6. Encrypt password using SHA-256 algorithm

Too often passwords are stored as clear text. Thus the

password can be read directly by the database’s

administrator, super users or SQL Injection attack etc. The

backup media is also vulnerable. In order to solve this

problem, passwords must be stored encrypted. For this we

are using One way functions (SHA-256) also known as

Hashing functions Passwords are secrets. There is no
reason to decrypt them under any circumstances. Admin

should be able to set new passwords not read back old

passwords. Therefore, there is no reason to store

passwords in a reversible form.

4.7. Creating Security Matrix to Restrict URL

The security experts or the developers need to plan

authorization by creating a security matrix that maps the

roles to the functions of the application. It is a key step to

provision of protection against unrestricted URL access.
The Web application not only provides access control to

the URL, but also

confirms to the business logic residing in the application.

As it generally happened that the access control is placed

into the presentation layer, but it leaves the business layer

unprotected. Moreover, It is also not sufficient to ensure

only once during the process that the user is authorized to

resources and then leaves it unchecked during the

subsequent steps. Otherwise, the attacker may skip the

steps of authorization and forge the parameter value

necessary to continue on the next steps. One should
assume that the users might be aware of the special or

hidden URLs or API and provide protection against

Fig.4.6: Encrypt password using SHA-256 algorithm

5.CONCLUSION

In present era of online world internet is the home of
hackers and vulnerable web applications are their bank. So

web applications must provide security and assurance.

Thats why secure coding practices are use to create such

applications with high security. It has been seen that after

applying all secure coding practices and mitigation

techniques to be secure from attacks, that are being used

by hacker to steal information are prevented. It has been

proved that Apart from security web applications must be

developed using SDLC for early vulnerability detection

and prevention.

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 11, November 2014

Copyright to IJARCCE www.ijarcce.com 8653

REFERENCES

[1] Microsoft SDL(Security Development Lifecycle) and Building

Secure Applications. Official SDL Web Site:

http://www.microsoft.com/sdl

[2]. Atefeh Tajpour CASE & Mohammad Zaman Heydari: SQL Injection

Detection and Prevention Tools Assessment, IEEE, 2010.

[3]. William G.J. Halfond and Alessandro Orso: Preventing SQL

Injection Attacks Using AMNESIA

[4]. Lwin Khin Shar and Hee Beng Kuan Tan:Defending against Cross-

Site Scripting Attacks,IEEE,2012

[5]. Tatiana Alexenko Mark Jenne & Suman Deb Roy Wenjun Zeng,

Columbia: Cross-Site Request Forgery: Attack and Defense, IEEE,2010

[6]. Sreenivasa Rao & Kumar N: Web Application Vulnerabilities

Assessment and Preventing Techniques, Int. J. of Enterprise

computing and business System., Vol. 2, No. 1, January,2012

[7]. Daniel Huluka DSV and Oliver Popov DSV: Root Cause Analysis

of Session Management and Broken Authentication Vulnerabilities, IEEE, 2012.

[8]. Goodman, G.; West, G., Jr.; Schoenfeld, I.; , "Criteria for review of

root-cause analysis programs," Human Factors and Power Plants,

1997. 'Global Perspectives of Human Factors in Power Generation’.

Proceedings of the 1997 IEEE Sixth Conference on, vol., no.,

pp.2/1-2/6, 8-13 Jun 1997

[9]. Cross Site Scripting-Latest developments and solutions-A survey:

JayamsakthiShanmugam1, Dr. M. Ponnavaikko2,: Int. J. Open

Problems Compt. Math., Vol. 1, No. 2, September 2008

[10]. Ziqing Mao, Ninghui Li, Ian Molloy: Defeating Cross-Site Request

Forgery Attacks with Browser-Enforced Authenticity Protection

[11]. WilliamZeller and Edward W. Felten:Cross-Site Request Forgeries:

Exploitation and Prevention

[12]. M. Johns and J. Winter. RequestRodeo: Client side protetion against

session riding. In Proceedings of the OWASP Europe 2006

Conference, 2006

[13]. Aanchal Jain & Vineet Richariya: Implementing a Web Browser

with Phishing Detection Techniques ,World of Computer Science
and Information Technology Journal (WCSIT) , Vol. 1, No. 7, 289-291, 2011

[14] Rakeshkumar Kachhadiya,” Development of the Security

Framework based on OWASP ESAPI for JSF2.0“Master Thesis -

Applied Computer Science Albert-Ludwigs-Universität Freiburg im

Breisgau, 2 May 2012

[15] Curphey, M., Wiesman, A., Van der Stock, A., Stirbei, R.: “A

Guide to Building Secure Web Applicationsand Web Services”. OWASP (2010).

[16] Halfond WGJ, Viegas J, Orso A. A classification of SQL-injection

attacks and countermeasures.Proceedings ofthe International

Symposium on Secure Software Engineering, Washington, DC,

U.S.A., March 2006.

