
ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 12, December 2014

Copyright to IJARCCE DOI 10.17148/IJARCCE 8753

Achieving low latency networks through high

performance computing

Chandrika Prasad
1
, Veena G.S

2
, Chirag Agrawal

3
, Robin Srivastava

4

Department of CSE, MSRIT, Bangalore, Karnataka, India
1,2,3,4

Abstract: We define latency as the time taken to deliver a unit of data from one point to another point in the system.

Low latency networks refer to the networks where systems, their architecture, hardware and protocols are designed to

bring down this latency. The question that why latency is so important can be answered by mentioning the fact that

many applications such as voice transmission, networked gaming, and video transmission, interactive sessions solely

depend on the latency of the network. The components of latency include Hardware: Every hardware comes with its

own advantages and limitations. For example, some have fixed packet size whereas other may have variable size.

Routers and Switches: All the networks components follow their own queuing strategies or congestion control

strategies. Traditionally, processing of packets is dependent on the rate on incoming packets. System Latency: The

packets to and fro between the application the network interface and this surely forms a part of the latency. Potentially,

interruption by system can introduce infinite amount of latency.

OS Latency: The processing of the packets by the OS consumes time. It de-multiplexes the packets and sends them to

their respective destinations.

Application Latency: The application need sufficient amount of CPU resources to perform the task.

Keywords: PCI, PCI-x, DLL, UNET

INTRODUCTION

In this paper we aim to study various ways to improve

network latency using high performance computing

techniques. We first discuss some techniques like UNET,

Zero copy architecture and vertical partitioning of OS

which had potential to address this problem directly but

could not get worldwide attention due to various reasons.

We then discuss the Shared Memory Model (here forth

SMM) which addresses the core problem i.e. interrupt-

driven architecture of the systems. The SMM is suffers

with problem of Application Synchronization which then

addressed with the solutions like VM Signaling and out-

of-band signaling.

Survey

UNet: A User-Level Network Interface

The U-Net communication architecture provides processes

with a virtual view of a network interface to enable User-

Level access to high-speed communication devices. ATM

communication hardware which is used as the architecture

here, removes the kernel from the communication path,

while stall providing full protection. U-Net uses per

application message queues to send and receive data. But,

this idea complicates what an application needs to do.

The U-Net architecture focuses on reducing the processing

overhead required to send and receive messages as well as

on providing flexible access to the lowest layer of the

network. The intent is three-fold:

● help building local area setting with low latency,

● exploit the full network bandwidth even with small

messages, and

●novel communication protocols are easily facilitated.

The three aspects that set U-Net apart from other

techniques are:

●prioritizing high bandwidth and low latency with small

messages,

●emphasis on protocol design and integration flexibility,

and

●aim to fulfill the above two mentioned goals using off-

the shelf technology.

Zero-Copy Architecture

Overview

In simple words, zero-copy architecture eliminates the

need to copy data up to the application.

For e.g., if we read a file and then send it through a

traditional network then four context switches and four

data copies will be required. If we send the same file

through zero-copy then the context switches will be

reduces to two and either all or at least half of the CPU

copies will be eliminated.

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 12, December 2014

Copyright to IJARCCE DOI 10.17148/IJARCCE 8754

 Current Bottlenecks-The need to Zero Copy

Contemporarily, the technology that has been deployed is

Parallel Component Interconnect (PCI) and Extended

Parallel Component Interconnect (PCI-X).The backbone

of this technology is exclusive contention of the processor

bus. Peripherals as end-points impersonate as bus master

and are directly connected to its bus. Winning the

contention of the bus leads to assigned address in

processor’s address space.

The main locality of bottleneck can be centered around

connectivity between system processor , memory

controller and the system I/O interconnects which forms

the core of all domains of computing.

 With the plethora of new and high speed end systems ,

PCI and extended PCI interconnects have become major

performance hurdles. Passing data over conventional

interconnects is achieved by forcing data through many

paths using interrupts which leads to ideal state of the

processor. To mitigate it, bridge chips are connected to

peripheral devices and system Central processing unit. But

it’s implementation leads to trade off in fields of system

development costs , increased power consumption and

lower reliability.

Underutilization is due to the fact that processor bus is a

parallel bus but exclusive contention per bus cycle leads to

it being emulated as serial transmission. Hence,

deteriorated performance and high latency in delivering

service.

Probable Workaround – Hyper Transport Technology

Backbone of this technology is direct peripheral to central

processing unit interconnection. It deploys expansion

cards which are directly plugged into HTX enabled end

systems overlooking conventional end point bottlenecks.

 Deployment of Hyper Transport Technology, allows

system manufactures to design and launch an exhaustive

motherboard platform that can easily blend with current

high-performance market. It’s integration is as easy as

adding a HTX- based peripheral card into the legacy

hardware.

Hyper Transport Technology – How edge over PCI

and PCI-X

HTX is in-system chip to chip interconnect which enables

plug-in subsystems to obtain direct connect performance

facility. It can be combined with connector as PCI

eliminating clock recovery circuit logic and introducing

priority request interleaving. Thus, employing a super lean

packet payload protocol.

 The following diagrams explain how HTX leads to lower

latency and faster response in comparison to its

contemporaries.

The diagrams self explains the fact that PCI packet format

has extra overheads due to introduction of various

different headers like transaction layer which leads to

overhead of 12-16 bytes ,DLL overhead of approximately

8 bytes and encoding overhead of 8 to 10 bits per packet.

This phenomenon is optimized in HTX by encapsulating

all encoding or data link functionalities into a single

header which brings down the overhead to 8-12 bytes

approximately.

To sum up , HTX is high bandwidth point to point link

providing the lowest possible latency in chip to chip and

board to board communications. It minimizes the count of

buses in a system. It also gels well with legacy

implementations by adding it’s extension. Being packet-

based protocol and deploying clock forwarding technique

eliminates many control and command signals.

Implementing Zero-Copy Protocol – The master of all

technology
 Most primitive interpretation of zero copy protocol can

be confined to the following two diagrams:

Key implementation differences between conventional and

zero copy protocol is the reduction in number of stages

through which data is transferred before being available to

the corresponding process. Through the process of Direct

Memory Access the received data is stored in processor

buffer which is readily available to be transmitted to the

corresponding process for operation.

The next step is mapping the destination address of packet

to the resulting process. In conventional systems, this

phenomenon is carried out in the following steps:

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 12, December 2014

Copyright to IJARCCE DOI 10.17148/IJARCCE 8755

All data is stored directly into kernel buff queue which

prioritizes the transmission of data. When the data is

readily available then it is forwarded to upper buffers like

SK_Buff deploying protocols like FCFS etc. This

introduces extra overhead. Now ,since the data has to be

forwarded to corresponding process it has to be transected

by lower layer protocols like TCP/IP and assigned a

corresponding socket to be available to a process. All

these data are stored in final level message buff which

waits for scheduler to dispatch corresponding data to

assigned user space and then to a user thread.

Zero-copy protocol as mentioned need not maintain copies

in different level of buffers. All readily available packets

are dumped into a centralized storage module known as

packet pool. Since, all data packets has corresponding

destination address .This address is mapped to the socket

address after which it is promoted to user space sockets

and scheduler assigns it a process to be executed. This

minimized level of forwarding reduces number of software

interrupts and other stalls like busy wait. Thus , reducing

the overall latency in delivering the service.

Formal modeling – Conventional v/s Zero copy

This section mathematically proves the dominance of

zero-copy protocol over other mentioned implementations.

All latency concepts can be attributed to a single fact of

time spent in moving data from kernel to user space and

vice versa.

Let tot represents the total time taken to transmit a packet

from application to kernel and vice versa. t1 represents

time spent in passing data from user to kernel and t2 be the

time of other transferoperations. R is the transfer rate

which will determine the latency factor. It is governed by

the equation as:

:

To obtain maximum rate we have to minimize the time

spent so,

As proved ,rate of transfer is inversely proportional to the

time spent in other transfers which is reduced in Zero copy

and increased due to extra buffer storage in conventional

as depicted in figure 2.

Vertical Partitioning of OS

U-Net gave applications an abstract network card so there

was less multiplexing of data. Now we go all the way and

do more partitioning of OS resources. Even disk devices

and file systems are carefully partitioned.

The prime reasons why all the above techniques did not

catch up was because the real problem was that increased

bandwidth bombarded the OS with interrupts and

interrupts rate was phenomenal. Network traffic has

become overwhelming for a interrupt driven system.

Shared Memory Model

In shared memory model data transfer is accomplished by

writing to memory addresses in the local address space of

the process. This data is captured by the local network

card and serialized into packets which are transferred over

the network to the remote machine which writes the data

to remote addresses. A region of the local address space of

the process is mapped to an IO region on the card.

Standard memory-mapping techniques are used to make

that mapping.

In simple words, this means that instead of physically

sending it across the network, sending applications can tell

receiving applications to get data from memory. This is

usually done with a mechanism called Inter Process

Communications (IPC), and it eliminates the latency and

pitfalls of network connectivity. Deploying a large-scale

multi-core machine with shared memory allows complex

tasks to be completed more quickly.

Problems with SMM: It’s difficult to inform the remote

process/node that data is waiting to be read because there

are no interrupts involved anymore. The major problem

then becomes application synchronization.

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 12, December 2014

Copyright to IJARCCE DOI 10.17148/IJARCCE 8756

Application Synchronization means scheduling the

relevant application to receive the data. Application

Synchronization can be achieved in SMM through

following ways:

The receiver keeps polling certain addresses to see if a

data transfer has occurred. This is expensive (wasting local

CPU) and only relevant if there is a real chance of a data

transfer. This technique could be used to provide to

provide a form of distributed synchronization - spinning

on a remote address.

In this technique page is only mapped locally when there

is data to be read. If a page with no data is accessed, then a

page fault occurs and I am blocked until the owner writes

to the page.

A separate channel is used outside the data transfer region

to signal that data has been transferred. For example,

writing to a special set of addresses would cause an

interrupt to be generated at the remote end. So you would

transfer the data by writing to your local address. After

you then wrote to a special address associated with that

memory region. An interrupt occurs on the other side and

the OS works out which buffer you are referring to and

wakes up the waiting process.

CONCLUSION

To conclude we can come up with the fact that although

zero copy protocol and User-Level Network Interface has

trade off like higher initial cost and increased power

consumption but higher rate of processing and minimal

latency compensates for the loss. However, if the system

tends to become overwhelmed by the interrupts caused by

network traffic then SMM might be the best technique to

cope up.

REFERENCES
[1] U-Net - A User Level Network Interface Infrastructure -

http://www.eecs.harvard.edu/~mdw/proj/old/unet/

[2] Implementing Parallel Processing -
https://docs.oracle.com/cd/F49540_01/DOC/server.815/a67778/ch2_succ.htm

[3] Introduction to Parallel Programing --

https://computing.llnl.gov/tutorials/parallel_comp/#ModelsShared
[4] Parallel Programming Model -

http://en.wikipedia.org/wiki/Parallel_programming_model#Shared_memory

[5] Polling - http://www.cs.umd.edu/class/ sum2003/cmsc311 /Notes/
IO/ polling.html

[6] Interrupts And Polling - http://dis-dpcs.wikispaces. com/6.5.3

+Interrupts +and+Polling
[7] http://en.wikipedia.org/wiki/Low_latency

[8] www.ciena.com/solutions/enterprise/ultra-low-latency-networking/

[9] www.scs.stanford.edu/~rumble/papers/latency_hotos11.pdf
[10] http://insidehpc.com/hpc-basic-training/what-is-hpc/

[11] http://www.hipc.org

Application Synchronization

Polling:

VM Signaling:

Out-of-Band Signaling:

