
ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 12, December 2014

Copyright to IJARCCE DOI 10.17148/IJARCCE 8828

A technical review on comparison of Xen and

KVM hypervisors: An analysis of virtualization

technologies

 Ms Jayshri Damodar Pagare
 1
, Dr. Nitin A Koli 2

Research Scholar, Sant Gadge Baba Amravati University, Amravati, India
 1

Head, Computer Centre, Sant Gadge Baba Amravati University, Amravati, India
 2

Abstract: This paper presents the recent technical survey on comparison of Xen and KVM Hypervisors. Hypervisors

are widely used in cloud environments and virtualization through the use of hypervisors has become widely used. This

paper reviews in depth analysis of virtualization technologies experimented by researchers from feature comparison to

performance analysis. This paper will be useful for researchers to work on appropriate hypervisors.

Keywords: Virtualization, Hypervisors.

I. INTRODUCTION

Virtualization, a mechanism to abstract the hardware and

system resources from a given Operating System. It is

typically performed within a Cloud environment across a

large set of servers using a Hypervisor or Virtual Machine

Monitor (VMM), which lies in between the hardware and

the OS. From the hypervisor, one or more virtualized OSs

can be started concurrently as seen in Figure1, leading to

one of the key advantages of Cloud computing.

This, along with the advent of multi-core processors,

allows for a consolidation of resources within any data

center. From the hypervisor level, Cloud computing

middleware is deployed atop the virtualization

technologies to exploit this capability to its maximum

potential while still maintaining a given QoS and utility to

users.[1]

Virtualization is the process of decoupling hardware from

the operating system on a physical machine. It is one of

the main technologies used for improving resource

efficiency in datacenters which allows the deployment of

co-existing computing environments over the same

hardware infrastructure. A Virtual Machine (VM) is the

virtualized representation of a physical machine that is run

and maintained on a host by a software virtual machine

monitor or hypervisor [2]. The hypervisor implements the

virtualization on the physical machine and can be one of

two types. Type 1 hypervisors are sometimes referred to as

native hypervisors as they run on “bare metal,” or directly

on the host's hardware to control the hardware and to

monitor guest operating-systems. Type 2 hypervisors are

hosted hypervisors, meaning they are software

applications running within a conventional operating-

system environment.

Xen [3] is an example of a Type 1 hypervisor. Xen

provides full virtualization to partition the host machine

into multiple VMs. Xen can also use a technique known as

paravirtualization, where the operating system is aware of

virtualization and works with the hypervisor, to improve

Fig. 1. Virtual Machine Abstraction[1]

the efficiency of operation. VMs provide many advantages

to increase efficiency and decrease cost to data enters;

however, VMs have significant security implications. A

primary concern is ensuring the proper virtual

environment is operating within a VM and whether the

VM is configured properly. Another concern is virtual

machines specific vulnerabilities that can be exploited to

mount attacks specialized to subvert the built in defences

of the guest operating systems.

As all virtual machines have a standard interface and

appear identical to the software running within it, we

consider all attacks that can take advantage of that

interface. Examples of such attacks include an adversary

copying a virtual machine to maliciously run multiple

copies of licensed software on multiple computers since

their environments are identical, thus breaking the

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 12, December 2014

Copyright to IJARCCE DOI 10.17148/IJARCCE 8829

licensing agreement. Another problem of abstracting the

real hardware interface from the guest VM is that it has no

binding to physical hardware, thus disallowing it to

determine its physical location and being able to decide

whether the host environment is safe. By not knowing

what else is operating on the platform, the guest VM

cannot determine the trust level of the host platform. If the

authenticity of the VM is not known and the trust of host

environment cannot be determined, the guest VM cannot

be trusted.

II. BACKGROUND OF HYPERVISORS[4]

A. Xen hypervisor

Xen is an open source hypervisor originally developed at

the University of Cambridge and now distributed by Citrix

Systems, Inc. The first public release of Xen occurred in

2003. It is designed for various hardware platforms,

especially x86, and supports a wide range of guest

operating systems, including Windows, Linux, Solaris and

versions of the BSD family.

Xen architecture consists of a hypervisor, a host OS and a

number of guests. In Xen terminology, the host OS is

referred to as the Domain 0 (dom0) and the guest OS is

referred to as Domain U (domU). Dom0 is created

automatically when the system boots. Although it runs on

top of the hypervisor itself, and has virtual CPUs (vCPUs)

and virtual memory, as any other guest, Dom0 is

privileged. It provides device drivers for the I/O devices, it

runs user space services and management tools, and is

permitted to use the privileged control interface to

hypervisor. It also performs all other OS related functions.

Like a DomU, Dom0 can be any operating system in the

Linux ,Solaris, and BSD family. As we see, Xen separates

the hypervisor execution from Dom0. In this way, the

series of tasks that are not related to processing the

virtualized guests performed by Dom0 do not influence

the hypervisor, ensuring maximum performance.

Xen employs para-virtualization from the very beginning.

Through para-virtualization, Xen can achieve very high

performance, but it has the disadvantage of supporting

Linux only; and that Linux has to have a modified kernel

and bootloader, and a fixed layout with two partitions, one

for hard disk and one for swap.

Xen also implements support for hardware-assisted

virtualization. In this configuration, it does not require
modifying the guest OS, which make it possible to host

Windows guests.

B. KVM hypervisor

KVM is a hardware-assisted virtualization developed by

Qumranet, Inc and was merged with upstream mainline

Linux kernel in 2007, giving the Linux kernel native

virtualization capabilities. KVM make use of the

virtualization extensions Intel VT-x and AMD-V. In 2008,

Red Hat, Inc acquired Qumranet.

KVM is a kernel module to the Linux kernel, which

provides the core virtualization infrastructure and turns a

Linuxhost into a hypervisor. Scheduling of processes and

memory is handled through the kernel itself. Device

emulation is handle by a modified version of QEMU . The

guest is actually executed in the user space of the host and

it looks like a regular process to the underlying host

kernel.

A normal Linux process has two modes of execution:

kernel mode and user mode. KVM adds a third one: guest

mode. When a guest process is executing non-I/O guest

code, it will run in guest mode. All the guests running

under KVM are just regular linux processes on the host.

Each and every virtual CPU of your KVM guests is

implemented using a Linux thread. The Linux scheduler is

responsible for scheduling a virtual CPU, as it is a normal

thread. This brings the advantage that you can set

priorities and affinity for these processes using normal

adjusting commands, and use all the common linux

utilities related to processes. Also, control groups can be

created and used to limit resources that each guest can

consumeon a host. In KVM, guest physical memory is just

a chunk of host virtual memory. So it can be swapped,

shared, backed by large pages, backed by a disk file, and is

also NUMA aware.

KVM supports I/O para-virtualization using virtio

subsystem. Virtio is a virtualization standard for device

(network, disk, etc.) drivers where the guest’s device

driver is aware of running in a virtual environment, and

communicates directly with the hypervisor. This enables

the guests to get high performance network and disk

operations. Virtio is different,but architecturally similar to

Xen para-virtualized device drivers.

III. GENERAL DIFFERENCES BETWEEN XEN AND KVM[5]

Xen consists of a thin software layer above the hardware,

which mostly controls CPU and memory access (see

Figure2a). It implements its own CPU scheduling and

memory management. There is a special, trusted virtual

machine, called Domain-0, running control software the

whole system is administrated through. I/O tasks are

delegated to Domain-0. This means that all other virtual

machines (or “unprivileged domains”, Domain-U)

communicate with peripheral devices indirectly, through

Domain-0.

KVM has a somewhat different architecture (Figure 2b). It

coexists with the host OS, which is an ordinary operating

system (GNU/Linux in this case) and provides a set of

system calls (ioctl-s) for creating and managing virtual

machines from userspace.

Every virtual machine is seen by the host OS as an

ordinary process and is treated accordingly. Note that

KVM, as a kernel extension, is not a complete solution

itself: it is only an extension to the standard Linux kernel

that provides the infrastructure for

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 12, December 2014

Copyright to IJARCCE DOI 10.17148/IJARCCE 8830

Fig. 2. Comparison of architectures: Remus (a) and Romulus (b)[5]

running and managing virtual machines. There is a tool in

userspace (a modified version of QEMU emulator) that

takes advantage of this infrastructure to provide a

complete virtualization solution (although the combination

of the two is most commonly called just KVM, for

simplicity).

 An important difference between Xen and KVM is in the

virtualization technique used. Namely, making an

operating system run in a virtualized environment is not a

straightforward task. In typical architectures, such as x86,

most instructions can be executed natively in a virtualized

environment, but there are some problematic instructions

that need special treatment. A possible approach to solve

this problem in software is called paravirtualization,

which means changing the source code of an operating

system in order to make it virtualization-aware. Since

2006 there have appeared commercial processors capable

of solving this problem in hardware, by introducing
special modes of execution for use with virtualization.

This approach is called full virtualization. KVM supports

full virtualization, with a limited support for

paravirtualization in form of device drivers . In fact, this is

the main reason for its simplicity: KVM only makes

hardware virtualization extensions accessible from

userspace through a set of system calls. Xen supports both

paravirtualization and full virtualization, but the former is

used whenever possible because it usually gives better

performance.

IV. THE FEATURE COMPARISON

Virtualization technology provides a way to share

computing resources among VMs by using

hardware/software partitioning, emulation, time-sharing,

and dynamic resource sharing. Traditionally, the operating

system (OS) controls the hardware resources, but

virtualization technology adds a new layer between the OS

and hardware. A virtualization layer provides

infrastructural support so that multiple VMs (or guestOS)

can be created and kept independent of and isolated from

each other. Often, a virtualization layer is called a

hypervisor or virtual machine monitor (VMM). While

virtualization has long been used in mainframe systems ,

VMware has been the pioneer in bringing virtualization to

commodity x86 platforms, followed by Xen and a variety

of other virtualization platforms .[6]

Figure 3 shows three different approaches to

virtualization: para-virtualization (PV), full virtualization

(FV), and hardware-assisted virtualization (HVM).

Paravirtualization requires modification to the guest OS,

essentially teaching the OS how to make requests to the

hypervisor when it needs access to restricted resources.

This simplifies the level of hardware abstraction that must

be provided, but version control between the hypervisor

and paravirtualized OS is difficult since they are

controlled by different organizations. Full virtualization

supports running unmodified guests through binary

translation.

Fig. 3. Different Approaches to Providing the Virtualization Layer[6]

These techniques can incur large overheads since

instructions that manipulate protected resources must be

intercepted and rewritten. As a result, Intel and AMD have

begun adding virtualization support to hardware so that the

hypervisor can more efficiently delegate access to

restricted resources .Some hypervisors support several of

these techniques; hypervisors using hardware-assisted

virtualization as this promises to offer the greatest

performance and flexibility. Our target hypervisors are

KVM and Xen. Both of these hypervisors use different

architectures.

Xen and KVM use open-source modifications of the Linux

kernel, Xen was initially based on the paravirtualization
technique, but it now supports HVM as well .However, it

still retains a separate management domain (dom0) which

controls VMs and can negotiate access to custom block

and network drivers. KVM runs as a kernel module, which

means it uses most of the features of the linux. kernel
operating system itself. For example, rather than providing

its own CPU scheduler for VMs, KVM treats each VM as

a process and uses the default Linux scheduler to allocate

resources to them.

A variety of software and operating system aspects

can affect the performance of hypervisors and VMs. In

particular,how the hypervisor schedules resources such as

CPU,memory, disk, and network are critical factors. Each

of these resources requires different techniques to

virtualize, leading to performance differences in each

hypervisor depending on the types of activities being

performed. Table I summarizes performance-related

elements for both these hypervisor

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 12, December 2014

Copyright to IJARCCE DOI 10.17148/IJARCCE 8831

TABLE I. Feature Comparison (* DEFAULT OR USED IN

THIS PAPER)[6]
Features KVM XEN

Base OS Linux(+QEMU) Linux(+QEMU)

Latest

Release
Version

2.6.32-279 4.1.2

Architecture Bare metal Hosted

Supported

virtualization
technologies

Para-virtualization,full

virtuaization,hardware-
assisted virtualization

Para-virtualization,full

virtuaization,hardware-
assisted virtualization

Network

Management

features

FIFO based scheduling FIFO based scheduling

CPU

Scheduling

Features

Linux schedulers

(Completely Fair

Queuing Scheduler*,

round-robin, fair

queuing,
proportionally fair

scheduling, maximum

throughput, weighted
fair queuing)

SEDF (Simple Earliest

Deadline

First), Credit*

Memory

Address
Translation

Mechanism

Shadow page table,

Hardware-
Assisted Pagetable*

Direct Pagetable (PV

mode),
Shadow Pagetable

(HVM mode),

Hardware-Assisted
Pagetable*

V. PERFORMANCE COMPARISON

Xianghua et al.[7] have performed series of tests that

stress a variety of system sources including CPU,

memory, process creation, disk I/O and network I/O, here

host one Netperf as server and create four the same guest

os in their own virtual machine as client. After

establishing some baseline data, they run a variety of

different stress tests in virtual machines and report the

impact on Netperf performance in all four virtual

machines. The results shown in the Table II.

A. CPU Intensive Test

The first test stressed CPU usage with a tight loop

containing both integer and floating point operations. Both

virtualization systems performed well on this test even the

misbehaving VMs. On both platforms that the CPU load

on the misbehaving ever does rise to nearly 100%.[7]

B. Memory Bomb

Test began with a stress test which simply loops

constantly allocating and touching memory. After this test,

In the Xen and Kvm case, the misbehaving VM did not

report results, but all others continued to report nearly

100% good results as before.[7]

C. Fork Bomb

Next ran a program that loops, creating new child

processes. As in the memory consumption test, under

Xen, Kvm, the misbehaving virtual machine presented no

results[7].

D. Disk Intensive Test

For a disk intensive stress test, they use IOzone , next ran

threads of IOzone each running an alternating read and

write pattern (iozone -i 0 -i 1 -r 4 -s 64M -t 10).The results

of this test were quite amazing. On Xen, the situation was

mixed. The misbehaving VM saw a degradation of 15%

and the other three VMs were also impacted, showing an

average degradation of 2-3%. With Xen was proposed

hardware access model, a specialized device driver VM

could be written to ensure quality of service guarantees for

each client VM .On KVM, good performance maintained

on the three well-behaved VMs was close to 100%.

However, the misbehaving VM saw a degradation of

26%[7].

E. Server Transmits Data

For the server transmitting test, next started 4 threads

which each constantly sent 60K sized packets over UDP to

external receivers. For this test, the results were once again

mixed. For Xen, the well-behaved VMs show almost no

degradation and the misbehaving VMs shows a slight but

repeatable degradation of less than 1%. Under KVM, the

well-behaved VMs show a slight but repeatable

degradation of less than 1%, but the misbehaving VM

presented no results[7].

F. Server Receives Data

Finally, for the server transmitting test,next started 4

threads which each constantly read 60K packets over UDP

from external receivers. The results for this test were

similar to the server transmit test on Xen. On Xen, there

was a slight but repeatable degradation the misbehaving

VM, but all the wellbehaving VMs were unaffected. For

Kvm all four VMs retained 100% good response. There is

no substantial degradation on the misbehaving VM that

was seen in the sender transmit case[7].

TABLE II. SUMMARY OF STRESS TEST RESULTS[7]

Percent of degradation in good response rate. For each test, the percent
degradation for either the bad or misbehaving VM is shown, as well as, the

average degradation across the three good or well-behaving VMs .DNR

indicates the Netperf client reported only an error and no actual results

because of the unresponsiveness of the server it was testing.

VI. CONCLUSION

Here we conducted a survey of virtualization technologies

namely XEN ,KVM. By taking Results of various

researchers tests for both the virtualization technologies

,we conclude that there is no perfect hypervisor, and both

the hypervisor handles different workload which is best

suited for them.

REFERENCES

[1] Younge, A.J.; Henschel, R.; Brown, J.T.; von Laszewski, G.; Qiu,

J.; Fox, G.C., "Analysis of Virtualization Technologies for High

Performance Computing Environments," Cloud Computing
(CLOUD), 2011 IEEE International Conference on , vol., no.,

pp.9,16, 4-9 July 2011

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 12, December 2014

Copyright to IJARCCE DOI 10.17148/IJARCCE 8832

[2] S. Campbell, and M. Jeronimo, Applied Virtualization Technology,
Hillsboro,OR: Intel Press 2006.

[3] P. Barham, B. Dragovic, K. Fraser, “Xen and the Art of

Virtualization,” ACMSIGOPS Operating System
Review,vol.37,no.5,pp.164-177,2003.

[4] Soriga, S.G.; Barbulescu, M., "A comparison of the performance

and scalability of Xen and KVM hypervisors," Networking in
Education and Research,2013 RoEduNet International Conference

12th Edition , vol., no., pp.1,6, 26-28 Sept. 2013

[5] Petrovic, D.; Schiper, A., "Implementing Virtual Machine
 Replication: A Case Study Using Xen and KVM," Advanced

Information Networking and Applications (AINA), 2012 IEEE 26th

International Conference on , vol., no., pp.73,80, 26-29 March 2012

[6] Jinho Hwang; Sai Zeng; Wu, F.Y.; Wood, T., "A component-based

performance comparison of four hypervisors," Integrated Network

Management (IM 2013), 2013 IFIP/IEEE International Symposium
on , vol., no., pp.269,276, 27-31 May 2013

[7] Xianghua Xu; Feng Zhou; Jian Wan; Yucheng Jiang, "Quantifying

Performance Properties of Virtual Machine," Information Science
and Engineering, 2008. ISISE '08. International Symposium on ,

vol.1, no., pp.24,28, 20-22 Dec. 2008

