
ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 1, January 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4105 22

Prioritization of Functional Test Suites Using

Closed Dependency Structures

C.VijayaKumar
1
, M.S.Kokila

2
, N.RajaSekaran

3

Research Scholar, Bharathiar University, Coimbatore, Tamil Nadu, India.
 1

Assistant Professor, Kongu Arts and Science College, Erode, Tamil Nadu, India.
 2,3

Abstract: Test cases organize the whole testing process. If the test cases are prepared with the requirements of a

particular system then it helps in testing whether the requirements are fulfilled or not. A defect is an error in coding or

logic that causes a program to malfunction or to produce incorrect/unexpected results. Increasing the rate of fault

detection can provide earlier feedback to system developers, improving fault fixing activity and ultimately software

delivery. The system uses the knowledge based and model based prioritization to prioritize the test case. So the

efficiency of the test case is increased and the running time for the test cases is decreased. When using coarse grained

technique the fault is identified easily. Due to the earlier feedback to system developers which makes the software

delivery earlier.

Keywords: Test Case, Prioritization, Error, Dependency Structures.

1. INTRODUCTION

 A programmer makes an error (mistake),

which results in a defect (fault, bug) in the software

source code. If this defect is executed, in certain

situations the system will produce wrong results, and

cause a failure. The number of defects in a software

product can be very large and defects that occur

infrequently are difficult to find in testing.A test case

is a set of conditions or variables under which a tester

will determine if a requirement upon an application is

partially or fully satisfied. It may take many test

cases to determine that a requirement is fully

satisfied. Test case prioritization is the process of

ordering the execution of test cases to achieve a

certain goal, such as increasing the rate of fault

detection. Increasing the rate of fault detection can

provide earlier feedback to system developers and

makes software delivery as an easier one. The goal of

prioritization is to speed up the fault detection, which

results in finding the defects as early as possible.

Finding defects earlier will increase early defect

fixing and ultimately cause earlier delivery. Test case

prioritization consists of various approaches to

handing the test case for fixing the defect.

2. LITERATURE SURVEY

 Bach [3], introducing a new technique for

reduction of test cases in a test suite. The technique is

carried out basically as two-step process.

1. First step all the existing number of test cases is

considered and then a reduced test suite is formed

containing few of the test cases initially taken while

all the remaining test cases are grouped under the

rejected suite.

2. Further, in the second step, the rejected suite of

cases is taken and a reduction procedure is applied

which adds few more test cases in reduced suite

formed in first step. The resulting test suite finally

contains minimum number of test cases which are

needed to be executed and collectively execute all of

the statements in the source code.

 Zeller, et al.[11] propose a program state-

based debugging approach, delta debugging[13] to

reduce the causes of failures to a small set of

variables by contrasting program states between

executions of a successful test and a failed test via

their memory graphs[12]. Variables are tested for

suspiciousness by replacing their values from a

successful test with their corresponding values from

the same point in a failed test and repeating the

program execution.

 Delta debugging is extended to the cause

transition method by Cleve [4] and Zeller [11] to

identify the locations and times where the cause of

failure changes from one variable to another. An

algorithm named cts is proposed to quickly locate

cause transitions in a program execution. A potential

problem of the cause transition method is that the

cost is relatively high there may exist thousands of

states in a program execution, and delta debugging at

each matching point requires additional test runs to

narrow down the causes locating program bugs is

more of an art form than an easily-automated

mechanical process. Although techniques do exist

that can narrow the search domain, a particular

method is not necessarily applicable for every

program. Choosing an effective debugging strategy

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 1, January 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4105 23

normally requires expert knowledge regarding the

program.

 Saraph et al. [8] viewed CSFs as those

critical areas of managerial planning and action that

must be practiced in order to achieve effectiveness.

Wong [10] states, the key focus of information

systems has also changed from the management of

information to that of knowledge. Businesses that

can efficiently capture the knowledge embedded in

their organizations and deploy it into their operations,

productions and services will have an edge over their

competitors [5]. Many organizations are increasingly

viewed as knowledge-based enterprises in which

formal knowledge management is essential.

 P.R. Srivastava [9] suggested prioritizing test

cases according to the criterion of increased

APFD(Average percentage of Faults detected) value.

He proposed a new algorithm which could be able to

calculate the average number of faults found per

minute by a test case and using this value sorts the

test cases in decreasing order. He also determined the

effectiveness of prioritized test case(more Average

Prioritization Fault Detection value) compared to

non-prioritized test case(less Average Prioritization

Fault Detection value) G.Rothermel et. al. [7] have

described several techniques for test case

prioritization and empirically examined their relative

abilities to improve how quickly faults can be

detected by those suites. Here more importance is

given to coverage based prioritization.

 Korel et.al. [6] proposed a new prioritization

technique to prioritize the test cases by using several

model-based test case prioritization heuristics.

Model-based test prioritization methods use the

information about the system model and its behavior

to prioritize the test suite for system retesting. An

experimental study has been conducted to investigate

the effectiveness of those methods with respect to

early fault detection. The results from the experiment

suggest that system models may improve the

effectiveness of test prioritization

3. PROBLEM FORMULATION

 Test case Prioritization is a process of

scheduling test case to be executed in a particular

order so that the test case with higher priority is

executed first in the sequence. It’s necessary to

execute test suite in order of priority to utilize limited

resource and time effectively. The main aim of is to

increase the fault detection for a test suite.

 Functional dependencies are the interactions

and relationships among system functionality

determining their run sequence. However, due to

functional dependencies that may exist between some

test cases that is, one test case must be executed

before another is often not the case. It is not

necessary to take the Information from previous test

runs to calculate the priorities of the test cases. Each

and every test case has run based on the ordering of

the prioritization.

 The approach can used for this prioritization

is discovering the “functional dependencies. The

model based prioritization can be used so that the test

case can be retested again and again to find the fault.

Each and every node in the structure have a

dependency between them so that the running

sequence in the form of depth first order. Knowledge

based prioritization can be done for the prioritize

method. Each person has a deep level of knowledge

in the particular problem to write the test case.

Depend on the test case only the problem is solved.

Maintaining a fine grained test has a better level of

fault detection in the test case when compared to the

coarse grained tests.

4. PROPOSED METHOD
 A dependency between two test cases t1 and

t2 specifies that t1 must be executed immediately

before t2. For example, if all dependencies in Figure.

1 are closed dependencies and nodes I1 and I2 are

executed in order, then to execute D3 or D4, node I1

would need to be executed again. Some dependency

structures may contain a mix of both open and closed

dependencies. Such structures would be considered

closed dependency structures. However, sequences

of closed dependencies can be regrouped into single

tests, resulting in an open dependency structure .The

real example for dependency structure is as follows

 A single problem is assigned to a tester, on a

given date and time. This procedure is an example of

functional dependency (FD) which can be stated

more formally attributes as problem is functionally

dependent on tester, test case, finding bugs and correcting

bugs. In the standard practice, this will be abbreviated

by

 PROBLEM TESTER TESTING

 Which people also read as follows problem

functionally determines tester. In this work, the

closed dependency structure is used for prioritizing

the running of test cases. To establish the strengths of

prioritization, the model-based and knowledge based

prioritization techniques are used for the dependency

structure. The agile processes cause shorter

development iterations, this is changing into a lot of

important that's, for a few systems, the test execution

time is also longer than the time allotted for one

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 1, January 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4105 24

iteration. Second, by maintaining fine-grained take a

look at suites, but executing entire test case to make

the balance between the matters of fine-grained

versus coarse-grained tests.

 Prioritization Used in the Closed Dependency

Structure

 The prioritization used in the closed

dependency structure follows the steps are below

Step 1: First the test case is written for a specific

process

Step 2: The test case contains Test case ID, test case

description, Expected Results, Test Data

requirement, Creation Date, Test case passes, test

case failed, Total non-executed test cases (due to

failure), Total executed test cases (P+F), Bugs

Reported, Bugs corrected, Bugs not corrected,

Duplicate Bugs, Non-Issue Bugs and Test Execution

Progress (in %).

Step 3: Setting the number of iterations to be tested

for the test case.

Step 4: selecting the order in which the test case to be

performed.

Step5: Then the fault is finding for that test case.

Step6: Fixing the fault for the test case.

Step7: Each and every bug is reported and corrected

and at last calculate the test execution process time

for the test case.

Dependency structures are classified into two

types such as Open dependency structure and Closed

dependency structure. An open dependency structure

is one in which a dependency between two test cases

t1 and t2 specifies that t1 must be executed at some

point before t2, but not necessarily immediately

before t2. In other words, once t1 has been executed,

the dependent node remains open for execution,

irrelevant of any other nodes being executed. For

example, in Fig. 1, if node I1 is executed, then nodes

D3 and D4 are available. If I2 is then executed, nodes

D3, D4, and D5 are all available to be executed.

 Some dependency have a combination of

both the closed and open dependencies is called as

closed dependency structure. The coverage measures

supported by closed dependency structures are DSP

add, DSP ratio, and DSP sum/ratio. The prioritization

techniques offer weights to ways within the

dependency structure, instead of individual test cases,

within which a path may be a complete traversal

from a root node to a leaf node. The weight is

assigned started from root node of the graph to the

leaf node.

Dependency between Nodes

 Each and every node in the graph has to test

in a depth first order so as to improve the order of

running the test case. The test case has a number of

iterations to run so as to improve the speed of finding

a fault. Fault is not only at the coding level it may

occur also at the process level also. If the order is not

proper then the dependency between the test case

runnings is also not in a proper manner. The order in

which the path can be followed in various ways.

They are listed below.

Figure 1: Dependency graph

 Path i: 1 2 3

 Path ii: 1 2 4

 Path iii: 1 2 5 6 7 8

 Path iv: 1 9 10

 Path v: 1 9 11 12

 Path followed by test case t1 is Path i, iii &

iv

 Path followed by test case t3 is Path i, iii & v

 Path followed by test case t4 is Path i, iii & v

 Path followed by test case t19 is Path ii, iii &

iv

 Path followed by test case t27 is Path ii, iii &

v

 The test cases are observed for having

dependency, following a particular path. This gives

the idea for which test case is highly dependent on

other test cases and also about which path within the

dependency structure contains higher number of

dependency.

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 1, January 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4105 25

Figure 2: Regression Testing

a) Retest All

 All the test cases within the existing test suite

are retested once again. This technique is incredibly

expensive and needed heap of your time for re -

execution of take a look at case.

B) Test Case Selection:

 Instead of re-running the full take a look at

suite a section of take a look at suite will be selected

to administer the utmost range of faults. It divides the

take a look at suite in three parts:(1) Reusable action

at law, (2) Retest ready action at law,(3) Obsolete

action at law.

c) Test Case Prioritization

 In this technique the take a look at cases are

prioritized to administer maximum range of faults.

The most goal of prioritization is to administer the

effectiveness to the computer code by sleuthing

faults, by increasing confidence in reliability and

additionally in code coverage property. It's a plus

over choice technique that's doesn't eliminate the take

a look at cases from the take a look at suite for good.

Fault detection rate is high by assignment the priority

to the take a look at cases to administer the

effectiveness of the computer code by doing most

code coverage.

D) Test Case Reduction

 The purpose of this technique is to eliminate

the redundancy of take a look at cases from of

regression testing. It additionally minimizes the total

period of time of the remaining take a look at cases.
 Dependency in Router Application

Figure 3: Dependency between nodes

 Each and every node in the router is dependent

on the other node. The system is connected to a LAN

network the connections are made in a dependent

manner. The nodes R4 have a dependency between

R3 and R7.Likewise the node R6 have a dependency

between R7 and R3. The node R5 have a dependency

between R1 and R8.The average time for finding a

fault is calculated by model based prioritization and

knowledge based prioritization.

5. EXPERIMENTAL EVALUATION

In this paper the Efficiency Comparison for

Open Dependency and Closed Dependency Structure

is as follows. The efficiency for covering of errors is

high in closed dependency structure when compared

to the open dependency structure. In 40 seconds the

errors covered by open dependency is 10%.The

errors covered by closed dependency structure is

22% because it use the ordering property for running

the test case. The system uses the knowledge based

and model based prioritization. The test case can be

tested so that the closed dependencies covered the

maximum bugs when compared to the open

dependency structure.

Figure 4: The Efficiency Comparison for Open

Dependency and Closed Dependency Structure

 The Time Comparison for Open Dependency

and Closed Dependency Structure is as follows. IN

closed dependency structure the test case is run in

priority order. The time taken for running a test case

is decreased in closed dependency structure when

compared to the open dependency structure. In 20

seconds the closed dependency structure covers a

2.3% of test case whereas the open dependency

structure covers only 1.3%.

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 1, January 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4105 26

Figure 5: Time Comparison for Open Dependency and

Closed Dependency Structure

6. CONCLUSION AND FUTUREWORK

 The system tests the test cases based on

prioritization technique using closed dependency

structure. The system increases the overall

performance when compared with the existing open

dependency structure. The test case can be executed

from the root to the leaf node. The efficiency of

closed dependency structure based on time and

number of bugs covered are tested. The test result

shows that the errors covered is very high when

compared with open dependency structure. The

closed dependency structure covers a 2.3% of test

case whereas the open dependency structure covers

only 1.3% in 20 seconds. In future the work can be

extended by finding a fault with the help of clustered

approach. The prioritization of the test cases can be

assigned based on clustering method. The techniques

involve two steps. First the test cases can be clustered

by retrieving code coverage and test case information

from the version control system. Second using

clustered test cases can the prioritized based on

software metrics. The cluster uses the code coverage,

code complexity metric, and fault history

information.

REFERENCES
1. H. Agrawal, J. Horgan, E. Krauser, and S. London. Incremental

regression testing. In Proc. of the Conf. on Softw. Maint. pages

348-357, Sept. 1993.

2. H. Agrawal, J. R. Horgan, S. London, and W. E. Wong, “Fault
Localization using Execution Slices and Dataflow Tests,” in

Proceedings of the 6th IEEE International Symposium on Software
Reliability Engineering, pp. 143-151, Toulouse, France, October 1995

3. J. Bach, “Useful Features of a Test Automation System (Part iii),”
Testing Techniques Newsletter, Oct. 1996.

4. H. Cleve and A. Zeller, “Locating Causes of Program Failures,” in

Proceedings of the 27th International Conference on Software
Engineering, pp. 342-351, St. Louis, Missouri, USA, May, 2005

5. Ho CT (2009).” The relationship between knowledge management
enablers and performance”, Ind. Manage. Data Syst. 109(1): 98-117.

6. B. Korel, L. Tahat, M. Harman, ”Test prioritization Using System

Models”, 21st IEEE International Conference Software

Maintenance (ICSM ’05), pp. 559-568, 2005.

7. G. Rothermel, R. H. Untch, C. Chu, M. J. Harold “Test Case
Prioritization: An Empirical Study”, in Proceedings of the 24th

IEEE International Conference Software Maintenance (ICSM

’1999) Oxford, U.K, September, 1999 .

8. Saraph JV, Benson PG, Schroeder RG (1989). "An instrument for
measuring the critical factors of quality management', Decis. Sci.,

20(4): 810-829.

9. P. R. Srivastava,”Test Case Prioritization”, Journal of Theoritical
And Applied Information Technology 2008 JATIT

10. Wong KY (2005). “Critical Success Factors for implementing

knowledge management in small and medium enterprises", Ind.
Manage. Data Sys., 105(3): 261-279.

11. A. Zeller, “Isolating Cause-Effect Chains from Computer

Programs,” in Proceedings of the 10th ACM SIGSOFT Symposium
on Foundations of Software Engineering, pp. 1-10, Charleston,

South Carolina, USA, November 2002

12. T. Zimmermann and A. Zeller, “Visualizing Memory Graphs,” in
Proceedings of the International Seminar on Software

Visualization, pp. 191-204, Dagstuhl Castle, Germany, May 2001

13. A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-
inducing input,” IEEE Transactions on Software Engineering,

28(2):183-200, February 2002

BIOGRAPHIES

Mr. C.Vijayakumar received

M.C.A. degree from Anna University,

Chennai, and doing M.Phil., Degree

in Bharathiar University, Coimbatore,

TN, India. He has presented papers in

National and International

Conference.

Ms.M.S.Kokila received M.Sc degree

from Avinashilingam University,

Coimbatore and M.Phil degree from

Bharathiar University, Coimbatore,

TN, India. She is currently working as

an Assistant Professor in Kongu Arts and Science

College,Erode,TN,India.She has 9 years of teaching

and 9 years of research experience. She has guided 6

M.Phil students in the area of Computer Science. She

has presented papers in National and International

Conference and published an article in National

Journal.

Mr.N.Rajasekaran received M.C.A

and M.Phil degree from Bharathiar

University, Coimbatore, TN, India.

He is currently working as an

Assistant Professor in Kongu Arts

and Science College, Erode, TN,

India. He has 5 years of teaching and 2 years of

research experience. He has presented papers in

National and International Conference and published

an article in International Journal.

