
ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 1, January 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4188 403

Finding Relevant Search using Keywords

 Akshay Mahajan
1
, Mohit Chaurasia

2
, Priyanka Kamthe

3
, Anuj Koul

4,
 Mrs. Archana Kadam

5

Students of Computer Department, PCCOE 1,2,3,4

Assistant Professor in Computer Department, PCCOE 5

Abstract: Old spatial queries, like range search, nearest neighbour retrieval, involved only conditions on objects’

geometric properties. gradually many new applications call for novel forms of queries which aim to find objects which

satisfy both a spatial predicate, as well as a predicate on their associated texts. consider an example: instead of

considering all the hotels, a nearest neighbour query would just ask for the hotel that lies closest among the ones whose

menu cards contain “rolls, burger, caramel custard” all at the same moment. at this time the best possible solution to

such type of queries is based on the ir2-tree, which, as shown here, has some deficiencies that seriously would impact
its efficiency. inspired by this, we are developing a new method called the spatial inverted index which extends the

conventional inverted index to cope with multidimensional data, and produces algorithms which will answer nearest

neighbor queries with keywords in real time.

Keywords: ir2 tree, spatial inverted index , r-tree.

INTRODUCTION

A spatial database manages more than one dimensional

objects (such as points, rectangles, etc.), and provides
faster access to those objects based on different selection

criteria. The importance of spatial databases is reflected by

the convenience of modelling entities of reality in a them

manner of geometry. Say for example, the locations of

banks, hotels, ATM machines and so on are often

illustrated as points in a map, while larger extents like

gardens, rivers, and landscapes as a combination of

rectangles. Many functions of a spatial database are useful

in various ways in contexts specifically. Consider

instance, in a geography information system, range search

can be implemented to find all restaurants in a specific

area, whereas the nearest neighbor retrieval may discover
the restaurant nearest to a given address. Today, the use of

search engines has made it more real to write spatial

queries in a whole new way. Normally, queries are based

on objects’ geometric properties. We have seen some new

applications that call for the ability to select objects based

on both of their geometric coordinates and their related

texts. For example, it would be fairly useful if a search

engine can be used to find the nearest restaurant that offers

“burger, pizza, and desert” all at the same time. Note that

this is not the “globally” nearest restaurant (which would

have been returned by a traditional nearest neighbor
query), but it is the nearest restaurant within only those

providing all the demanded item. There are easy ways to

support queries that combine spatial and features of text.

Say for example, in the above query, we would first fetch

all the hotels whose menu contains the set of keywords

{dessert, burger, pizza}, and then from the retrieved

hotels, shortlist the nearest one. In the similar way, one

could also do it oppositely by targeting first the spatial

conditions – browse all the restaurants in ascending order

of their distances to the query point until encountering one

whose menu has all the keywords. The major drawback of

these straight for-ward approaches is that they will fail to
provide real time answers on strange hard inputs. An

example is that the real nearest neighbor lies much far

away from query point, whereas the closer neighbors are

missing at least one of the query keywords.
Spatial queries with keywords have not been majorly

explored. In the past years, the community has sparked

enthusiasm in studying keyword search in RDBMS. It is

considered recently that the attention was diverted to

multidimensional data [1], [2], [3]. The best method to

date for nearest neighbor search with keywords is due to

Felipe et al. [2]. They nicely integrate two well-known

concepts: R-tree [2], a popular spatial index, and signature

file [4], an effective method for keyword-based retrieval of

document. By doing this they can develop a structure

called the IR2-tree [5], which has the strengths of both R-

trees and signature files. Like R-trees, the IR2-tree
preserves objects’ spatial proximity, which is the key to

solving spatial queries with efficiency. Whereas, like

signature files, the IR2-tree can filter a amount of portion

of the objects that will not contain all the query keywords,

thus reducing the number of objects to be examined

significantly.

The IR2-tree, also has a drawback of signature files; false
hits.A signature file, because of its conservative nature,

may direct the search to some basic objects, even if they

don’t have all the

RELATED WORK
It provides the information retrieval R-tree (IR2-tree) [1],

which is the used to answer the nearest neighbor queries

explained. It explains an alternative solution based on the

inverted index

 The IR2-tree As mentioned earlier, the IR2-tree [2]

combines the R-tree with signature files. Secondly, will

review what is a signature file before explaining IR2-trees.

Our discussion assumes the information of R-trees and

best-first algorithm [4] for NN search, both of which are

well-known methods in spatial databases.Signature file

generally refers to a hashing-based framework, whose

instantiation in [6] is known as superimposed coding (SC),
it is shown to be more effective than other instantiations

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 1, January 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4188 404

[4]. It is designed to do membership tests: check whether a

query word w exists in a set W of words. SC is reserved,

in the sense that if it says “no”, then w is definitely not in

W . If, on the other hand, SC returns “yes”, the true

answer can be either way, in which case the whole W

should be neglected to prevent false hit .In context of [7],

SC works in same way as classic technique of bloom
filter. In preprocessing, it builds a bit signature of length l

from W by hashing each word in W to a string of l bits,

and then making the separation of all bit strings. To

illustrate, denote by h(w) the bit string of a word w.

Firstly, all l bits of h(w) are made 0. Then, SC repeats the

following m times: randomly choose a bit and set it to 1.

Most importantly, randomization must use w as its seed to

make sure that same w always ends up with a similar h(w).

Further, the m choices are mutually independent, and may

even happen to be the same bit. The concrete values of l

and m affect the space cost and false hit probability.The
2nd figure gives an example to illustrate the above process,

assuming l = 5 and m = 2. Say for example, in the bit

string h(a) of a, the 3rd and 5th (counting from left). Given

a query keyword w, SC performs the member-ship test in

W by testing whether all the 1’s of h(w) appear at the

same places in the signature of W . If not, it is guaranteed

w cannot belong to W . Else, the test cannot be resolved

using only signature, and a scan of W follows. A false hit

occurs if the scan reveals that W actually does not contain

w. For instance, assume that we want to test whether word

c is a member of set {a, b} using only the set’s signature

01101. Since the 4th bit of h(c) = 00011 is 1 but that of
01101 is 0, SC suddenly reports “no”.Like another

instance, assume the membership test of c in {b, d} whose

signature is 01111. This time, SC returns “yes” because

01111 has 1’s at all the bits where h(c) is set to 1; as a

result, a full scan of set is needed to verify that this is a

false hit.This IR2-tree is a R-tree where every (leaf or

nonleaf) entry E is augmented with a signature that

summarizes the union of the texts of the objects in the

subtree of E. #rd figure shows an example based on the

dataset of Figure 1 and hash values in Figure 2. The string

01111 in the leaf entry p2, for instance, is the signature of
Wp2 = {b, d} (which is the document of p2; see Figure 1b).

The string 11111 in the nonleaf entry E3 is the signature of

Wp2 ∪ Wp6 , namely, the set of all words describing p2 and

p6. Notice , in general, the signature of nonleaf entry E can

be conveniently obtained simply as disjunction of all

signatures in the leaf node of E. A nonleaf signature may

allow a query algorithm to realize that certain word cannot

exist in the subtree. For instance, as the 2nd bit of h(b) is

1, we know that no object in the subtrees of E4 and E6 can

have word b in its texts – notice that signatures of E4 and

E6 have 0 as their 2nd bits.Normally, the signatures in an

IR2-tree may have different lengths at various levels.
For R-trees, the best-first algorithm [10] is a well-known
solution to NN search. It is straight forward to adapt it to
IR

2
-trees. Specially, given a query point q and a keyword

set Wq , the used algorithm accesses entries of an IR2-tree
in ascending order of distances of their MBRs to q (the
MBR of a leaf entry is just the point selfly), pruning the
entries whose signatures indicate the absence of at least

one word of Wq in their sub trees. Whenever a leaf entry,
say of point p, cannot be pruned, a random I/O is
performed to retrieve its text description Wp. If Wq is a
subset of Wp, the algorithm terminates with p as the
answer; otherwise, it continues until no more entry
remains to be processed. In Figure 3, assume that the
query point q has a keyword set Wq = {c, d}. It can be
verified that the algorithm must read all the nodes of the
tree, and fetch the documents of p2, p4, and p6 (in this
order). The final answer is p6, while p2 and p4 are false
hits.

PROBLEM DEFINITION
Let P be a set of multidimensional points. As our intention

is to combine keyword search with the initial location

finding services on facilities such as restaurants, hotels and

banks etc. we will focus on dimensionality 2, but our

method can be expanded to arbitrary dimensionalites with

no technical hinderance. We will assume that the points in

P have integer coordinates, such that each coordinate

ranges in [0, t], where t is a large integer. This is not as as

it may seem, because even if one would like to insist on

actual-valued coordinates, the set of different coordinates
representable under a space limit is still finite and

numerous; therefore, we could convert all things to

integers with proper scaling.As with [6], each point p ∈ P

is related with a group of words, which is represented as

Wp and defines the document of p. For example, if p

stands for a hotel, Wp can be its services, or if p is a bank,

Wp can be the description of its services and facilities, or if

p is a blood bank, Wp can be the list of its in stock blood

groups specialities. It is clear that Wp may potentially

contain numerous words.

Traditional nearest neighbor search returns the data point
nearest to a query point.After [6], we extend the problem

to include predicates on objects’ texts. Formally, in our

context, a nearest neighbor (NN) query specifies a point q

and a set Wq of keywords (we refer to Wq as the document

in the query). It returns the point in Pq that is the closest to

q, where Pq is defined asIn other words, Pq is the set of

objects in P whose documents contain all the keywords in

Wq . In the case where Pq is empty, the query returns null.

The

problem

definition can be generalized to k nearest neighbor search,

which searches the k points in Pq closest to q; if Pq has less
than k points, the entire Pq should be returned.For

example, assume that P consists of 8 points whose

locations are as shown in Figure 1a (the black dots),and

their documents are given in Figure 1b. Consider a query

point q at the white dot of Figure 1a with the set of

keywords Wq = {c, d}. Nearest neighbor search finds p6,

noticing that all points closer to q than p6 are missing

either the query keyword

c or d. If k = 2 nearest neighbors are wanted, p8 is also

returned in addition. The result is still {p6, p8} even if k

increases to 3 or higher, because only 2 objects have the
keywords c and d at the same time. We assume that the

dataset will not fix in memory, and needs to be indexed by

efficient access methods in order to minimize the number

of input outputs in answering a query

Pq = {p ∈ P | Wq ⊆ Wp} (1)

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 1, January 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4188 405

PSEUDO CODE
Pseudo code for managing Hotel Data in Spatial Index
Tree:

1. Admin Adds a Hotel “h” having (Location L(L1

and L2), set of Keywords(k)

Location information of hotel in list is converted to 1D

form

2.Sorting is required in order to apply the compression

method….

3.Location Data is sorted using 1D list l(l(d),n)

4. Repeat until list is sorted

5. Put 1in i

6. Repeat while i<n

7. If l(d)[i] > l(d)[i+1]
8. Then swap l(d)[i],l(d)[i+1]

9. End if

10. Increment i

11. End repeat

12. End repeat

13. End sort

Compression scheme is applied to the id’s as to minimize

the size of inverted index by it. The difference between the

id’s is calculated and only is stored. This is used as it is an

useful approach rather than storing the precise data. The
distances can be re-calculated back.(Algorithm contd.)

Apply Compression Scheme

 Record gaps Between id’s for list l

1. Put idin l(j)

2. Repeat till i<n

3. Calculate the difference diff in l(j) – l(j+1)

4. Store difference diff in list l at index i

5. End repeat

6. Assign new id to Hotel (h)

7. Put id of l(n-1) in newID

8. Increment newID

9. Assign newIDto new element l(n)in list

To insert an item, the tree is traversed repeatedly from the

head node. At each step, all rectangles in the current

directory node are tested, and a candidate is picked using a

heuristic such as picking the rectangle which requires least

space. The search then descends into this page, until

reaching a leaf node. If the leaf node is full, it must be split

before the insertion is made. Again, as an exhaustive

search is too costly, a heuristic is employed to split the

node into two. Adding the newly created nodeto the

previous level, this level can again overflow, and these
overflows can propagate up to the root node; when this

node also overflows, a new root node is created and the

tree has increased in height

 Algorithm contd.(Search)

1. Generate R-Tree

2. While node n in list l

3. Traverse until leaf node ln

4. If first element

5. Add a nodenewN

6. Else

7.Traverse till node ln

8.Split node and insert new node newNat parent level to

node ln

9. End if

10.End while

SUMMARY
Compared with the previous work the existing systems are

not efficient to provide the real time answers. The spatial

inverted index list and enhanced search is proposed. The

enhanced search is used for finding objects based on users

priority level. We imposed this improved spatial model

which will work efficiently and give desired results.

ACKNOWLEDGEMENTS
Thanks to web communities, researchers and academicians

for the work they have done in this domain. Wikipedia
found to be most helpful. The references we took were of

great help.

REFERENCES

[1] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R*-

tree: An efficient and robust access method for points and

rectangles. In Proc. of ACM Management of Data (SIGMOD),

pages 322–331, 1990.

[2] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudar-

shan. Keyword searching and browsing in databases using banks.

In Proc. of International Conference on Data Engineering

(ICDE), pages 431–440, 2002.

[3] X. Cao, L. Chen, G. Cong, C. S. Jensen, Q. Qu, A. Skovsgaard, D.
Wu, and M. L. Yiu. Spatial keyword querying. In ER, pages 16–29, 2012

[4] X. Cao, G. Cong, and C. S. Jensen. Retrieving top-k prestige-

based relevant spatial web objects. PVLDB, 3(1):373–384, 2010.

[5] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective spatial

keyword querying. In Proc. of ACM Management of Data (SIG-

MOD), pages 373–384, 2011.

[6] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The bloomier

filter: an efficient data structure for static support lookup tables. In

Proc. of the Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 30–39, 2004.

[7] Y.-Y. Chen, T. Suel, and A. Markowetz. Efficient query

processing in geographic web search engines. In Proc. of ACM

Management of Data (SIGMOD), pages 277–288, 2006.

[8] E. Chu, A. Baid, X. Chai, A. Doan, and J. Naughton. Combining

keyword search and forms for ad hoc querying of databases.

InProc. of ACM Management of Data (SIGMOD), 2009.

[9] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k

most relevant spatial web objects. PVLDB, 2(1):337–348, 2009.

C. Faloutsos and S. Christodoulakis. Signature files: An access

method for documents and its analytical performance evaluation.

 ACM Transactions on Information Systems (TOIS), 2(4):267–288, 1984.

[10] I. D. Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial

databases. In Proc. of International Conference on Data

Engineering (ICDE), pages 656–665, 2008.

[11] R. Hariharan, B. Hore, C. Li, and S. Mehrotra. Processing spatial-

keyword (SK) queries in geographic information retrieval (GIR)

systems. In Proc. of Scientific and Statistical Database

Management (SSDBM), 2007.

[12] G. R. Hjaltason and H. Samet. Distance browsing in spa-tial

databases. ACM Transactions on Database Systems (TODS),

24(2):265–318, 1999. V. Hristidis and Y. Papakonstantinou.

Discover: Keyword search in relational databases. In Proc. of Very

Large Data Bases (VLDB), pages 670–681, 2002.

[13]

