
ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 2, February 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4260 274

Cryptographic Algorithms for Efficient and

Secure Data Sharing in Cloud Storage

Shweta. P. Tenginkai
1
, Vani K. S

2

Student, Department of CSE, Acharya Institute of Technology, Bangalore, India1

Assistant Professor, Department of CSE, Acharya Institute of Technology, Bangalore, India2

Abstract: Cloud storage is a model of data storage, whose demand is greatly increasing. The data sharing is one of the

concerning functionality in today‟s world of information as it involves security, efficiency and flexibility as their

important aspects. Various schemes and methodologies are implemented to make data sharing more effective. With the

introduction of encryption and decryption schemes, the storing, sharing and securing of data became rampant. The

storing of these ciphertexts and the decryption keys is one of the major issues. There is a need for a mechanism which

can minimize the cost of storing these ciphertexts and keys in a secured way. In this paper, we explore the various

encryption schemes which were proposed to solve this problem. In this era of information, where there is presence of

rich data, the true value lies in sharing, securing and storing them. Protecting users‟s data privacy is one of the critical
goal of cloud storage. The present research efforts concentrates more on aggregation of these keys into a single

aggregate key which will in turn reduce the burden on the network overhead.

Keywords: Cloud storage, data sharing, ciphertexts, encryption schemes

I. INTRODUCTION

Cloud computing has become a widely accepted paradigm

for providing services over the internet. With the

increasing popularity of cloud storage, the risks for

security, data integration, confidentiality of data are

implicity increasing. Therefore, the cloud provider must

consider the security and confidentiality as the challenging

factors for data sharing functionality.The care has to be

taken to protect data, as cloud storage is storing of the data
remotely which is regulated by third party. The third party

takes the responsibility for keeping data accessible and

available to users all the time. In today‟s world, it has

become easy to go for free accounts to upload or store the

data, photos, files or folders with storage capacity more

than 25GB. Along with the fast growing internet, users

can access and utilize all their files and mails from any

place in the world. Instead of storing the data into the hard

drive, user can save the data on the cloud which makes

him avail all the data accessible for him from any corner

of the world using internet. But considering the privacy of

data, the traditional techniques for for authentication are
not reliable, because the unavoidable privilege escalation

will disclose the confidentiality of data. For protecting the

confidentiality of the data stored in cloud storage, the care

has to be taken for encrypting those data before uploading

them on to the cloud by using some or the other

cryptographic algorithms. The users are encouraged to

encrypt their data before uploading them on the cloud by

their own keys whenever the user is not satisfied with

trusting the security of the Virtual Machines or the

technical team.

In modern cryptography, encryption keys obtained are of
two categories, symmetric and asymmetric (public) key.

The public key encryption tends to be much more secured

as it involves combination of two different keys, public

and private key respectively. This gives more flexibility

for various applications.

A. Need for Key Aggregation

Key aggregation plays an important role in handling the

overhead on networks. With the increase in usage of

different devices and systems, the traffic on networks is

increasing. Considering a scenario where a particular user

Alice wants to send an access key to her friend Bob, who

wants to access some of the files. Alice has encrypted

those files before uploading them onto the cloud. Then
Alice can send an aggregate key of these corresponding

secret keys of the various files using which Bob can

decrypt them. Here, the burden on network is reduced as

the problem of sending all the corresponding keys is

replaced by sending just a single aggregate key. The

expenses of having a tamper proof storage is usually high.

The cost of secured storage for storing these secret keys is

also reduced by storing the aggregate key due to its

compact size.

In this paper, we will discuss the various cryptographic

algorithms.

II. LITERATURE SURVEY

A. Hierarchical Model

One of the ways of key management scheme is the access

hierarchy from [4], which consists of a set of partially
ordered classes (represented as directed graph).This

scheme solves the problem of obtaining the key or access

by limiting it only for hash functions to obtain the access

to descendant class. It takes care of the security and

privacy, the space complexity is same as that of storing

hierarchy. The problem of key management in access

hierarchy is resolved to some extent. The ciphertext size

obtained is constant; decryption key size depends on the

hierarchy which is almost non-constant. The problem with

this model is, the access to all the descendant classes can

be obtained if any user who is granted the access (i.e. a

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 2, February 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4260 275

key) for a certain class. On average, the number of keys

involved increase with the count of branches, so it does

not solve the problem completely.

B. Multi Identity Single-Key Decryption without Random
Oracles

The Multi-Identity Single-Key Decryption (MISKD) is an

Identity-Based Encryption (IBE) system from [6], where

multiple public keys i.e. identities can be mapped using

single private decryption key. A single private key is used

to decrypt multiple ciphertexts which are encrypted with

different public keys linked with private key. The

aggregation is limited to some extent. It is a convenient

system for managing and handling many private keys to

the users in standard IBE. The encryption used is public-

key encryption type and is highly secured in selective-ID

model. The decryption key size is constant but the
ciphertext size is not constant. The decryption in this

scheme is highly efficient.

C. Multi Identity Single-Key Decryption using Random
Oracles

It is similar to paper [6], but this paper [7] assumes
random oracles and paper [6] does not. Key aggregation is

limited to some extent as it involves aggregation key only

if they belong to different identity divisions. The Identity-

Based-Encryption (IBE) mechanism allows a data sender

to encrypt the data to an identity without accessing his

public key certificate, which solves the problem of

certificate transmission overhead. This feature of IBE to

carry out public key encryption without certificates makes

it suitable for many practical applications. One of the

common features of all these basic schemes is that they

consider identities as a string of characters. There are an

exponential number of identities and therefore secret keys,
and aggregation of only a polynomial number of them is

possible. Their Key-aggregation is possible at the expense

of O(n) sizes for both the public parameter and

ciphertexts, where n is the number of secret keys

aggregated into a constant size key. This in turn drastically

increases the cost of storage and transmission of

ciphertexts which is not practically possible in many

scenarios such as shared cloud storage.

D. Fuzzy Identity-Based Encryption Scheme

In this Fuzzy IBE scheme [9], there is a single compact

secret key which decrypts ciphertexts encrypted by

different identities. This scheme allows for error tolerance

between the identity of private key and public key which

is used to encrypt a ciphertext. The two practical

applications of Fuzzy- IBE encryption using biometrics

and attribute-based encryption are described. It uses set

overlap as the distance metric between identities.
Interesting feature about this scheme is that it hides the

public key that is used to encrypt the ciphertext. The

number of group elements in public parameters grows

linearly with the maximum number of attributes, which

can describe an encryption identity. The number of group

elements which consists of user‟s private key grows

linearly with the number of attributes associated with its

identity. These numbers of group elements in ciphertext

grows in linear fashion with the size of identity that are

being encrypted to. These are limited to certain metric

space, and not for an arbitrary set of identities. The

problem of IBE with compact key is non constant

ciphertext size. The encryption type used here is public
key system.

E. Attribute Based Encryption Schemes

Attributes play a very critical role in Attribute-based

Encryption (ABE) scheme. Attributes have been utilized

to generate public key for the encryption of data and been

used as an access policy to control user‟s access. In this
[2] paper, five different ABE schemes are surveyed,

described and compared- Attribute- based Encryption

(ABE), Key-Policy Attribute-based Encryption (KP-

ABE), Ciphertext-policy (CP-ABE), ABE with non-

monotonic access structure, and Hierarchical Attribute-

based Encryption (HABE). These schemes are grouped

according to their access policy. KP-ABE is the access

structure in user‟s private key and CP-ABE is the access

structure in encrypted data. These schemes do not satisfy

user accountability. If any new user wants to access data

and his attributes are not present in the access structure,
then these encrypted data will be re-generated. The access

structure is pre-defined in these schemes. As these

schemes are encrypted with attributes, a data owner is

supposed to predefine these attributes that would be used,

regardless of the number of users in the system. The

collusion attacks are avoided as every attribute has its

public key, secret key and the random polynomial, hence

different users cannot combine their attributes to obtain

the data. These schemes have the authority which is

preferably suitable for the private cloud environments.

These schemes almost cannot satisfy the criteria of

scalability and user accountability except HABE. They
tend to reduce the communication overhead, and provide a

fine-grained access control.

F. Attribute Based Encryption for Fine-Grained Access
Control

In this cryptosystem [8], ciphertexts are labeled with sets
of attributes and private keys are linked with access

structures that manage which ciphertexts a user is able to

decrypt. Here, the data is stored on the server in an

encrypted format, whereas the different users are allowed

to decrypt the different chunk of data according to the

access rights given to them as per security policy. This

solves the problem of depending on the storage server for

avoiding unauthorized data access. The Secret-Sharing

Schemes (SSS) are used for dividing the secret among the

number of parties. The useful data or information sent to a

party is called the share (of the secret) for that party. Some

access structure which describes the sets of the parties who
must reconstruct the secret by using their shares is realized

by every SSS. It supports delegation of private keys which

includes Hierarchical Identity-Based Encryption (HIBE).

It mainly focuses on collusion-resistance. The drawback it

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 2, February 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4260 276

faces is, the size of the key often increases linearly with

the number of attributes it hold. The ciphertext-size is also

non constant.

G. Multi-Authority Attribute Based Encryption Scheme

In this scheme [5], every ciphertext is associated with an

attribute and secret key can be extracted by the Master-

secret key holder to decrypt the ciphertext if, its associated

attributes abide by the policy. In each earlier ABE

schemes, the user has to go to trusted party for proving his

identity before getting a secret key which allows him to

decrypt messages. Thus an efficient multi-authority ABE

scheme was introduced in which the user‟s secret key is no

longer authorized by a single center authority. It is
authorized separately by cooperative and independent

authorities. But the problem with this scheme is, there is

no focus on the compactness of secret keys. There is linear

increase in the number of keys with the number of

attributes it contain. In ABE scheme, attribute plays a very

major role. Attributes have been exploited to obtain a

public key for encryption data and used to control users‟

access.

H. Privacy-Preserving Public Auditing

In this paper [3], an effective TPA (Third Party Auditor) is

introduced so that it would not bring any probability of

attack on user data privacy, and will also not put an

additional burden to user. In cloud storage, users can store

their data and utilize the various resources, services or

applications without causing burden of local data storage

and its maintenance. However, it becomes a problem for

users with limited computing resources. These users must

not worry about the need to verify data integrity and use

the cloud storage. This made public auditability for cloud

storage very important so that users can employ a Third
Party Auditor (TPA) for checking the integrity of

outsourced data. High security and performance analysis

show that this scheme is secure and highly efficient. The

storage correctness and privacy-preserving features were

given higher importance. The TPA is made secure and

efficient in auditing capability to handle multiple auditing

delegations. To perform auditing with minimum

computation overhead and communication, care was taken

to make it light weight. The use of TPA also has some

drawbacks, as it is supposed to be a central, independent

and reliable component; it may become bottleneck to the
whole system. Any uncertain activities in TPA may cause

entire cloud system to go down or reduction in its

performance. Some time extra hardware or cryptographic

co processor is needed when using TPA. As the data sent

by the cloud data owner is in an encrypted form and the

required credentials to decrypt them are kept hidden from

the cloud service provider, during regulatory conformance,

laws which make the data owner responsible for the

protection of his data can be followed. Whenever the user

is not completely happy with trusting the security or

honesty of technical staff, they are motivated to encrypt

their data with their own keys before dumping them to the
server.

In hierarchical approaches, let us consider the Fig. 1.

where the ciphertext classes are classified based on their

subjects.

(a) (b)

Fig. 1. Compact key is not always possible for a fixed hierarchy

Here each node in the tree is a secret key, while leaf nodes

are the keys for individual ciphertext classes. Circles with

circumvented by dotted lines are keys to be granted and

filled circles represent the keys for classes to be delegated.

Here, the keys of descendant nodes can be derived by

every key of the non leaf node.

In Fig. 1. a, if a user wants to share all his files present in

the “Personal” category, he just needs to grant the key for

“Personal” node , this automatically grants the keys of all

the descendant nodes to the person whom he wants to

share his files with. There is no problem in this case unless

the classes to be shared are from the same branch.

In Fig 1. b, if user wants to share the files from different

branches, he has to grant as many number of keys as the

number of different branches containing these classes else

the files from descendant nodes can also be accessed.

TABLE I

COMPARISONS BETWEEN THE BASIC KAC SCHEME AND OTHER RELATED

SCHEMES

Decryption

key size

Ciphertext

size

Encryption

type

Key assignment

schemes for a

predefined

hierarchy

Most likely

non-constant

(depends on

the

hieraarchy)

constant symmetric or

public-key

Symmetric-key

encryption with

Compact Key

constant constant symmetric-

key

IBE with

Compact Key

constant non-constant public-key

Attribute-Based

Encryption

non-constant constant public-key

 KAC Constant constant public-key

On referring the Table 1 from [3] of comparison we can

infer that Key Aggregate Cryptosystem (KAC) is the most

convenient method in terms of the decryption key size and

ciphertext size, as they are constant.

Although Symmetric-key encryption with Compact Key

also has constant ciphertext size and decryption key size,

its encryption type is symmetric-key type. Thus, KAC
scheme has greater advantages over the other solutions.

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 2, February 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4260 277

Fig. 2. Number of granted keys (na) required for different approaches

Looking at the performance analysis, a comparison of the

number of keys granted between three methods is shown

in the Fig. 2. referred from [3].

Here we can see, in one by one key granting, the number

of granted keys will be same as the number of ciphertext
delegate classes. With the tree based structure, the number

of keys granted can be saved depending on the delegation

ratio. Whereas in KAC scheme, it is efficiently

implemented with the fixed size aggregate key. The

constant-size aggregate key and constant-size ciphertext is

the greatest advantage of this scheme. The Key Aggregate

Cryptosystem (KAC) is the most efficient scheme when

compared to the tree based structure and one by one

granting of the keys.

Proposed Solution

Issues such as aggregation of key, constant size ciphertext,

secure storage of them have remained the most important

challnges. For improving the constraints of the above

techniques, we propose a new scheme Key-Aggregation

Cryptosystem(KAC). The KAC is an efficient and secured

public-key cryptosystem for data sharing in the cloud

storage. It produces constant-size ciphertexts and any
number of secret keys can be aggregated.

Fig. 3. KAC for data sharing in cloud storage.

In KAC, referring to Fig. 3. from [3], users encrypt the

data using a public-key under an identifier of ciphertext

known as class. These ciphertexts are actually categorized
into separate classes. The owner of the key holds a master-

secret called master-secret key, which is used to obtain

secret keys for different classes. The authorized user can

decrypt only those ciphertexts which he has the right to

access.

The basic scheme has five polynomial-time algorithms and

it is as follows:

Setup(1
l
, n): This is executed by the data owner to create

an account on any untrusted server. The security level

parameter and the number of ciphertext classes n is taken

as input. The public system parameter param is given as

output.

KeyGen: The data owner executes this alogorithm for

randomly generating a public/master-secret key pair (pk,

msk).

Encrypt(pk, i , m): It is executed by the one who wants to

encrypt the data. Public-key pk, an index i, corresponding

to ciphertext class and a message m is taken as input. The

ciphertext C is given as output.

Extract(msk, S): This is executed by the data owner for
giving the decrypting power for certain set of ciphertext

classes to the user. The master-secret key msk, and a set S

of indices belonging to different classes is given as input.

The aggregate key for the set S is given as output i.e. KS.

Decrypt(KS, S, i, C): It is executed by the delegatee who

got the an aggregate key KS, the set S, an index i

associating the ciphertext class to which ciphertext C

belongs to. The output obtained wil be the message m if i

belongs to S.

Most importantly, the extracted key can be an aggregate

key which will be as compressed as a secret key for a

single class, but encompasses the decryption power for

any subset of ciphertext classes. The ciphertext key size

and the decryption key size both are constant.

A novel technique of aggregating the secret keys is

proposed. In this schema one can aggregate as many

number of secret keys and make them as compact as a

single key, which has the power of all the keys aggregated

in it. As data sharing is one of the prime functionality in

cloud storage, the secured, efficient and flexible sharing of

data is proposed. When compared to its compressing

factor, it has the ability to compress the secret keys into an

aggregate key which has same size as that of a single key.

As it is public-key cryptosystem, it is the efficient

technique which can be utilized.

CONCLUSION

In this paper, we discussed different cryptographic
algorithms such as Hierarchical models, MISKD, Fuzzy

Identity Based Encryption, Attribute Based Encryption,

KAC. The KAC is an efficient and secured public-key

cryptosystem for data sharing in the cloud storage. It

produces constant-size ciphertexts in such a way that a

decryption right for any set of ciphertexts is possible. Any

number of secret keys can be aggregated and made as

compact as a single key, containing the power of all the

keys which are aggregated. The confidentiality of the

encrypted files is preserved outside the set. There is no

burden on the network overload, as there is utilization of
compact aggregate keys. It also saves the expensive secure

ISSN (Online) : 2278-1021

ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 2, February 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4260 278

storage required to store these secret keys. There is no fuss

of dealing with a hierarchy of delegation classes, more

flexible than hierarchical approach. Regardless of the type

among power set of classes, an aggregate key of constant

size can be obtained. This will in turn reduce the secure

storage and the overhead on the network.

REFERENCES

[1] C. K. Chu, Sherman S. M. Chow, W. G. Tzeng, J. Zhou, and R. H.

Deng, “Key-Aggregate Cryptosystem for Scalable Data Sharing in

Cloud Storage”, IEEE Transactions on Parallel and Distributed

systems, vol. 25, no. 2, Feb 2014.

[2] C.C. Lee, P.S. Chung and M.S. Hwang, “A Survey on Attribute-

based Encryption Schemes of Access Control in Cloud

Environments”, Int‟l Journal of Network Security, Vol. 15, No. 4,

PP.231-240, July 2013.

[3] C. Wang, S.S.M. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-

Preserving Public Auditing for Secure Cloud Storage,” IEEE Trans.

Computers, vol. 62, no. 2, pp.362-375, Feb. 2013.

[4] M.J. Atallah, M. Blanton, N. Fazio, and K. B. Frikken, “Dynamic

and Efficient Key Management for Access Hierarchies,” ACM

Trans. Informatio and System Security, vol. 12, no. 3, pp. 18:1-18:43, 2009.

[5] M. Chase and S.S.M. Chow, “Improving Privacy and Security in

Multi-Authority Attribute-Based Encryption,” Proc. ACM Conf.

Computer and Comm. Security, pp. 121-130, 2009.

[6] F.Guo, Y. Mu, Z. Chen, and L. Xu, “Multi-Identity Single-Key

Decryption without Random Oracles,” Proc. Information Security

and Cryptology (Inscrypt „07), vol. 4990, pp.384-398, 2007.

[7] F. Guo, Y. Mu, Z. Chen, “Identity-Based Encryption: How to

Decrypt Multiple Ciphertexts Using a Single Decryption Key,”

Proc. Pairing-Based Cryptography Conf. (Pairing „07), vol. 4575,

pp. 392-406, 2007.

[8] V. Goyal, O. Pandey, A. Sahai and B. Waters, “Attribute-Based

Encryption for Fine-Grained Access Control of Encrypted Data,”

Proc. 13
th
 ACM Conf. Computer and Comm. Security (CCS „06),

pp.89-98, 2006.

[9] A. Sahai and B. Waters, “Fuzzy Identity-Based Encryption,” Proc.

22
nd

 Int‟l Conf. Theory and Applications of Cryptographic

Techniques (EUROCRYPT ‟05), vol. 3494, pp. 457-473,2005.

[10] L. Hardesty, Secure Computers Aren‟t so Secure, MIT press,

http://www.physorg.com/news176107396.html, 2009.

[11] W. G. Tzeng, “A Time-Bound Cryptographic Key Assignment

Scheme for Access Control in a Hierarchy,” IEEE Trans.

Knowledge and Data Eng., vol.14,no.1,pp.182-188,Jan./Feb.2002.

[12] S. S. M. Chow, C. K. Chu, X. Huang, J.Zhou, and R.H. Deng,

“Dynamic Secure Cloud Storage with Provenance,” Cryptography

and Security, pp.442-464, Springer, 2012.

[13] G. Ateniese, A. D. Santis, A. L. Ferrara and B. Masucci, “Provably-

Secure Time-Bound Hierarchical Key Assignment Schemes”,

J.Cryptology,vol. 25, no. 2, pp. 243-270, 2012.

[14] Y. Sun and K. J. R. Liu, “Scalable Hierarchical Access Control in

Secure Group Communications”, proc.IEEE INFOCOM ‟04, 2004.

[15] B. Alomair and R. Poovendran, “Information Theoretically Secure

Encryption with Almost Free Authentication”, J. Universal

Computer Science, vol. 15, no. 15, pp. 2937-2956, 2009.

[16] J. Benaloh, “Key Compression and Its Application to Digital

Fingerprinting”, technical report, Microsoft Research, 2009.

