
ISSN (Online) 2278-1021 

ISSN (Print)    2319-5940 
 

 International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 2, February 2015 
 

Copyright to IJARCCE                                                                DOI  10.17148/IJARCCE.2015.4286                                                             380 

A Comparison between Semantic and Syntactic 

Software Metrics 
 

Rasha Gaffer M. Helali  

Sudan University of Science and Technology, Khartoum, Sudan 

 

Abstract  :Software metrics are quantitative estimates for software product attributes which guide us in taking 

managerial and technical decisions [1]. The current used software metrics depend on syntactical attributes of source 

code at the same time they ignore its semantic aspects. This fact motivates us to focus on semantic metrics instead of 

traditional used metrics. Moreover, semantic metric are more precise than syntactic ones, it is able to capture the 
semantic defects of the software products. In this paper, the researcher has been made an attempt to survey of existing 

research on software metrics along with potential research challenges and opportunities. 
 

Keywords: Metrics, Semantic, Synthetic, data mining. 

I. INTRODUCTION 

The quality of software systems become an important 

issue in continuation of business, i.e. The vast amount of 

software used in markets and their role in managing 

precise and dangerous tasks [1].  The assertion by Ward 
Cunningham in 1992, that quick and careless development 

with poor quality leads to many years of expensive 

maintenance and enhancements. So, software 

measurement paradigm becomes more and more important 

to monitor quality during all software development stages. 

The field of software metrics is relatively young one [2], 

whose origins can be found in the work by Halstead 

published in 1972. From then on, the interest in software 

metrics has increased because they have been recognized 

as a useful instrument for managing software process 

effectively.  Software metrics allow to use a real 

engineering approach to software development, providing 

the quantitative and objective base that software 

engineering was lacking. In fact, their use in industry is 

becoming more and more widespread.[2] As regards the 

research in software metrics [2], it has undergone a great 

evolution, in the first period the focus was very much on 
inventing new metrics to measure different software 

attributes, without concerning the scientific validity of 

these metrics. Recently, much work has been done on how 

to apply measurement theory to software metrics and 

ensure their validity. [2] The remainder of this paper is 

organized as follows. In the next section characteristics 

and challenges  in software measurement were discussed. 

Current used Metrics including syntactic and semantic 

metrics described in section 3. Section 4 examines the 

current Challenges and finally conclusion was presented 
 

II. CHARACTERISTICS AND CHALLENGES IN SOFTWARE 

MEASUREMENT  

A principal objective of software engineering is to 

improve the quality of software products.  Many models 

spot distinction between tow types of software attributes 

internal and external ones [1]. Since internal attributes can  

 

 
 

be measured directly from source code, external attributes 

measured indirectly based on another internal attributes. 

Much research has been done on identifying quality 

models to support software quality improvements. Such 

quality models concentrated on mapping between internal 

and external attributes i.e. McCall, Boehm [4], FURPS(+) 

and ISO9126 (ISO 1991) models. The main objective of 

these models is to focus on formal products and identify 

key attributes of quality from the user prospective [5]. 

Boehm and MaCall model identified 3 key attributes 

called “quality factors” such as reliability, usability, 
maintainability (High level external attributes) but it 

related to many internal attributes called quality criteria 

[5] . Dromey and FURPS(+) [6] are focusing on the 

relationship between the quality attributes and the sub-

attributes, as well as attempting to connect software 

product properties with software quality attributes.  In 

1992, derivation of McCall model was proposed as a basis 

for international standard software quality ISO9126 (ISO 

1991).  The model decomposes the quality into six factors 

as follow:  functionality, efficiency, usability, 

maintainability and portability.  Each of these factors is 

defined as a set of attributes. [5] 
Software Metrics are used to measure specific quality 

attributes using relationship identified by standard quality 

models. Current used metrics are succeed in measuring 

internal attributes but still there is shortcomings in 

measuring external attributes accurately such as reliability, 

availability …etc. The following section focus on current 

used metrics and their limitations. 

III. SOFTWARE METRICS 

In this section, we will discuss software metrics concept 

and classification along with their advantages and 

shortcomings each. According to the IEEE standard 
glossary of software engineering terms (adapted from [6]), 

metrics are a quantitative measure of the degree to which a 

system, component, or process possesses a given 

attribute." 



ISSN (Online) 2278-1021 

ISSN (Print)    2319-5940 
 

 International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 2, February 2015 
 

Copyright to IJARCCE                                                                DOI  10.17148/IJARCCE.2015.4286                                                             381 

To this effect, researchers have long been interested in 

defining and analysing metrics that capture properties of 

software products and software processes, metrics are now 

the subject of many textbooks [7, 8  , 2]. 

The importance of software metrics comes from the need 

for assessing requirements, identifying error prone 

components at early stages of software development, 
improving software quality attributes such as reliability, 

maintainability, availability …etc.  Different classes of 

metrics measure different aspects of system quality, so a 

single or multiple metrics belong to a class cannot be 

successfully used to measure all quality related facets of a 

system.  

G. Eason.et.al. in[9] Identify the characteristics of an 

optimal metric to be simple, objective, easily obtainable, 

valid and robust.  Generally software metrics are classified 

as follow: 

1. Process metric which highlights the process of 
software development. It mainly aims at process 

duration, cost incurred and type of methodology used.  

2. Project Metrics that are used to monitor project 

situation and status.  And identify risk. E.g.. Staff 

number and their patterns, cost, etc… 

3. Product metrics describe the attributes of the software 

product at any phase of its development. [10] Metrics 

are further classified into static and dynamic. [10] 

Metrics are further classified into static and dynamic. 

Static measures are obviously simpler to collect because 

there is no need to run the software. In contrast, to obtain 

dynamic measure of code, simulation models of the 
software system were needed, which are available very 

late in the software development lifecycle [2]. Static 

metrics are widely used due to the fact that they are easier 

to obtain, especially at the early stages of software 

development. However, the potential benefits of dynamic 

metrics collected by executing the program outweigh the 

complexity and cost of measuring them.[2] Next section 

discuses research in syntactic metrics in details. 

 
A.  Syntactic metrics  

         In this section, we will discuss the traditional metrics 

and their limitations. Most widely used software metrics 

nowadays are based on syntactical aspects of software; as 

such, they reflect how a program is represented, but not 

what a program does [3].  The most used software metrics 

are LOC (lines of code) and Cyclamate Complexity [11]. 

These measures were originally defined for procedural 
programs and later incorporated for object-oriented 

systems. The LOC metric measure software size, while 

cyclamate complexity measures logical complexity of a 

module [3]. Software metrics proposed and used for 

procedural paradigm have been found inadequate for 

object-oriented software products [1].  The word syntactic 

reflects to what extend we can use source code syntax to 

estimate some quality attributes. In [12] quality is defined 

as the degree to which a product is bug-free.  

In this point it is important to say that the use of pre-

release defects as an indicator of quality is questioned. 

Knowing that there were a large number of defects during 

the coding stage does not mean there will be a lot of bugs 

in the post release version too.  In contrast, other 

researchers defined quality by using different concepts 

such as reliability, availability, lower maintainability cost 

and sometimes the ability to perform tasks as it should. 

 Some current studies move through different direction 

and see the quality as a weighted combination of different 
software attributes. For example, source code length is 

related to complexity and a lower software complexity 

could lead to a greater software reliability (Fenton & 

Pfleeger, 1997)[1]. It is not wrong to say that there is a 

relationship between complexity and the length of the 

program. However, all studies agree that when measuring 

complexity one should take into account something more 

than length. This approach was followed by Törn et al. 

(1999) [13]. A Number of studies move through the same 

direction and investigate complexity measure using code 

syntax.  In [7] researchers divide complexity of software 
into three separate classes’ the first class is the essential 

complexity which is determined by the problems that the 

software tries to solve.  The second class the selecting 

complexity is determined by the program languages, the 

problem modelling methods and the software design 

methods. Lastly, The incidental complexity is determined 

by the quality of the involved implementer.[7] The most 

common used complexity metrics are Halstead metrics 

which introduced in 1977 by Maurice Halstead. One of it 

is main advantages that it doesn’t require deep knowledge 

of program logical structure so it is easy to calculate but in 

the other hand, it doesn’t give accurate measure because it 
doesn’t consider program flow control.[7] 

Another metric is WHCM which try to overcome HCM 

limitations. WHCM adds weight of the code instructions 

such as loops or branches.  In [14] Thomas J. McCabe 

introduced a software complexity metric named McCabe 

Cyclamate Complexity Metric. It’s main limitation it 

doesn’t distinguish between code lengths and it ignores the 

complexity added by the nesting codes.   A significant 

drawback of syntactic metrics is that different structural 

aspects of code can result in different metrics value, even 

when the code is performing the same task [15]. Syntactic 
metrics are not always accurate quality descriptors. 

Metrics that provide a better mapping between software 

and its associated quality factors thus has the potential to 

be used in improving software quality, including quality of 

newly developed software as well as currently maintained 

software. Such metrics can help in identification of good 

reusable software components.[3] Table “1” ,shows list of 

the most widely used syntactic metrics. 

 
TABLE I: 

Most widely used syntactic metrics 

Metric  Description 

LOC Measuring program length 

McCabe Measuring software complexity 

Halstead Estimating (complexity, volume) 

FP Function points measure software size. 
The cost (in dollars or hours) of a single 
unit is calculated from past projects. 



ISSN (Online) 2278-1021 

ISSN (Print)    2319-5940 
 

 International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 2, February 2015 
 

Copyright to IJARCCE                                                                DOI  10.17148/IJARCCE.2015.4286                                                             382 

Number of 
faults 

Counting number of faults in software 
code. 

Fault density Measuring number of faults as a ratio to 

program length 

Effort  Estimating the effort done by 
programmer to construct software.  

 

Another important point should be highlighted is that 

desirable quality attributes like reliability and 

maintainability cannot be measured until some operational 

version of the code is available. Yet we wish to be able to 

predict which part of the software is less reliable, more 

difficult to test, or require more maintenance than others, 

even before system is completed [2] 
 

B. Semantic metrics 

Traditional syntactic metrics discussed above reflect 

how program are represented, but not what a program does 

[3]. Yet, many important program attributes may have 

more to do with the latter than the former.  In the 

following we introduce a number of software metrics that 

reflect semantic properties of software products.  Gall, C. 

S  In 2008 [16] suggests an approach using semantic 

metrics to provide insight into software quality early in the 

design phase of software development by automatically 

analyzing natural language (NL) design specifications for 

object-oriented systems is presented. Semantic metrics are 

based on the meaning of software within the problem 

domain [17]. New trend has introduced by Selim et.al. 

They tried to extend the concept of using semantic 

information to improve software quality [18]. In [19], 

researchers extend semantic metrics to analyze design 

specifications. Since semantic metrics can now be 

calculated from early in design through software 

maintenance, they provide a consistent and seamless type 

of metric that can be collected through the entire lifecycle.  

Results indicate semantic metrics calculated from design 

specifications can give insight into the quality of the 

source code based on that design.  

Previously in 1992 [20] some researches make spot on 

software faults that infrequently affect output cause 

problems in most software and are dangerous in safety-

critical systems. When a software fault causes frequent 

software failures, testing are likely to reveal the fault 

before the software is released; when the fault “hides” 

from testing, the hidden fault can cause disaster after the 

software is installed. A simple metric, derivable from 

semantic information found in software specifications, 

indicates software sub functions that tend to hide faults. 

Potential for hidden faults can be further explored using 

empirical methods .A study [21] in 2008 was empirically 

investigated the suite of object-oriented (OO) design 

metrics introduced in (Chidamber and Kemerer, 1994). 

More specifically, their goal is to assess these metrics as 

predictors of fault-prone classes.  Norman in [22] found 

relationship between faults density and module size and 

analysis time thorough his study. He confirmed that the 

number of faults discovered in pre-release testing is an 

order of magnitude greater than the number discovered in 

12 months of operational use.  Marcus etal. In [23] try to 

improve this study by suggesting a way for predicting 

software faults in OO programs. Some studies shed light 

on how to integrate entropy concept with semantic aspects 

of software as quality measure. Such concept dates back to 

1997 when D. Melamed define semantic entropy as the 

measure of semantic -ambiguity and uninformative Hess 

[24]. It is a graded lexical feature which may play a role 

anywhere lexical semantics plays a role. Brown et al. 

(BD+91)[25] present a word-sense disambiguation 

algorithm involving minimization of semantic entropy 

weighted by word frequency. Yarowsky (Yar93)[26] 

compares the semantic entropy of homographs 

conditioned on different contexts. Salwa K and Abd-El-

Hafiz, in 2004 [27] also address entropy as a means to 

measure software information content. They use the 

entropy metrics to study the evolution of the modules 

within the system. in 2004 [28] also address entropy as a 

means to measure software information content. Oleksandr 

et.al. [29] Proposes a novel interpretation of an entropy-

based metric to assess the design of a software system in 

terms of interface quality and understandability. The 

research in this area is still too young.  

 

c. Advantages of semantic over syntactic metrics 
 

 

In this section paper will discuss the benefits of having 

semantic metrics in comparison to static syntactic one.  

Syntactic metrics are simpler to collect and easy to 

understand due to, the way to measure it directly from 

source code. In contrast, Semantic metrics is more difficult 

to measure because it relay on deep understanding to the 
function of software without considering its programming 

language. In the other hand, as mentioned earlier, one of 

the main drawbacks of syntactic metrics is the fact that 

most metrics address only one aspect of the multifaceted 

software development process. Thus these metrics might 

fail to take into consideration, for example, the trade of 

between two resources because its dependent variable is 

only one of those resources. Researchers have tried 

various methods to overcome this problem. One of those 

methods which are more used than any other is combining 

metrics from various classes to give a more general 

picture. Another mentioned point is that using of 
syntactical code defects only as indicator of quality is 

questioned. Semantic metrics try to overcome these 

limitations by considering new semantic aspects of source 

code. The major differences between semantic and 

syntactic metrics are listed in table “II” bellow. 
TABLE II: 

Comparison between syntactic and semantic metrics 

Syntactic metrics Semantic metrics 

Simpler to collect  Difficult to obtain 

Deal only with structural 

aspects of source code 

Deal more with semantic and 

functional aspects 

Dependant on programming 

language 

programming language 

independent  

Inefficient to deal with OO 

features. 

Applicable to both procedural 

and object  oriented software 



ISSN (Online) 2278-1021 

ISSN (Print)    2319-5940 
 

 International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 2, February 2015 
 

Copyright to IJARCCE                                                                DOI  10.17148/IJARCCE.2015.4286                                                             383 

Less precise in some quality 

attributes 

More precise that syntactic 

metrics 

Available after coding stage Can be measured in different 

software development stages 

 

Software measurement can be classified in two parts 
prediction and estimation. The above mentioned 

techniques fall in the area of estimation. Much research is 

also done in field of prediction. The simplest example of 

software quality prediction is to use available attribute to 

predict another different quality feature. Studies in the area 

classify the software into different parts such as evolution-

critical, evolution-prone and evolution-sensitive parts. The 

first term refers to parts of software that need to be 

evolved due to lack of quality.  The second term refers to 

parts that are likely to be evolved. The third term refers to 

parts which can lead to problems as it evolves. Recently, 
new analysis techniques are used to enhance quality 

prediction. The article [17], presents the use of data miner 

tool called Multi method for prediction, experiments on 

three datasets in the Metrics Data Project (MDP) of the 

NASA has been done. Results confirms their efficient as 

defect prediction tool. In the same direction Salwa K [30] 

also conducts the use of data mining in detection of 

function clones in software systems. T Menzies [31] touch 

a hot issue by investigating the use of data mining to 

generate defect predictor from static code attributes. Many 

researchers use static attributes to guide software quality 

predictions (see [32], [33]). 

 Using multiple metrics in the prediction or detection 

process may increase the accuracy and thus increase 

software quality. Much research is required here to 

integrate new analytical methods that grantee prediction 

accuracy.  

IV. CURRENT CHALLENGES 

        From the above detailed discussions of different 

types of metrics, it can easily be said that the field of 

semantic metrics is wide open for researchers. 

Some of the possible research directions are listed below: 

 As mentioned previously in context of complexity 
metrics latest researches go though merging different 

technologies to improve quality. In addition to that, 

integrate new analytical technologies such as data 

mining for software evaluation.  

 Semantic metrics is a new trend in software 

measurement. Most of studies in this area agreed upon 

evaluating software in early stages in its development 

life cycle are better for quality assurance. Since much 

studies starts suggesting metrics to work in design 

phase or even after implantation and a little address to 

extract knowledge from requirements. 

 New suggested metrics lacks the mathematical 

support. So researches encouraged to move toward 

this direction.   

 No much research in semantic metrics instead much 

focuses now a day is on semantic web and ontology. 

So many researches still required in this area.  

V. CONCLUSION 

The paper is an attempt to surveys the literature that has 

been published to date, on software metrics generally and 

semantic metrics particularly. The main objective of the 

paper is to explore a new research direction in the field. 

There is still much to be done in the area. We expect that 

this area of research will get more attention in future due 

to its importance in business market. 

 

ACKNOWLEDGMENT 

I wish to thank Prof. Ali Mili for his helpful advices. 

 

REFERENCES 

[1] Norman E. Fenton, 1991, Software Metrics, A Rigorous Approach, 

Chapman & Hall, London 
[2] A Survey of Software Metrics, Fabrizio Riguzzi, July 1996,  DEIS 

Technical Report no. DEIS-LIA-96-010. 

[3] A.Mili .et.al. Semantic software metrics.2013. unpublished. 

[4] Bohem, B.W, Brown,j.R. and Lipow, M, “Quantitve evaluation of 

software quality” proceedings of the second international 

conference on software engineering, 1976. 

[5] Norman E.Fenton, shari Lawerance Pfleeger. Software metrics 

Arigorous and practical approach. Second edition.PWS Publishing 

company. 20 park plaza Boston. 

[6] Dromy. R.G, “cornering the chimera” , IEEE software ,31(1),33-

34,1996.  

[7] Christof Ebert and Reiner Dumke. Software Measurement: 

Establish, Extract, Evaluate, Execute. Springer Verlag, 2007 

[8]  Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics: 

A Rigorous and Practical Approach. PWS Publishing Company, 

1997. 

[9] G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals of 

Lips Software Metrics SEI Curriculum Module, SEI-CM-12-1.1, 

December 1988.  

[10] A Survey on Metric of Software Complexity Sheng Yu, Shijie 

Zhou. 

[11] Survey on Impact of Software Metrics on Software Quality - 

(IJACSA) International Journal of Advanced Computer Science and 

Applications, Vol. 3, No. 1, 2012 

[12] McCabe T. A complexity metric. IEEE Transactions on Software 

Engineering, 1976, 2(4): 308-320. 

[13] A Whitepaper on Metrics, Andreas Rau, Steinbeis Transferzentrum 

Softwaretechnik, 1998, 1999, 2001.Last Change: 2001-08-06 

[14] Thomas J McCabe, “A Complexity Measure”, IEEE Transactions 

On Software Engineering, IEEE, Washington, Oct 1976, pp. 308-

320 

[15] Torn, A., T. Andersson and K. Enholm, 1999. A complexity metrics 

model for software. South Afr. Comput. J., 24: 40-48. 

[16]  Gall, C. S. Inf. Technol. & Syst. Center, Univ. of Alabama in 

Huntsville, Huntsville, AL Lukins, Stacy K.; Etzkorn, Letha H.; 

Gholston, Sampson; Farrington, Phillip A.; Utley, Dawn R.; 

Fortune, J.; Virani, Shamsnaz Semantic Metrics, Conceptual 

Metrics, and Ontology Metrics: Volume: 2 , Issue: 1  Page(s): 17 – 

26. 
[17] Eric S. Raymond, the Art of Unix Programming, Addison-Wesley, 

New York, 2004. 

[18] Semantic Metrics, Conceptual Metrics, and Ontology Metrics: 

Letha H. Etzkorn 

[19] Bo Hu, Yannis Kalfoglou, Harith Alani, David Dupplaw, Paul 

Lewis, Nigel Shadbolt Managing Knowledge in a World of 

Networks Lecture Notes in Computer ScienceVolume 4248, 2006, 

pp 166-181. Semantic Metrics. 

[20]  Jeffrey M. Voa. Keith W. Miller Semantic metrics for software 

testability. Journal of Systems and Software. Volume 20, Issue 3, 

March 1993, Pages 207–216  Oregon Metric Workshop on 

Software Metrics, 1992. 

[21] Using the Conceptual Cohesion of Classes for Fault Prediction in 

Object-Oriented Systems Software Engineering, IEEE Transactions 

on Date of Publication: March-April 2008, Marcus, Andrian. 



ISSN (Online) 2278-1021 

ISSN (Print)    2319-5940 
 

 International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 2, February 2015 
 

Copyright to IJARCCE                                                                DOI  10.17148/IJARCCE.2015.4286                                                             384 

Wayne State Univ., Detroit. Poshyvanyk, Denys; Ferenc, Rudolf 

Volume: 34, Issue: 2 . Page(s): 287 - 300 

[22] Software Metrics and Risk (1999) by Norman Fenton, Martin Neil. 

[23]  A validation of object-oriented design metrics as quality indicators 

06 August 2002, Issue Date : Oct 1996, Sponsored by : IEEE 

Computer Society 

[24] D. Melamed, "Measuring Semantic Entropy," Proceedings of the 

SIGLEX Workshop on Tagging Text with Lexical Semantics, 

Washington, DC, 1997 

[25] P. F. Brown, S. Della Pietra, V. Della Pietra, R. Mercer, "Word 

Sense Disarnbiguation using Statistical Methods", Proceedings of 

the ~9th Annual Meeting of the Association for Computational 

Linguistics, Berkeley, Ca., 1991. 

[26] D. Yarowsky, "One Sense Per Collocation," DARPA Workshop on 

Human Language Technology, Princeton, N J, 1993 

[27] Abd-El-Hafiz, Salwa K. An information theory approach to 

studying software evolution[J]. AEJ - Alexandria Engineering 

Journal, v 43, n 2, March, 2004, p 275-284.  

[28] Using the Conceptual Cohesion of Classes for Fault Prediction in 

Object-Oriented Systems Software Engineering, IEEE Transactions 

on Date of Publication: March-April 2008, Marcus, Andrian. 

Wayne State Univ., Detroit. Poshyvanyk, Denys; Ferenc, Rudolf 

Volume: 34, Issue: 2 . Page(s): 287 - 300 

[29] Panchenko, O. ; Hasso Plattner Inst. for Software Syst. Eng., 

Potsdam, Germany ; Mueller, S.H. ; Zeier, A.  Measuring the 

quality of interfaces using source code entropy, Industrial  

Engineering and Engineering Management, 2009. IE&EM '09. 16th 

International Conference, Oct. 2009, Page(s): 1108 - 1111 

[30]  Salwa K, A Metrics-Based Data Mining Approach for Software 

Clone Detection. Pages 35-41 , COMPSAC '12 Proceedings of the 

2012 IEEE 36th Annual Computer  Software and Applications 

Conference IEEE Computer Society Washington, DC, USA ©2012. 

[31]  N. Nagappan and T. Ball, “Static Analysis Tools as Early 

Indicators of Pre-Release  Defect Density,” Proc. Int’l Conf. 

Software Eng., pp. 580-586, 2005. 

[32]  T. Khoshgoftaar, “An Application of Zero-Inflated Poisson 

Regression for Software Fault Prediction,” Proc. 12th Int’l Symp. 

Software Reliability Eng., pp. 66-73, Nov. 2001. 

[33] W. Tang and T.M. Khoshgoftaar, “Noise Identification with the 

KMeans Algorithm,” Proc. Int’l Conf. Tools with Artificial 

Intelligence (ICTAI), pp. 373-378, 2004. 

 

 

 

 


	Acknowledgment

