
ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 2, February 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4296 426

 Building Inverted Index and Search Engine using

Apache Lucene

Gita Veer
1
, Poonam Rathod

2
, Poonam Sinare

3
, Prof. R. B. Singh

4

 B.E., Computer Engg, SIT, Lonavala, Maharashtra1,2,3

Computer Department, SIT, Lonavala, Maharashtra4

Abstract: We describe data structures and an update strategy for e practical implementation of inverted indexes. The

context of our discussion is the construction of a dedicated index engine for a distributed full-text information retrieval

system but the results have wider applications. Retrieval operations require a single disk access per query term. The

online update strategy guarantees the consistency of on-disk data structures. Index compression integrates smoothly.

Keywords: NNquery, Inverted Index, Lucene, Elastic Search.

I. INTRODUCTION

Our general concern is the construction of a distributed

full-text information retrieval system.The basic
architecture consists of a group of LAN-connected

processors each managing its own separate disk and

memory. Individual processors act as either text servers,

storing documents and servicing requests for portions of

these documents or as index engines identifying the

portions of documents that match client –generated search

criteria. To external clients the group of machines appears

to be a single large information retrieval system.A front

end processor the Marshaller /Dispatcher coordinates the

activities of the group of processors interacting with client

applications dispatching queries to the index engines and

text servers marshalling query results and returning the

results to clients.

II. INVERTED INDEXES

Our specific concern is the data structure design and

update strategy used by the index engines. The basic data

abstraction implemented by an index engine is an inverted

index. File structures based on inverted indexes are

standard for implementing information retrieval systems.

An inverted index is a function that maps index terms into

positions in documents where the terms occur. Index terms

are typically words, , but may include document markup

tags and other structural information of importance to

database clients.

III. PRACTICAL ISSUES

In an operational environment there are a number of

practical issues to be considered when implementing

inverted lists.

Retrieval Response: Retrieval operations far-out number

update operations. Querying the retrieval system is the

primary operation used by external clients and response

time is of utmost importance. The mapping of an index

term into its postings list must require as few disk accesses

as possible. Ideally a single disk access would be
sufficient to translate any term independent of the size of

the dictionary and postings file and independent of the size

of the postings list for the particular word.

Update Throughput: Updates are usually additions of

new documents. Occasionally deletion of documents and
addition and modification of indexing may be required.

Since update is primarily a maintenance function rather

than an external client service, update throughput, not

response time is of importance. Index Compression will

increase the amount of dictionary and postings data that

can be stored on available disk. Since compression and

decompression techniques operate by linearly processing a

range of data, this property creates a potential decrease in

retrieval response time if random access into the data is

limited.

Consistency: The database must be maintained in a

consistent state at all times. For example, if a failure
occurs during update of the postings file, the dictionary

must not be left pointing to an incorrect range of postings.

IV.EXISTING APPROACHES

Most discussions of inverted indexes for information

retrieval assume that the file structures are static created

by an initial database load operation and not modified

thereafter. These file structures generally require multiple

disk accesses for term translation. Discussions of

updatable inverted indexes generally adopt an append

only model of update. Tries, hashing and the ubiquitous B-
Tree can all be used to implement an updatable dictionary.

An updatable postings file can be implemented using a

variety of free space management techniques. The

postings for a particular term may be maintained in

chained buckets. A new bucket is added to the chain each

time a document append causes a bucket to overflow.

Alternately, postings may be stored in contiguous extents

with free space left after each extent. If the extent

overflows , the postings list is copied to a larger extent.

V.OUR APPROACH

 In the remainder of the paper we present data structures
that efficiently realize the inverted index data abstraction

and permit the continuous online application of updates

without significantly disrupting retrieval performance.

Accessing the inverted index for a term requires a single

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 2, February 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4296 427

disk access. Update is an ongoing background process,

rewriting the database on an ongoing basis. Updates are

maintained in main memory data structures until they can

be applied to disk. The update process is occasionally

check pointed. If a processor failure occurs the update

process may be restarted at the last checkpoint. The

integration of caching and index compression is
straightforward.

The primary goal of this project is the creation of a

prototype distributed full text information retrieval system.

Where exposition is simplified and no generality is lost.

we use the concrete data structures of the Multi Text

Project in our discourse.

System Architecture:

 Our general concern is the construction of a distributed

fulltext information retrieval system. The basic

architecture consists of a group of LAN connected

processors, each managing its own separate disk and

memory. Individual processors act as either text servers,

storing documents and servicing requests for portions of

these documents or as index engines, identifying the

portions of documents that match client generated search
criteria. To external clients, the group of machines appears

to be a single large information retrieval system. A front

end processor, the Marshaller/Dispatcher, coordinates the

activities of the group of processors, interacting with client

applications, dispatching queries to the index engines and

text servers, marshalling query results and returning the

results to clients.

VI. PAGE RANK ALGORITHM

So what is Page Rank?

PageRank is a “vote”, by all the other pages on the Web,
about how important a page is. A link to a page counts as a

vote of support. If there’s no link there’s no support.

 Page Rank is defined like this:

 We assume page A has pages T1...Tn which point to it

(i.e., are citations). The parameter d is a damping factor

which can be set between 0 and 1. We usually set d to

0.85. There are more details about d in the next section.

Also C(A) is defined as the number of links going out of

page A. The PageRank of a page A is given as follows:

 PR(A) = (1-d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C(Tn))

 Note that the PageRanks form a probability distribution

over web pages, so the sum of all web pages' PageRanks

will be one.

 PageRank or PR(A) can be calculated using a simple
iterative algorithm, and corresponds to the principal

eigenvector of the normalized link matrix of the web.

but that’s not too helpful so let’s break it down into

sections.

 PR(Tn) - Each page has a notion of its own self-

importance. That’s “PR(T1)” for the first page in the web

all the way up to “PR(Tn)” for the last page

 C(Tn) - Each page spreads its vote out evenly amongst

all of it’s outgoing links. The count, or number, of
outgoing links for page 1 is “C(T1)”, “C(Tn)” for page n,

and so on for all pages.

 PR(Tn)/C(Tn) - so if our page (page A) has a backlink

from page “n” the share of the vote page A will get is

“PR(Tn)/C(Tn)”

 d(... - All these fractions of votes are added together but,

to stop the other pages having too much influence, this

total vote is “damped down” by multiplying it by 0.85 (the

factor “d”)

 (1 - d) - The (1 – d) bit at the beginning is a bit of

probability math magic so the “sum of all web pages'

PageRanks will be one”: it adds in the bit lost by the d(....
It also means that if a page has no links to it (no backlinks)

even then it will still get a small PR of 0.15 (i.e. 1 – 0.85).

(Aside: the Google paper says “the sum of all pages” but

they mean the “the normalised sum” – otherwise known as

“the average” to you and me.

How is Page Rank Calculated?

This is where it gets tricky. The PR of each page depends

on the PR of the pages pointing to it. But we won’t know

what PR those pages have until the pages pointing to them

have their PR calculated and so on… And when you
consider that page links can form circles it seems

impossible to do this calculation!

 PageRank or PR(A) can be calculated using a simple

iterative algorithm, and corresponds to the principal

eigenvector of the normalized link matrix of the web.

What that means to us is that we can just go ahead and

calculate a page’s PR without knowing the final value of

the PR of the other pages. That seems strange but,

basically, each time we run the calculation we’re getting a

closer estimate of the final value. So all we need to do is

remember the each value we calculate and repeat the

calculations lots of times until the numbers stop changing
much.

VII. FURTHER ISSUES

 Index Compression

Index compression integrates smoothly into the scheme.

Each index block is individually compressed to a

variablelength segment. The index map references

compressed blocks rather than fixed size blocks. We add a

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 2, February 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4296 428

word to each entry in the index map that indicates the

offset of the compressed block in the index. Blocks are

decompressed as they are brought into the cache or read

by the update process. Since all blocks are cyclically re-

written, compression does not hamper update.

System Considerations
This paper has concentrated on the design of the index

engine.We look briefly at a few relevant aspects of the

remainder of the system. The text server translates a range

in the database into the associated text. While the details

differ, we organize the text server using data structuring

principles similar to those used in the index engine. While

our data structures efficiently implement the inverted

index data abstraction, they do not efficiently implement

queries that are based only on the dictionary. Generally

these queries consist of identifying terms that match

specified patterns. In systems that separate the dictionary
from the index, this type of query can be satisfied by a

dictionary search. Besides its other duties, the

Marshaller/Dispatcher is responsible for handling these

dictionary based queries by maintaining a separate

dictionary database of all words in the system. In addition,

the Marshaller/Dispatcher is responsible for implementing

a term thesaurus.

VIII. WIDER APPICATION

While our exposition has been in the context of a

distributed information retrieval system the data structures

and update strategy have wider applicability. Inverted
indexes are used in applications other than information

retrieval. Even if file structures are static and update is not

a requirement in the case of aCD ROM, for example) our

data structures provide an efficient realization of inverted

lists. The update strategy has applicability to other

databases with similar update characteristics with the text

server being a ready example.

XI. CONCLUSION

 The data structures presented in this paper efficiently

realize the inverted index data abstraction. A retrieval
operation requires a single disk access in all but rare cases.

The update strategy provides high throughput with little

impact on retrieval performance. The file structures may

be compressed to increase the size of index that can be

stored on available disk. Although discussed in the context

of a distributed fulltext information retrieval system, the

results of this paper have applicability to any use of

inverted indexes and any database with similar update

characteristics.

ACKNOWLEDGEMENT

The authors would like to thank faculty of Computer
Department, University of Pune for the opportunity given

In conducting this research.

REFERENCES
[1] Qi H, Li K, Shen Y, Q u W .Object-based image reDerieval with

kernel on adjacency matrix and local combined features .ACM

Trans Multimed Comput Commun Appl (TOMCCAP)

2012;8(4):54.

[2] Ji C, Dong T, Li Y, Shen Y ,Li K , Qi u W.etal.2012.Inverted grid-

based knn query processing with map reduce.In:2012Seven th china

Grid annual conference.p.25–32

[3] Hasan M ,Cheema M , Qu W , Lin X .Efficient algorithm stom on it

or continuous constrained k nearest neighbour queries .In :Database

systems for advanced applications,

SpringerBerlinHeidelberg,2010.p.233–49.

[4] Forbes J. Burkowski Surrogate subsets: A free space management

strategy for theindex of a text retrieval system. In Proc.13th

ACMSIGIR Conference, pages 211-226, Brussels ,1990.

