
ISSN (Online): 2278-1021
ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Survey on Optimal Schedulability Test for Hard
Real Time Scheduling

NNNiiitttiiinnn CCC... PPPaaatttiiilll aaannnddd PPPrrrooofff... SSS... PPP... DDDhhhaaannnuuurrreee
Dept. of Electronics and Telecommunication Engg, SITS, Narhe, Pune

Savitribai Phule Pune University, Pune, Maharashatra, India.

Abstract : Real time system is now ubiquitous. In such real time system requires the exactness in result of logical behavior and
physical occurrence at which the results are produced. Throughout the paper we consider only hard real time tasks implement
on uniprocessor and if dead line is missed in such system then its ruinous. Many scheduler had been proposed to improve the
schedulability, here we talks about dynamic and static scheduling only like Earliest Deadline First (EDF) and Rate Monotonic
(RM) and considering a scenario of only D ≤ T . We analyze tasks in every condition to check its schedulability with respected
solution to each problem. First we check utilization of tasks to verify its schedulability, but for optimal schedulability we
required response time analysis. Again during task interaction some issues occur such as blocking, priority inversion and jitter
which also need to verify. That all issues where discuss and analyze throughout the paper with the help of examples with their
solutions.
Keywords : Real time system, task scheduling, EDF, RM, utilization, response time analysis, priority inversion, jitter.

I. INTRODUCTION
A real-time scheduling System is composed of the scheduler,

clock and the processing hardware elements. In a real-time
system, a process or task has schedulability; tasks are accepted
by a real-time system and completed as specified by the task
deadline depending on the characteristic of the scheduling al-
gorithm [1]. Modeling and evaluation of a real-time scheduling
system concern is on the analysis of the algorithm capability
to meet a process deadline. A deadline is defined as the time
required for a task to be processed.

A real-time scheduling algorithm can also be classified
as static or dynamic. Tasks are accepted by the hardware
elements in a real-time scheduling system from the computing
environment and processed in real-time. An output signal
indicates the processing status. A task deadline indicates the
time set to complete for each task. A task deadline for a static
scheduler is predetermined offline. A different alternative is
to schedule a task when the system is running; this process is
known as Dynamic scheduling[1][2].

It is not always possible to meet the required deadline;
hence further verification of the scheduling algorithm must be
conducted. Two different models can be implemented using a
dynamic scheduling algorithm; a task deadline can be assigned
according to the task priority (earliest deadline) or a completion
time for each task is assigned by subtracting the processing
time from the deadline (least laxity)[1]. Deadlines and the
required task execution time must be understood in advance to
ensure the effective use of the processing elements execution
times.

While designing the scheduling of any task, we should
consider some notations like deadline, period & Worst Case
Execution Time (WCET)[1][9]. Throughout the paper we’ll talk
the scheduling test examine on single processor. Utilization

is the well known concept design by Liu and Layland in their
seminal paper[8]. It is simple way to find the schedulability
test of real-time tasks. For static priority say RMS the paper [8]
design the utilization bound test whereas for dynamic priority
it required only simple utilization test.

If we calculate utilization then its not enough to check its
schedulability whether it may satisfy the condition, where
different conditions of shedulability are their for different
scheduleing algorithms[5]. If utilization test satisfy then go for
Workload[7] where it checks the processing load of all tasks
handle by CPU or not. Again the largest interval L upto where
we want to check the processor load that can be calculated
by using processor Demand Bound function[10][11]. But the
point where the processor capacity overloaded then such point
we called as Buruah Point which tell the maximum processing
capacity we’ll be hold by scheduler. Thus it is all about the
boundary of task scheduling.

For optimal Scheduling, Response Time Analysis[7][12] is
required to calculate, which is compare with the respected task
deadline and if the response time is less than its deadline then
the task is not schedulable. A very simple analysis but again
many complex scenario comes during execution which has to
consider for optimal scheduling. During task interaction like
preemption or sharing resources some mischievous behavior
seen like Priority Inversion which can be prevented by using
priority ceilings or priority boosting. And in some scenario
a lower priority task block the higher priority task causing
blocking of hard real time tasks. Also because of poor system
performance, some delay occurs in between invocation and
execution of task called as Jitter may causing misses deadline
of low priority task, which is difficult to predict[16][17].

The whole scenario we’ll discuss in the paper using examples
considering every parameter which affecting the real time task

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.45158 746

scheduling.
The paper flow is given as: Section-II presents literature

survey of paper. Section-III discuss scheduling algorithms
that we going to analyze in the paper. Section-IV discuss
an example to calculate the response of task with the help
of algorithm. Section V discuss the general issues occur
during task interaction like blocking of task, priority inversion,
cooperative scheduling to reduce WCET in some extend and
analysis of jitter. Section VI conclude the paper.

II. LITERATURE SURVEY

We conducted survey on Real Time System (RTS) and then
its related parameters which affect the hard real time scheduling
and find solution over such unpredictable issues and then we’ll
come up with some tests to check task set schedulable or not.

A. Real Time System
A real-time system is one that must process information and

produce a response within a specified time, else risk severe
consequences, including failure. That is, in a system with a
real-time constraint it is no good to have the correct action
or the correct answer after a certain deadline: it is either
by the deadline or it is useless! Where RTS is divided into
two categories: Hard RTS and Soft RTS. A Hard Real-Time
System guarantees that critical tasks complete on time. This
goal requires that all delays in the system be bounded from
the retrieval of the stored data to the time that it takes the
operating system to finish any request made of it. A Soft Real
Time System where a critical real-time task gets priority over
other tasks and retains that priority until it completes. As in
hard real time systems kernel delays need to be bounded[1]. A
RTS architecture is totally based on hybrid control architecture
as shown below fig. 1:

Figure 1: Real Time System Architecture

The first to discuss is periodic tasks. A periodic task is
performed on a given frequency. A periodic task is described by
>i, i ∈ (1,...,n). Every periodic task has its own relative deadline
Di, with minimum period of Ti and maximum computational
time Ci can be say as worst case execution time. A Invocation
of any task known as a job. The kth invocation of task i is
denoted as >i, k ∈ (1,2,...). Each invocation of a task has
its own absolute release time rki and absolute deadline dri .
Constraint for the absolute values of periodic tasks are, dri
= rki + Di, dri ≤ rki

+1 and rki
+1 − rki ≤ Ti for any i ≤

1, k ≤ 0. Each job has its own absolute starting time Si

and absolute ending time Ei. Using absolute ending time and
absolute deadline, the time left by task till its deadline can be
calculated, known as Lateness Li. The lateness of job can be
stated as Ei − di = Li, in general lateness is negative. The
tasks which is release at random time called as sporadic tasks.
parameter for these tasks are same as periodic tasks only the
difference is the constraint used for release time. For sporadic
tasks the (k+1)th invocation occurs at rki

+1 ≥ rki + Ti[1][7]
Below fig. 2 shows the contains discuss.

Figure 2: Periodic task model with its timing parameter

Based on above task model below utilization, workload,
processor demand and Baruah point will be define.

B. Utilization:
a) Earliest Deadline First:

The fraction of CPU time spent executing the task set
called as Utilization U[5][6], where if
• U > 1, then the schedule is not feasible or overload.
• U≤ 1, can be schedulable but still depend on scheduling

algorithm.
• U = 1, kept CPU busy i.e., all deadline will be met.

x(L) =
n∑

i=1

Ui =
n∑

i=1

Ci

Ti
(1)

b) Rate Monotonic:
The utilization based analysis for Rate Monotonic (RM)
is simple sufficient but not necessary schedulability test.
U < 1 doesn’t imply the tasks are schedulable with RM,
it required a special test say Utilization Bound Test (UB).
The UB test is proposed by Liu and Layland, 1973[6] as
shown below. The Utilization should be ≤ 0.69 as n →
∞[5][7].

x(L) =
n∑

i=1

Ui =
n∑

i=1

Ci

Ti
≤ N(21/N − 1) (2)

C. Workload:
The workload on processor by all n tasks, between length 0

to L[7], is define by:

W(L) =
n∑

i=1

[
L

Ti

]
Ci (3)

The function is the release time of ith tasks upto the time t
and multiply by computational time of ith task. The workload
is the summation of function of all tasks.

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.45158 747

International
2015May5,Issue4,Vol.

ofJournal EngineeringCommunicationandComputerinResearchAdvanced

ISSN
2319-5940:(Print)ISSN
2278-1021(Online):

D. Processor Demand:
We can calculate NL

i by counting how many times task >i

has arrived during interval [0, L−Di]. We can ignore instance
of the task that arrived during the interval [L−Di, L] for these
instances. where the largest interval, L is the LCM of the task’s
periods and only absolute deadline need to be consider[7]. We
can express NL

i as shown in fig. 3

NL
i =

L−Di + Ti

Ti
(4)

Figure 3: Example to calculate NL
i

The load that should be adjudicated by the processor,
between L = 0 and L = n, is define by:

Hp(0, L) =
n∑

i=1

NL
i · Ci (5)

The sufficient and necessary condition for EDF scheduling
for which Di ≤ Ti, is

∀L : Hp(0, L) ≤ L (6)

where Hp(0, L) is the total processor demand in [0, L].The
processor-demand analysis and associated feasibility test was
presented by S. Baruah, L. Rosier and R. Howell in 1990 [10].
Baruah [10] derived an upper bound for the processor demand
function. Using this upper bound we can find the line crosses
the processor capacity, t = LB line. After this point processor
cannot manage the tasks load.

E. Baruah Point:
Baruah Point is the limit, say LB , of processor capacity,

and processor demand is get lower down after the LB line[10].
LB is given as:

LB =

n∑
i=1

(
1− Di

Ti

)
· Ci

1− U
(7)

Assumptions Some assumption need to be used are as
follows,
• All tasks are periodic in nature.
• The scheduler used algorithm with highest priority
• Scheduling overhead are assumed to be included in

computation time Ci of task.
• All tasks are independent of each other.
• Each task must be complete before next request occur.

F. Response-Time Analysis:
Mathai Joseph and Paritosh Pandya[12], 1986 proposed a

simple idea for sufficient and necessary schedulability analysis.
The worst case response time for all tasks is given when
all tasks are released at the same time called as critical
instance. Calculate the worst case response time R for each
task with deadline D. If Ri ≤ Di or Ri = Ci + Ii the task
is schedulable/feasible, where I is interference from higher
priority tasks. Repeat the same check for all tasks. If all tasks
pass the test, the task set is schedulable. Now the question
is how to calculate the worst case response times?. During
R, each higher priority task j will execute a number of times:
Number of Release =

⌈
Ri

Tj

⌉
. The ceiling function d e gives the

smallest integer greater than the fractional number on which
it acts. So the ceiling of 1/3 is 1, of 6/5 is 2, and of 6/3 is 2.
The total interference is given by,

⌈
Ri

Tj

⌉
Ci[7].

Ri = Ci +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj (8)

Where hp(i) is the set of tasks with priority higher than task i.
Now solve the above equation using recurrence relationship.

wn+1
i = Ci +

∑
j∈hp(i)

∈ hp(i)

⌈
wn

i

Tj

⌉
Cj (9)

The set of values w0
i , w

1
i , w

2
i , ..., w

n
i , is monotonically non

decreasing. When wn
i = wn+1

i the solution to the equation has
been found, w0

i must not be greater than Ri (e.g. 0 0r Ci)[7].

G. Priority Inversion and Blocking:
Only the response time analysis is not sufficient to pass the

test of being task is schedulable or not. We have to consider
some issues occur during task interaction say priority inversion.
Here we discuss an example to clarify the concept of priority
inversion, whatever the solution that we’ll discuss detail in
section V. Imagine a system with three active threads as shown
in fig. 4. The task serial number consider as the respected
priorities and assume their is no other tasks of higher priority
in the system.

Figure 4: Example for Priority Inversion

When the system begins execution, thread >3 is released and
executes immediately since there are no other higher priority
threads executing. Shortly after it starts, it acquires a lock on
resource R shown by white color in fig. 4. At time t = 1,
thread >1 is released and preempts thread >2 since it’s of
higher priority, the red color shows the preempted part. At

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.45158 748

International
2015May5,Issue4,Vol.

ofJournal EngineeringCommunicationandComputerinResearchAdvanced

ISSN
2319-5940:(Print)ISSN
2278-1021(Online):

time t = 2, thread >3, a medium priority thread, is released
but doesn’t execute because higher priority thread >1 is still
executing. Shortly afterward, however, thread >1 attempts to
acquire a lock on resource R, but cannot since thread >2

(a lower priority thread) still owns it. This allows thread >3

to execute in its place, which effectively violates the priority-
order execution of the system, resulting in what we call priority
inversion[13].

In this situation, thread >1 will continue to block on resource
R, for an unbounded and unknown amount of time, until thread
>3 blocks (or terminates). For a real-time system, where thread
>1 controls something time-critical (i.e. the ailerons on an
airplane to maintain level flight), the result can be disastrous.
When >3 finally does block, thread >2 will continue execution
and release its lock on R. At that point, thread >1 will preempt
it, acquire its lock on R, and continue. But it may be too late,
and execution deadlines may have been missed. Let us see
some analysis
• If the system has k critical sections that can lead to a task
>i being blocked then the maximum number of times
that >i can be blocked is k.

• If B is the maximum blocking time and k is the number
of critical sections, the process i has an upper bound on
its blocking given by[13][14]

Bi =

k∑
k=1

use(k, i)C(k) (10)

If we incorporate the blocking B in response time R then the
Eq. 8 & Eq. 9[7][10] becomes,

Ri = Ci +Bi +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj (11)

wn+1
i = Ci +Bi +

∑
j∈hp(i)

∈ hp(i)

⌈
wn

i

Tj

⌉
Cj (12)

H. Jitter
Jitter is the difference between succeeding periods of time

for a given task. The difference in invocation (arrival) time
and its release time (start execution) of same task leads to
jitter (delay). Jitter may have different cause but jitter does not
preempt or not get preempted by tasks[17], since it is not a
task to do so. If we added the jitter in our basic Eq. 8, then
the equation becomes,

Ri = Ci + Ji +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj (13)

Consider a task i, so the Jmax
i is maximum jitter and Jmin

i

is minimum jitter of task. The the jitter can be define as,

Ji = Jmax
i − Jmin

i (14)

Where the lower priority task can be preempted twice because
of jitter if RL > Ji, so we can say that two preemption of
task L occur if RL > TH − JH , thrice if RL > 2TH − JH
and four times if RL > 3TH − JH and so on. Then the L

can be preempted n times if RL > (n − 1)TH − JH , then,
RL+JH

TH
> n− 1. The largest value of n given by the ceiling

function is, n =
⌈
RL+JH

TH

⌉
[17]. So if we modify our response

time Eq. 11 then the equation to be,

Ri = Ci +Bi +
∑

j∈hp(i)

⌈
RL + JH

TH

⌉
Cj (15)

Now how this response time is calculated ? it required to
calculate WCET (wi)[9], so it is given as,

wn+1
i = Ci +Bmax +

∑
j∈hp(i)

∈ hp(i)

⌈
wi + Jj

Tj

⌉
Cj (16)

If the task is release at time t, then in worst case scenario the
higher priority tasks can interface between t+Jmax

i and t+Ri,
so the worst case response time is given by, Ri = Jmax

i +wi.
In case of Di ≤ Ti the tasks are not optimal to schedule with
jitter. We have to order the priority on Di − Jmax

i so that the
maximum jitter leads to cause task less deadline and acquire
the higher priority[17].

III. SCHEDULING ALGORITHM

The discuss scheduling algorithms are as follows,
• Earliest Deadline First
• Rate Monotonic Scheduling

A. Earliest Deadline First
The Earliest Deadline First scheduling algorithm, presented

in [1], works with the following rules:
• Each task priority is a function of its period.
• As time proceed and task deadline comes closer, its priority

increases proportionally i.e., dynamic in nature.
• Highest priority task is allowed to run first.
Consider the set of independent periodic tasks, but it is not

necessary because EDF can works for all periodic as well
aperiodic types of tasks. Whenever a new task is arrive, it
sorts the ready queue so that the task closest to the end of its
period assigned the highest priority. Generally EDF is optimal
i.e. EDF can schedule any task set if any one else can[4].
Example 1: Consider two periodic tasks, >1 and >2 having
task set in terms of (Ci, Ti) and Di = Ti. So the task sets are
(2, 5), (4, 7). Then according to Eq. 1 Utilization U of two
periodic task calculated as,

U =
2

5
+

4

7
∼= 0.97 (17)

As U < 1, we can say that task is schedulable. If Di ≤ Ti, i.e.,
D1 = 4 and D2 = 6 then only U < 1 is not sufficient to tell
the schedulability, we required exact feasibility test to check
the schedulability. Consider L = 14, from Eq. 4 N1

1
4 = 3 and

N1
2
4 = 2. Now calculate processor demand from Eq. 5[1][5][4]

H(0, L) = 3× 2 + 2× 4 = 10 (18)

So from Eq. 17 & Eq. 6 (10 ≤ 14), we can say that the tasks
are schedulable by EDF.

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.45158 749

International
2015May5,Issue4,Vol.

ofJournal EngineeringCommunicationandComputerinResearchAdvanced

ISSN
2319-5940:(Print)ISSN
2278-1021(Online):

Figure 5: Example for EDF scheduling having two periodic task set

Summary:
• It works with all tasks periodic as well aperiodic.
• It has simple schedulability test: U ≤ 1
• It is optimal and gives best CPU utilization.
• Difficult to Implement: In practice, It is not very often

adopted due to the dynamic priority-assignment (expensive
to sort the ready queue on-line), which has nothing to do
with the periods of tasks. Note that Any task could get
the highest priority.

• Non Stable: If any task instance fails to meet its deadline,
the system is not predictable, any instance of any task
may fail

B. Rate Monotonic
The Rate Monotonic scheduling algorithm is works on the

following assumption:
• The priority of a task is a monotonically decreasing

function of its period.
• Priority of all tasks is static in nature, task with smaller

period get higher priorities.
• Tasks are independent and always released at the start of

their period.
Consider the set of independent periodic tasks. Here as like

EDF, RM doesn’t deal with aperiodic types of tasks. So we
can not consider a new task to be arrived. According to priority
the scheduler sort task, and allow highest priority task to run
first every time[1][4].
Example 2: Consider the same task set as we seen in example
1. According to utilization of v0.97, using Rate Monotonic
scheduling algorithm the tasks are schedulable or not ?; let us
see in below example and then analyze the conclusion. Here the
task having less period gets highest priority i.e., Priority(>1)=1
and Priority(>2)=2. N is depend on he number of tasks, here
N = 2.

N(21/N − 1) = 2(21 − 1) = 82.8 (19)

From Eq. 17 and Eq. 19,
n∑

i=1

Ui � N(21/N − 1) (20)

So from Eq. 2 and Eq. 20, we can say that the tasks are
not schedulable by Rate Monotonic scheduling algorithm as
clearly shown in fig. 7. From the graph below of fig. 6 it is
easy to analyze that the tasks are schedulable or not comparing
to utilization.If we draw the graph as shown below for the test
of schedulability then it is easy to analyze the schedulability
condition for Rate Monotonic scheduling algorithm. IF the
Utilization U from Eq. 1 is above the red line of graph of

fig. 6, then the tasks of real time system under RM is not
schedulable and vice versa. In fig. 7 it is clearly seen that
the task are not schedulable under RM because it misses the
second task deadline.

Figure 6: Real-time system is schedulable under RM if Eq. 2 satisfy

Figure 7: Example for RM Scheduling having two periodic task set

Summary:
• It works with only periodic task not aperiodic tasks.
• Because of static priority, expenses to sort queue in run

time is reduces i.e., Ease to implement.
• Simply schedulability test is not sufficient to tell the

task are schedulable or not. So additionally Utilization
Unbound Test required to check the schedulability.

Note that in our examples, we have assumed that all tasks are
released at the same time: this is to consider the critical instant
(the worst case scenario). If tasks meet the first deadlines (the
first periods), they will do so in the future (why?). Critical
instant of a task is the time at which the release of the task
will yield the largest response time. It occurs when the task is
released simultaneously with higher priority tasks. Note that
the start of a task period is not necessarily the same as any of
the other periods: but the delay between two releases should be
equal to the constant period (otherwise we have jitters). This
above observation we will see in the next section in detail.

IV. RESPONSE-TIME ANALYSIS

As we discuss the calculation of Response-Time in the
literature survey, here we analyze the Response-Time[7][12]
using a Response-Time Algorithm as shown below.

Let us analyze the above algorithm, consider the same
example as we seen before (2, 5), (4, 7). Now follow the
below steps using table I below,

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.45158 750

International
2015May5,Issue4,Vol.

ofJournal EngineeringCommunicationandComputerinResearchAdvanced

ISSN
2319-5940:(Print)ISSN
2278-1021(Online):

Algorithm 1 Response Time Algorithm

Require: n = 0
Ensure: N is the total no. of jobs

1: procedure Start
2: wn

i = Ci

3: for (k = 1; k ≤ N ; k ++) do
4: calculate new wn+1

i

5: if (wn+1
i == wn

i) then
6: Ri = wn

i

7: Status← True
8: break
9: else if (wn+1

i > Ti) then
10: Status← False
11: end if
12: end for
13: if (Status == True && Ri ≤ di) then
14: return Schedulable
15: else
16: return Unschedulable
17: end if
18: end procedure

TABLE I: Tasks parameters values

Period (T) Computation Time (C) Priority (P)

7 4 2 i
5 2 1 j

i) w0
1 = 4

ii) w1
1 = 4 +

(
4
5

)
2 ≈ 6, from Eq. 9

iii) w2
1 = 4 +

(
6
5

)
2 ≈ 7

iv) w3
1 = 4 +

(
7
5

)
2 ≈ 7

v) From step iii & iv, w2
1 = w3

1 , here we are at 5th step of
algorithm.

vi) Now in 6th step of algorithm we get the response time of
above task, i.e., R1 = 7 and the 13th step shows that the
tasks are Schedulable only if Ri ≤ Di and Unschedulable
if not satisfied.

vii) So in the above example if, Di = Ti then the task is
Schedulable but if Di ≤ Ti the tasks are Uschedulable

Response Time Analysis[12] is sufficient and necessary.
If the process set passes the test they will meet all their
deadlines; if they fail the test then, at run-time, a process
will miss its deadline (unless the computation time estimations
themselves turn out to be pessimistic). During response time
analysis the test should obtain the measurement and analysis
of Worst-Case Execution Time (WCET) otherwise their may
be unpredictable results but the problem with measurement
is that it is difficult to be sure when the worst case has been
observed. The stumbling block of analysis is that an effective
model of the processor (including caches, pipelines, memory
wait states and so on) must be available. For such analysis we
should need the semantic information. The scope of WCET
is not reveal here, for detail information refer[9]. In the next
section we’ll discuss more parameter which has to consider

during test of real time task scheduling.

V. TASK INTERACTIONS AND BLOCKING

In this section we’ll discuss the Priority Inversion occur
during resource sharing, where the higher priority task to be
suspended by lower priority tasks with unpredictable time. And
when the task is waiting for a lower-priority task, it is said to
be blocked.

A. Priority Inversion
The priority-based model of execution states that a task can

only be preempted by another task of higher priority. However,
scenarios can arise where a lower priority task may indirectly
preempt a higher priority task, in a sense inverting the priorities
of the associated tasks, and violating the priority-based ordering
of execution. This is called ”Priority Inversion”, and usually
occurs when resource sharing is involved.

The rover failure occur on MARS[15] only because of
priority inversion, the failure turned out to be a case of priority
inversion. The higher priority bcdist task was blocked by the
much lower priority ASI/MET task that was holding a shared
resource. The ASI/MET task had acquired this resource and
then been preempted by several of the medium priority tasks.
When the bcsched task was activated, to setup the transactions
for the next 1553 bus cycle, it detected that the bcdist task
had not completed its execution. The resource that caused
this problem was a mutual exclusion semaphore used within
the select() mechanism to control access to the list of file
descriptors that the select() mechanism was to wait on.
As we discuss thoroughly in the literature survey with the
example, here we find some solutions to eliminate priority
inversion[13].

There are a few solutions to the priority-inversion problem
in real-time systems. One is to turn off all system interrupts,
effectively halting thread preemption in the system[14][18],
while critical tasks execute. However, to make this work, you
cannot implement more than two thread priorities, and critical
sections where resources are locked need to be very brief and
tightly controlled.

Another solution is to implement priority ceilings, or priority
boosting[16], where a lower priority thread that acquires a lock
has its priority temporarily increased to help ensure that it
will complete its execution, and release its lock, as quickly as
possible. However, a more practical and less-invasive solution
is to implement the priority inheritance protocol.

With priority inheritance, the system code that implements
resource locking checks to see if a lower priority thread
already owns a lock on the associated resource when a thread
attempts to lock it. If one does, that owning thread’s priority
is temporarily increased to match that of the higher priority
thread attempting to acquire the lock. As a result, the lock
owner (once blocked at lower priority) will execute, release
the lock, and then be restored to its original priority level.

Going back to our original example, priority inheritance
would effectively boost thread >2’s priority to equal that
of thread >1’s, where thread >3’s would continue to block,

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.45158 751

International
2015May5,Issue4,Vol.

ofJournal EngineeringCommunicationandComputerinResearchAdvanced

ISSN
2319-5940:(Print)ISSN
2278-1021(Online):

Figure 8: Solution for Priority Inversion problem

allowing >2 to release its lock sooner. In Fig. 8, you can
see how this allows thread >1 to resume sooner, without the
unbounded latency caused by thread >3’s unknown execution
time. Once the lock on R is released by thread >2, its priority is
restored to its original value and the system executes according
to normal priority-based rules.

B. Cooperative Scheduling

Generally in real time environment a task may be preempted
by hard real time tasks i.e., temporarily suspending a task to
switch to a higher priority task and later resuming. In such
a case Cooperative Scheduling allows tasks to be scheduled
through the use of a background periodic timer that creates a
system tick. The difference is that rather than having priorities
and preemption, the cooperative scheduler only executes tasks
that occur at a time periodic interval. If two tasks are due to
run at the same time, the task higher up in the task list runs
first followed by the second and so on. During Scheduling the
scheduler should use a single interrupt driven timer to keep
track of system time[1][7]. The advantage of using Cooperative
Scheduling are as follows,
• It increases the schedulability of the system, and it can

lead to lower values of computation.
• While preemption no interference will occur during the

last slot of execution.
Let the execution of last block be Fi, then the Eq. 12 becomes,

wn+1
i = Ci +Bmax − Fi +

∑
j∈hp(i)

∈ hp(i)

⌈
wn

i

Tj

⌉
Cj (21)

As we discuss in Algorithm 1, response time Ri = wn
i when

wn
i == wn+1

i . Now if we consider the Cooperative Scheduling
the response time[10] becomes,

Ri = wn
i + Fi (22)

C. Analysis of Jitter

Jitter[17] is nothing but the average difference between the
arrival and actual execution of task. Every time the difference
is pretty different so its very difficult to decide how much
jitter we have to consider?. That’s all scenario we already
discuss in the literature survey, here we analyze an example
which completely cover the concept of jitter. Consider the same
task >1(2, 5) and >2(4, 7), and the response time was already
calculated in the section IV; details as shown in the below
table-II.

TABLE II: Tasks parameters values

Task T D C R

>1 5 5 2 2
>2 7 7 4 7

What happens if there is a difference between invocation
time and execution time? Let us have a look to below fig. 9
and suppose the following happens,
• A task >1 is invoke at t = 0ms, but as delay occurs of
2ms before execution. So the task >1 runs at time t = 2.

• At time t+ 2 task >2 get released but it is preempted by
task >1 because of its higher priority.

• In the fig. 9 it is clearly seen that >2 misses its deadline
and get preempted by >1 with jitter of just 1ms and
invoked at t+ 8. So task >1 finish its execution but task
>2 misses its deadline[18]. task >2 is preempted by two
times because R2 > T1 − J1 i.e., (7 > 5− 1) as discuss
in literature survey of subsection H[19].

Figure 9: Example to show Jitter during execution

VI. CONCLUSION & FUTURE SCOPE

Studying the schedulability test for both dynamic as well
static conditions. We analyze the utilization as primary pre-
dictability to test the schedulability, but as we proved that some
time the test is not optimal. For optimal schedulability we find
response time analysis which gives optimal scehdulability test.
But during analysis while task interaction and resource sharing
find some loop holes like when any higher priority task is get
hold back by lower priority task cause blocking that because of
priority inversion but using priority ceiling we showed that it
can minimize the effect of priority inversion. Also we discuss
cooperative scheduling that showed how it can reduce the
WCET time in some extend. In the last a major issue called
jitter was discuss and proved with example that how it affects
the schedulability test even if the tasks are schedulable and
because of its unpredictability we used to take difference of
two consecutive jitter.

Some more issues are their which affects the schedulability
test and need to consider for optimal scheduling like arbitrary
deadline .i.e, when D > T , non-optimal analysis like including
offset to protect task from missing its deadline. That all
remaining issues are put for future scope.

REFERENCES

[1] Swati Pandit, Rajashree Shedge, Survey of Real Time Scheduling
Algorithms,e-ISSN: 2278-0661, p- ISSN: 2278-8727 Volume 13, Issue 2
(Jul. - Aug. 2013), PP 44-51

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.45158 752

International
2015May5,Issue4,Vol.

ofJournal EngineeringCommunicationandComputerinResearchAdvanced

ISSN
2319-5940:(Print)ISSN
2278-1021(Online):

[2] Comparison of Different Task Scheduling Algorithms in RTOS A Survey
by Dr. D. G. Harkut and Prof. Anuj M. Agrawal, Volume 4, Issue 7,
July 2014 ISSN: 2277 128X.

[3] Preempt a Job or Not in EDF Scheduling of Uniprocessor Systems
by Jinkyu Lee, Member, IEEE, and Kang G. Shin, Life Fellow, IEEE
TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 5, MAY 2014

[4] Rate Monotonic vs EDF Judgment Day by Giorgio C. Buttazzo, Real-
Time Systems, 29, 526, 2005 Springer Science + Business Media, Inc.
Manufactured in The Netherlands

[5] Instantaneous Utilization Based Scheduling Algorithms for Real Time
Systems by Radhakrishna Naik, R.R.Manthalkar, Radhakrishna Naik et
al, / (IJCSIT) International Journal of Computer Science and Information
Technologies, Vol. 2 (2) , 2011, 654-662

[6] Fixed-Priority Multiprocessor Scheduling with Liu Laylands Utilization
Bound by Nan Guanyz, Martin Stiggey, Wang Yiyz and Ge Yu, sponsored
by CoDeR-MP, UPMARC, and NSF of China under Grant No. 60973017
and 60773220.

[7] T. Bijlsma, ”Performance of Real-Time Scheduling on Sensor Nodes”,
July 6, 2006

[8] C.L. LIU AND J. W. LAYLAND, ”Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment” Journal of the Association
for Computing Machinery, Vol 20, No. 1, January 1973 pp. 46-61.

[9] On Improving Real-Time Interrupt Latencies of Hybrid Operating
Systems with Two-Level Hardware Interrupts by Miao Liu, Duo Liu, Yi
Wang, Meng Wang, and Zili Shao, Member IEEE, IEEE Transactions
on Ccomputers, vol. 60, no. 7, july 2011

[10] Feasibility Analysis of Real-Time Periodic tasks with offsets by Rodolfo
Pellizzoni and Giuseppe Lipari, Real-Time Systems, 30, 105128, 2005
Springer Science + Business Media, Inc. Manufactured in The Nether-
lands.

[11] Jian-Jia Chen, Samarjit Chakraborty, Resource Augmentation Bounds
for Approximate Demand Bound Functions, 1052-8725/11 2011 IEEE
DOI 10.1109/RTSS.2011.32

[12] M. Joseph and P. Pandya, ”Finding Response Times in a Real-
Time System”, The Computer Journal (1986) 29 (5): 390-395. doi:
10.1093/comjnl/29.5.390 2015

[13] Ozalp Babaoglu, Keith Marzullo and Fred B. Schneider, ”A Formalization
of Priority Inversion”, Real-Time Systems, 5, 285-303 (1993)

[14] Tarek Helmy & Syed S. Jafri, Avoidance of Priority Inversion in Real
Time Systems Based on Resource Restoration,International Journal of
Computer Science Applications, Vol. III, No. I, pp. 40 - 50

[15] A. Datum, J. Reisinger, W. Schwabl, and H. Kopetz, The Real-Time
Operating System of MARS, Vienna, 1988-10-13

[16] Bruno Dutertre, ”The Priority Ceiling Protocol Formalization and
Analysis Using PVS”, October, 1999

[17] Zvika Brakerski and Boaz Patt-Shamir, ”Jitter-Approximation Tradeoff for
Periodic Scheduling”, Proceedings of the 18th International Parallel and
Distributed Processing Symposium (IPDPS04), 0-7695-2132-0/04/2004.

[18] Preemptively Scheduling Hard-Real-Time Sporadic Tasks on One Proces-
sor by Sanjoy K. Baruah, pp-182-190, Orlando, Florida December 1990
IEEE. Aloysius K. Mok, and Louis E. Rosier IEEE Computer Society
Press.

[19] M. Piaggio, A. Sgorbissa, and R. Zaccaria, Pre-emptive versus non-
preemptive real time scheduling in intelligentmobile robotics, J. Exp.
Theor. Artif. Intell., vol. 12, no. 2, pp. 235245, 2000.

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.45158 753

International EngineeringAdvanced Research in Computer and CommunicationJournal of
2015Vol. 4, Issue 5, May

ISSN
2319-5940:(Print)ISSN
2278-1021(Online):

