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Abstract: For underwater measurements, the noise is very high, turning rate and speed of the platform is low when 

compared with the missiles in air. In the present paper, Adaptive filters, Extended Kalman filter (EKF) and Modified 

Gain Extended Kalman Filter (MGEKF), are applied to underwater active target tracking using angles only 

measurements. Monte-Carlo simulated results for several typical scenarios with Range, Speed and Coarse Errors in 

tracking using MATLAB software are presented. From the results it is concluded that this MGEKF algorithm is 

suitable for underwater active target tracking applications. 
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I. INTRODUCTION 
[[ 

An observer, in underwater environment, monitors noisy 
SONAR bearings and elevations from a radiating target, 
these raw bearing and elevation measurements are used to 
get range, course, bearing, elevation and speed of the 
target. Input bearing and elevation measurements are 
nonlinear, making whole process nonlinear. The modified 
gain extended kalman filter (MGEKF) developed by Song 
and Speyer [1], was the successful contribution for angles 
only passive target tracking applications in air. This 
MGEKF algorithm was further improved by P.J. 
Galkowiski and M.A. Eslam [2].  In this paper, this 
improved MGEKF and Extended Kalman Filter (EKF) 
algorithms are explored for underwater applications, 
specifically in Active target tracking, when observer is 
observing from stationary location. As the noise in the 
measurements is very high, turning rate of the platforms is 
low and speed of the platforms is also low when compared 
with the missiles in air, performance of the EKF and 
MGEKF for such type of environment can be observed 
here.Next sections will deals with mathematical modeling 
of Range, Bearing and Elevation measurements, 
implementation of the EKF and MGEKF Filter for several 
typical scenarios and results obtained in simulation are 
presented. 

II. MATHEMETICAL MODELLING 

Let observer be at the origin and initially the target be at 
point P, as shown in Fig –1. 

The initial observation parameters Range, bearing and 
elevation are obtained are noise corrupted. 

 

 

 

Fig.1. A typical target observer geometry 

The measurement vector, Z, is written as 
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Let the state vector be 

T
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Where
.

x ,
.

y ,
.

z and xr ,
yr , zr   are velocities and range 

measurements of target in x, y and z directions 

respectively. 

The measurement matrix H is given by 
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III. EXTENDED KALMAN FILTER 
 

       The following table explains the structure of 

Continuous-Discrete Extended Kalman Filter [5] 
 

TABLE-1 

 
 

IV. MODIFIED GAIN EXTENDED KALMAN FILTER 

 

The above mentioned improved algorithm is implemented 
using MGEKF. 

Song and Speyer define a modified gain extended Kalman 
filter (MGEKF) by the following set of equations [2]: 

Time update (Prediction equations) 
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Measurements update (correction) 
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Where 

i  = transition matrix at time i. 



iX  = state estimate at time i before update. 

         



iX = state estimate at time i after update. 

    
ik = filter gain at time i. 

    iz = measurement at time i. 

         )(
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ii Xh  = predicted measurement based on state  

                         estimate  at time i before  update. 

         


iP = state covariance matrix at time i before update. 

         


iP = state covariance matrix at time i after update. 

         iQ = process noise matrix at time i. 

             = measurement noise covariance matrix. 
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          I = Identity Matrix. 
 

Calculation to get Modified gain parameter ‘g’: 
 

Horizontal plane and bearing measurements is given by 

[4] 
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Elevation measurement is given by [4] 

 










































2

)(
cos

2

)(
cos)(

2

)(
sin)(

cos
)sin(

BB

BB
rr

BB
rr

r

yyxx


)(
sin 


 zz rr

r

  

(10)                                   

Using (4) and (5) from [4] And from range error for 

modified gain we will get modified gain as follows 
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As true bearing and range are not available, it is replaced 

by measured bearing and range respectively in (11) and 

obtained (12) as follows. 
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Therefore g is given by 
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Considering     ̇    ̇  ̇   also (velocities in three directions),  

Modified gain „g’ is given by 
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V. IMPLEMENTATION OF THE ALGORITHMS 

 

EKF and MGEKF for underwater active target tracking as 
follows. As only range, bearing and elevation 
measurements are available, the velocity components of 
the target are assumed to be each 10 m/sec which is very 
close to the realistic speed of the vehicles in underwater 
(scenario is given in table 1). The range of the day, , say 
15000 meters, is utilized in the calculation of initial 
position estimate of the target is as  

X(0|0) =   [10    ,   10  ,   10    ,   15000.sin Bm (0).sin  

m(0) , 

          15000.sin   m(0).cosBm(0)  ,   15000.cos   m(0) ]
T 

Where Bm(0) and φm(0) are initial bearing and 

elevation  measurements.  
 

VI. SIMULATION RESULTS 
 

All raw Range, bearings and elevation measurements are 
corrupted by additive zero mean Gaussian noise with a 
r.m.s level of 0.3 degree. Corresponding to a tactical 
scenario is given in table-2  
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TABLE -2 

Parameters 
Scenario-
1 

Scenario-
2 

Scenario-
3 

Initial Range (m) 20000 20000 
2000

0 

Initial Bearing 
(deg) 

0.5 0.5 0.5 

Initial elevation 
(deg) 

45 45 45 

RMS error in 
bearing and 
elevation (deg) 

0.33 0.33 5 

Target Speed 
(m/s) 

10 20.6 10 

Target Course 
(deg) 

140 180 140 

Above scenario is applied, when observer is stationary. 

Scenario-1: 

 
Fig.2. Range error 

 

 
Fig.3. speed error 

 

Fig.4. course error 

From the above results the required accuracy obtained for 
stationary observer is, 50 seconds onwards for both EKF 
and MGEKF, in range, velocity and course measurements. 
However MGEKF providing greater accuracy than 
EKF.As for the speed in MGEKF, it is almost 20%of its 
true speed, which is acceptable in underwater scenario. So 
this MGEKF algorithm seems to be very much useful for 
underwater active target tracking when observer is 
stationary, for a moving target. 

Scenario-2: 

 
 

Fig.5. Range error 
 

 

 
  

Fig.6. speed error 

 

Fig.7. course error 

This scenario is when target is attained its practical 
maximum speed in underwater, From the above results the 
required accuracy is 30 seconds onwards for MGEKF, 
where as for EKF, even range accuracy comes earlier but 
speed and course will take more time to get minimized 
error compared to MGEKF. 
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Scenario -3: 

 
Fig.8. Range error  

 
Fig.9. speed error  

 

 
Fig.10. course error 

 

In this scenario RMS error is increased to 5 degrees. From 
the results EKF never converges, whereas MGEKF is 
converged for active target tracking and required accuracy 
will be 100 seconds onwards due to course error will take 
time to minimize to zero. 
 

VII. CONCLUSION 
 

The performance of the EKF and MGEKF algorithms are 
presented for a normal scenario and it is observed that the 
solution with required accuracy is obtained approximately 
at 50 seconds (less than a minute ) for stationary observer, 
and from other two scenarios, The monte-carlo simulation 
results confirm that MGEKF is suitable for Active target 
tracking in underwater compared to EKF. 
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