
ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4815 68

Deadline, Budget and Mobile Context Platform

for Mobile Cloud Apps

Gadige Radha
1
, G Divya Zion

2

M.Tech, CSE, Ravindra College of Engineering for Women, Kurnool, India
1

Asst. Professor (M.Tech), CSE, Ravindra College of Engineering for Women, Kurnool, India
2

Abstract: Scientific applications require large computing power, traditionally exceeding the amount that is available

within the premises of a single institution. Therefore, clouds can be used to provide extra resources whenever required.

For this vision to be achieved, however, requires both policies defining when and how cloud resources are allocated to

applications and a platform implementing not only these policies but also the whole software stack supporting

management of applications and resources. Aneka is a cloud application platform capable of provisioning resources

obtained from a variety of sources, including private and public clouds, clusters, grids, and desktops grids. In this

paper, we present Aneka‘s deadline driven provisioning mechanism, which is responsible for supporting quality of

service (QoS)-aware execution of scientific applications in hybrid clouds composed of resources obtained from a

variety of sources. Experimental results evaluating such a mechanism show that Aneka is able to efficiently allocate

resources from different sources in order to reduce application execution times.

Keywords: Mobile Cloud Apps, Cloud Computing, IaaS, PaaS, SaaS, Mobile Computing, Cloud Providers, Cloud

Services, Aneka Cloud Platform.

I. INTRODUCTION

1.1 Cloud computing

Cloud computing is a multi-tenant internet based

computing, that relies on sharing computing resources for

handling the applications, rather running on local servers

or personal devices. In cloud computing, the word cloud

(also phrased as "the cloud") is used as a metaphor for "the

Internet," so the phrase cloud computing means "a type of

Internet-based computing," where different services —

such as servers, storage and applications —are delivered to

an organization's computers and devices using the network

as backbone. This is a model, for enabling convenient and

on demand network access of a shared pool of

configurable computing resources (e.g. Network, server,

storage, applications and services), which are be

dynamically scalable and rapidly provisioned without

having the service provider interaction.

The goal of cloud computing is to apply traditional

supercomputing, or high-performance computing power,

normally used by military and research facilities, to

perform tens of trillions of computations per second. In

consumer-oriented applications such as financial

portfolios, to deliver personalized information, to provide

data storage or to power consumption, and offer services

like online computer games etc.

One of the key characteristics of cloud computing is the

scalability, which refers, the ability of a system to adopt

the dynamically growing needs. Cloud technology allows

for the automatic provision and de provision of resource as

and when it is necessary, thus ensuring that the level of

resource available is closely matched with the current

demand as possible, as differentiating itself from

conventional models, where resources are delivered in

blocks (e.g., individual servers, downloaded software

applications), usually with fixed capacities and upfront

costs. With cloud computing, the end user usually pays

only for the resource they use and so avoids the

inefficiencies and expense of any unused capacity.

However, the advantages of cloud computing are not only

limited for its flexibility, but also benefit (in varying

degrees) from the economies of scale created by setting up

services en masse with the same computing environments,

and the reliability of physically hosting services across

multiple servers where individual system failures do not

affect the continuity of the service.

1.1.1 Architecture

Cloud computing architecture refers to the components

and subcomponents required for cloud computing. These

components typically consist of a front end platform (fat

client, thin client, mobile device), back end platforms

(servers, storage), a cloud based delivery, and a network

(Internet, Intranet, Intercloud). Combined, these

components make up cloud computing architecture.

Cloud services means services made available to users on

demand via the Internet from a cloud computing provider's

servers as opposed to being provided from a company's

own on-premises servers. Cloud services are designed to

provide easy, scalable access to applications, resources

and services, and are fully managed by a cloud services

provider.

A cloud service can dynamically scale to meet the needs

of its users, and because the service provider supplies the

hardware and software necessary for the service, there‘s

no need for a company to provision or deploy its own

resources or allocate IT staff to manage. The examples of

cloud services include online data storage and backup

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4815 69

solutions, Web-based e-mail services, hosted office suites

and document collaboration services, database processing,

managed technical support services and more.

Cloud computing providers offer their services according

to several fundamental models. Cloud computing

architecture is shown in Figure 1.1. These services are

broadly divided into three categories: Infrastructure-as-a-

Service (IaaS), Platform-as-a-Service (PaaS), and

Software-as-a-Service (SaaS).

Fig1.1 Cloud computing architecture

Infrastructure as a Service (IaaS)

IaaS is one of three main categories of cloud computing

services, alongside Software as a Service (SaaS) and

Platform as a Service (PaaS).IaaS is a way of delivering

Cloud Computing infrastructure – servers, storage,

network and operating systems – as an on-demand service.

Rather than purchasing servers, software, datacenter space

or network equipment, clients instead buy those resources

as a fully outsourced service on demand. IaaS providers

also host users' applications and handle tasks including

system maintenance, backup and resiliency planning. It

also provides virtualized computing resources over the

Internet. IaaS platforms offer highly scalable resources

that can be adjusted on-demand. This makes IaaS well-

suited for workloads that are temporary, experimental or

change unexpectedly.

Other characteristics of IaaS environments include the

automation of administrative tasks, dynamic scaling,

desktop virtualization and policy-based services. IaaS

customers pay on a per-use basis, typically by the hour,

week or month. Some providers also charge customers

based on the amount of virtual machine space they use.

This pay-as-you-go model eliminates the capital expense

of deploying in-house hardware and software. However,

users should monitor their IaaS environments closely to

avoid being charged for unauthorized services.

Characteristics of IaaS:

As with the two previous sections, SaaS and PaaS, IaaS is

a rapidly developing field. That said there are some core

characteristics which describe what IaaS is. IaaS is

generally accepted to comply with the following

 Resources are distributed as a service.

 Allows for dynamic scaling.

 Has a variable cost, utility pricing model.

 Generally includes multiple users on a single piece of

hardware.

Platform as a service (PaaS):

In the PaaS models, cloud providers deliver a computing

platform, typically including operating system,

programming language execution environment, database,

and web server. Application developers can develop and

run their software solutions on a cloud platform without

the cost and complexity of buying and managing the

underlying hardware and software layers.

PaaS is analogous to SaaS except that, rather than being

software delivered over the web, it is a platform for the

creation of software, delivered over the web. PaaS does

not typically replace a business' entire infrastructure.

Instead, a business relies on PaaS providers for key

services, such as Java development or application hosting.

For example, deploying a typical business tool locally

might require an IT team to buy and install hardware,

operating systems, middleware (such as databases, Web

servers and so on) the actual application, define user

access or security, and then add the application to existing

systems management or application performance

monitoring (APM) tools. IT teams must then maintain all

of these resources over time. A PaaS provider, however,

supports all the underlying computing and software; users

only need to log in and start using the platform – usually

through a Web browser interface.

Most PaaS platforms are geared toward software

development, and they offer developers several

advantages. For example, PaaS allows developers to

frequently change or upgrade operating system features. It

also helps development teams collaborate on projects.

Characteristics of PaaS:

There are a number of different takes on what constitutes

PaaS but some basic characteristics include

 Services to develop, test, deploy, host and maintain

applications in the same integrated development

environment. All the varying services needed to fulfill

the application development process.

 Web based user interface creation tools help to create,

modify, test and deploy different UI scenarios.

 Multi-tenant architecture where multiple concurrent

users utilize the same development application.

 Built in scalability of deployed software including load

balancing and failover.

 Integration with web services and databases via

common standards.

 Supports for development team collaboration – some

PaaS solutions include project planning and

communication tools.

 Tools to handle billing and subscription management.

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4815 70

Software as a service (SaaS):

Software as a service (SaaS), users are provided access to

application software and databases. Cloud providers

manage the infrastructure and platforms that run the

applications. SaaS is sometimes referred to as "on-demand

software" and is usually priced on a pay-per-use basis or

using a subscription fee.

In the SaaS model, cloud providers install and operate

application software in the cloud and cloud users access

the software from cloud clients. Cloud users do not

manage the cloud infrastructure and platform where the

application runs. This eliminates the need to install and

run the application on the cloud user's own computers,

which simplifies maintenance and support. Cloud

applications are different from other applications in their

scalability—which can be achieved by cloning tasks onto

multiple virtual machines at run-time to meet changing

work demand. Load balancers distribute the work over the

set of virtual machines. This process is transparent to the

cloud user, who sees only a single access point. To

accommodate a large number of cloud users, cloud

applications can be multitenant, that is, any machine

serves more than one cloud user organization. The pricing

model for SaaS applications is typically a monthly or

yearly flat fee per user, so price is scalable and adjustable

if users are added or removed at any point. The traditional

model of software distribution, in which software is

purchased for and installed on personal computers, is

sometimes referred to as software as a product.

Characteristics of SaaS:

Like other forms of Cloud Computing, it is important to

ensure that solutions sold as SaaS in fact comply with

generally accepted definitions of Cloud Computing. Some

defining characteristics of SaaS include

 Web access to commercial software.

 Software is managed from a central location.

 Software delivered in a ―one to many‖ model.

 Users not required handling software upgrades and

patches.

 Application Programming Interfaces (APIs) allow for

integration between different pieces of software.

1.1.2 Deployment Models – Private, Public, Hybrid

A cloud deployment model represents a specific type of

cloud environment, primarily distinguished by ownership,

size, and access. There are four types of cloud models

available in the market namely

 Public Cloud

 private Cloud

 Hybrid Cloud

Public Cloud

A public cloud is a publicly accessible cloud environment

owned by a third-party cloud provider. The cloud

infrastructure is made available to the general public or a

large industry group and is owned by an organization

selling cloud services and the resources are offered as a

service, usually over an internet connection, for a pay-per-

usage fee. Users can scale their use on demand and do not

need to purchase hardware to use the service. Public cloud

providers manage the infrastructure and pool resources

into the capacity required by its users. Public clouds are

available to the general public or large organizations, and

are owned by a third party organization that offers the

cloud service. A public cloud is hosted on the internet and

designed to be used by any user with an internet

connection to provide a similar range of capabilities and

services. Public cloud users are typically residential users

and connect to the public internet through an internet

service provider‘s network.

The advantages of public cloud include:

 Data availability and continuous uptime

 24/7 technical expertise

 On demand scalability

 Easy and inexpensive setup

 No wasted resources

Drawbacks of public cloud:

 Data security

Fig1.2 Public Cloud

Figure 1.2 shows a partial view of the public cloud

landscape, highlighting some of the primary vendors in the

marketplace.

Private Cloud

A private cloud is owned by a single organization. Private

clouds enable an organization to use cloud computing

technology as a means of centralizing access to IT

resources by different parts, locations, or departments of

the organization. When a private cloud exists as a

controlled environment, the problems described in the

Risks and Challenges section do not tend to apply.

The use of a private cloud can change how organizational

and trust boundaries are defined and applied. The actual

administration of a private cloud environment may be

carried out by internal or outsourced staff.

With a private cloud, the same organization is technically

both the cloud consumer and cloud provider (Figure 1). In

order to differentiate these roles:

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4815 71

 a separate organizational department typically assumes

the responsibility for provisioning the cloud (and

therefore assumes the cloud provider role)

 departments requiring access to the private cloud

assume the cloud consumer role

It is important to use the terms "on-premise" and "cloud-

based" correctly within the context of a private cloud.

Even though the private cloud may physically reside on

the organization's premises, IT resources it hosts are still

considered "cloud-based" as long as they are made

remotely accessible to cloud consumers. IT resources

hosted outside of the private cloud by the departments

acting as cloud consumers are therefore considered "on-

premise" in relation to the private cloud-based IT

resources.

Fig1.3 Private Cloud

Figure 1.3 shows a cloud service consumer in the

organization's on-premise environment accesses a cloud

service hosted on the same organization's private cloud via

a virtual private network. The cloud infrastructure is

operated solely for an organization. It may be managed by

the organization or a third party and may exist on premise

or off premise. The cloud infrastructure is accessed only

by the members of the organization and/or by granted third

parties. The purpose is not to offer cloud services to the

general public, but to use it within the organization. For

example an enterprise that wants to make consumer data

available to their different stores. A private cloud is hosted

in the data center of a company and provides its services

only to users inside that company or its partners. A private

cloud provides more security than public clouds, and cost

saving in case it utilizes otherwise unused capacities in an

already existing data center. The major drawback of

private cloud is its higher cost. When comparisons are

made with public cloud; the cost of purchasing equipment,

software and staffing often results in higher costs to an

organization having their own private.

Hybrid Cloud

Hybrid cloud infrastructure is a composition of two or

more clouds that are unique entities, but at the same time

are bound together by standardized or proprietary

technology that enables data and application portability.

Hybrid clouds offer the cost and scale benefits of public

clouds, while also offering the security and control of

private clouds.

Hybrid deployment architectures can be complex and

challenging to create and maintain due to the potential

disparity in cloud environments and the fact that

management responsibilities are typically split between

the private cloud provider organization and the public

cloud provider.

Fig1.4 Hybrid Cloud

Figure1.4 shows an organization using a hybrid cloud

architecture that utilizes both a private and public cloud.

1.1.3 Resource Intensive Applications in Clouds

Some resource intensive applications that demand lot of

computing, storage, memory and energy power, cannot be

run on the mobile devices, since these devices have

limitations in the CPU, RAM, storage and batter /power

consumptions. To overcome this, we need to design a

platform for enriching the user experience while

consuming fewer resources on the mobile devices. To

address this problem, Aneka offers Mobile Client Library

as platform services; for the cloud based mobile

applications development.

Aneka Client Library that encapsulates the processes of

connecting to cloud, serializing and deserializing

messages, sending messages, and collecting their

responses. Thus, the effort and complexity of developing a

mobile cloud application is decreased. In addition, the

library was designed to leverage the Aneka PaaS solution,

which provides transparently the resource provisioning

and job scheduling services and encapsulates different

cloud providers Web APIs. The user has no concern in

allocating or deallocating virtual machines or distributing

the jobs among the resources.

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4815 72

1.1.4 Dynamic Resource Provisioning for Resource

Intensive Applications

The application services hosted under Cloud computing

model have complex provisioning, composition,

configuration, and deployment requirements. Evaluating

the performance of Cloud provisioning policies,

application workload models, and resources performance

models in a repeatable manner under varying system and

user configurations and requirements is difficult to

achieve. Due to missing deadlines, the jobs are being

rejected. The rejection rate increases. We want to propose

on-demand provisioning in order to maintain QoS we need

to give extra resource to the job. Mapping performance

requirements to the underlying resources in the cloud is

challenging. Resource under-provisioning will inevitably

hurt performance and resource over-provisioning can

result in idle instances, thereby incurring unnecessary

costs. There is an increasing demand to efficient

management of large-scale application under cost and

deadline constrained. To counter such lack of solutions for

cost and deadline constrained dynamic resource

provisioning and scheduling, to present a coordinated

dynamic resource provisioning and scheduling approach

that is able to maximize no. of completed execution

application within their deadlines and budget.

1.2 Mobile Cloud Applications – Resource Intensive

Mobile Cloud Applications are very similar to Web-based

applications. The main similarity is that both mobile cloud

apps and Web apps run on servers external to the mobile

device and require the use of a browser on the mobile

device to display and then use the app user interface (UI).

In addition, they both are targeted for multiple mobile

devices versus a single mobile device.

Mobile cloud apps do not need to be downloaded and

installed on mobile devices. Users view the mobile cloud

app UI in a browser window on the remote device. An

Internet connection is required to use mobile apps running

on a mobile cloud.

Mobile applications may be bonded to cloud resources by

following a delegation or offloading criteria. In a

delegation model, a mobile device utilizes the cloud to

perform resource-intensive operations which are time-

consuming, programmable and parallelizable among

multiple servers (e.g. based on distributed frameworks like

Map Reduce), and computationally unfeasible for offline

devices. From a delegation perspective, hybrid cloud and

cloud interoperability are essential for mobile scenarios in

order to foster the de-coupling of the handset to a specific

cloud vendor, to enrich the mobile applications with the

variety of cloud services provided on the Web and to

create new business opportunities and alliances. However,

developing a mobile cloud application in this model

involves adapting different Web APIs from different cloud

vendors within a native mobile platform. We have studied

the delegation of mobile tasks to hybrid clouds in detail

and have developed a Mobile Cloud Middleware

framework (MCM) that addresses the issues processing,

and dynamic allocation of cloud infrastructure of

interoperability across multiple clouds, transparent

delegation and asynchronous execution of mobile tasks

that require resource intensive.

Mobile applications leverage this IT architecture to

generate the following advantages:

 Extended battery life

 Improvement in data storage capacity and processing

power

 Improved synchronization of data due to ―store in one

place, access from anywhere‖ policy

 Improved reliability and scalability

 Ease of integration

1.2.1 Mobile computing in Clouds

Mobile Cloud Computing (MCC) is the combination

of cloud computing, mobile computing and wireless

networks to bring rich computational resources to mobile

users, network operators, as well as cloud computing

providers. The ultimate goal of MCC is to enable

execution of rich mobile applications on a plethora of

mobile devices, with a rich user experience. MCC

provides business opportunities for mobile network

operators as well as cloud providers.

Mobile Computing is a technology that allows

transmission of data, voice and video via a computer or

any other wireless enabled device without having to be

connected to a fixed physical link. Mobile computing

involves mobile communication, mobile hardware, and

mobile software. Communication issues include adhoc and

infrastructure network as well as communication

properties, protocols, data formats and concrete

technologies. Hardware includes devices or device

components. Mobile software deals with the

characteristics and requirements of mobile applications.

Mobile devices are constrained by their processing power,

battery life and storage. However, cloud computing

provides an illusion of infinite computing resources.

Mobile cloud computing is a new platform combining the

mobile devices and cloud computing to create a new

infrastructure, whereby cloud performs the heavy lifting of

computing-intensive tasks and storing massive amounts of

data processing and data storage happen outside of mobile

devices.

1.2.2 Mobile Application development

Mobile application development, also known as mobile

apps, has become a significant mobile content market.

Mobile application development is a term used to denote

the act or process by which application

software is developed for handheld devices, such

as personal digital assistants, enterprise digital

assistants or mobile phones. These applications can be pre-

installed on phones during manufacturing platforms, or

delivered as web applications using server-side or client-

side processing (e.g. JavaScript) to provide an

"application-like" experience within a Web browser.

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4815 73

Application software developers also have to consider a

lengthy array of screen sizes, hardware specifications and

configurations because of intense competition in mobile

software and changes within each of the platforms. Mobile

app development has been steadily growing, both in terms

of revenues and jobs created.

As part of the development process, Mobile User

Interface (UI) Design is also an essential in the creation of

mobile apps. Mobile UI considers constraints & contexts,

screen, input and mobility as outlines for design. The user

is often the focus of interaction with their device, and the

interface entails components of both hardware and

software. User input allows for the users to manipulate a

system, and device's output allows the system to indicate

the effects of the users' manipulation. Mobile UI design

constraints include limited attention and form factors, such

as a mobile device's screen size for a user's hand(s).

Mobile UI contexts signal cues from user activity, such as

location and scheduling that can be shown from user

interactions within a mobile application. Overall, mobile

UI design's goal is primarily for an understandable, user-

friendly interface. The UI of mobile apps should: consider

users' limited attention, minimize keystrokes, and be task-

oriented with a minimum set of functions. This

functionality is supported by Mobile enterprise application

platforms or integrated development environments (IDEs).

Front-end development tools are focused on the user

interface and user experience (UI/UX) and provide the

following capabilities

 UI design tools

 SDKs to access device features

 Cross-platform accommodations/support

1. Android

Android is the name of the mobile operating system made

by American company; Google. It most commonly comes

installed on a variety of smartphones and tablets from a

host of manufacturers offering users access to Google‘s

own services like Search, YouTube, Maps, Gmail and

more. The OS uses touch inputs that loosely correspond to

real-world actions, like swiping, tapping, pinching, and

reverse pinching to manipulate on-screen objects, and a

virtual keyboard.

Android is popular with technology companies which

require a ready-made, low-cost and customizable

operating system for high-tech devices. Android's open

nature has encouraged a large community of developers

and enthusiasts to use the open-source code as a

foundation for community-driven projects, which add new

features for advanced users or bring Android to devices

which were officially, released running other operating

systems. The operating system's success has made it a

target for patent litigation as part of the so-called "smart

phone wars" between technology companies.

A list of features in the Android operating system

 Messaging.

 Web browser.

 Voice-based features.

 Multi-touch.

 Multitasking.

 Screen capture.

 Video calling.

 Multiple language support.

 Accessibility

Android supports connectivity technologies

including GSM/EDGE, WiFi, Bluetooth, LTE, CDMA, E

V-DO, UMTS, NFC,IDEN and WiMAX.Android devices

can include still/video cameras, touch screens, GPS,

accelerometers, gyroscopes, barometers, magnetometers,

dedicated gaming controls, proximity and pressure

sensors, thermometers, accelerated 2D bit blits (with

hardware orientation, scaling, pixel format conversion)

and accelerated 3D graphics.

2. IOS

IOS (originally iPhone OS) is a mobile operating

system created and developed by Apple Inc. and

distributed exclusively for Apple hardware. It is the

operating system that presently powers many of the

company's mobile devices, including the iPhone, iPad,

and iPod touch. The user interface of iOS is based on the

concept of direct manipulation, using multi-touch gestures.

Interface control elements consist of sliders, switches, and

buttons.

Other iOS features include:

 Integrated search support enables simultaneous search

through files, media, applications and email.

 Gesture recognition supports, for example, shaking the

device to undo the most recent action.

 Google Maps direction services.

 Push email.

 Safari mobile browser.

 Integrated camera and video.

 Integrated media player.

 Direct access to the Apple Store‘s catalogue of

applications, music, podcasts, television shows and

movies.

 Compatibility with Apple‘s cloud service, iCloud.

3. Windows:

Windows Mobile is a family of mobile operating

systems developed by Microsoft for smart

phones and Pocket PCs. Most versions of Windows

Mobile have a standard set of features, such

as multitasking and the ability to navigate a file system

similar to that of Windows 9x and Windows NT, including

support for many of the same file types. Similarly to its

Windows 9x, it comes bundled with a set of applications

that perform basic tasks. Windows Mobile is based on

the Windows CE kernel and first appeared as the Pocket

PC 2000 operating system. It is supplied with a suite of

basic applications developed with the

Microsoft Windows API, and is designed to have features

and appearance somewhat similar to desktop versions

of Windows.

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4815 74

Several versions of Windows are-

 Windows CE

 Pocket PC 2000

 Pocket PC 2002

 Windows Mobile 2003

 Windows Mobile 2003 SE

 Windows Mobile 5

 Windows Mobile 6

 Windows Mobile 6.1

 Windows Mobile 6.5

 Windows Embedded Handheld 6.5

 Smartphones

There are three main versions of Windows Mobile for

various hardware devices:

 Windows Mobile Professional runs on smartphones with

touch screens.

 Windows Mobile Standard runs on mobile phones

without touch screen.

 Windows Mobile Classic which runs on personal digital

assistant or pocket PCs.

4. Video Streaming

Streaming video is content sent in compressed form over

the Internet and displayed by the viewer in real time. With

streaming video or streaming media, a Web user does not

have to wait to download a file to play it. Instead, the

media is sent in a continuous stream of data and is played

as it arrives. The user needs a player, which is a special

program that uncompress and sends video data to the

display and audio data to speakers. A player can be either

an integral part of a browser or downloaded from the

software maker's Web site. Major streaming video and

streaming media technologies include Real System G2

from Real Network, Microsoft Windows Media

Technologies (including its NetShow Services and Theater

Server), and VDO. Microsoft's approach uses the

standard MPEG compression algorithm for video.

Streaming video is usually sent from prerecorded video

files, but can be distributed as part of a live broadcast

"feed." In a live broadcast, the video signal is converted

into a compressed digital signal and transmitted from a

special Web server that is able to do multicast, sending the

same file to multiple users at the same time. Mobile video

comes in several forms including 3GPP, MPEG-

4, RTSP and Flash Lite.

1.3 Cloud Platform for Mobile App development

1.3.1 Aneka Platform as a Service

Aneka is a Manjra soft product which plays the role of

Application Platform as a Service for Cloud Computing.

MANJRASOFT Pvt. Ltd. Is one of best companies that

works on developing future technologies for saving time

and money? ANEKA is one of its first cloud computing

technologies that work on developing clouds using .NET

framework. MANJRASOFT besides working on future

technologies also develops software compatible with

distributed networks across multiple servers. It manages

resources in cloud without violating service level

agreements (SLA‘s) thus enabling less cost, application

scheduling etc.

The word ANEKA means in many ways i.e. it has

multiple programming models, multiple scheduling

strategies, multiple authentication models and distributive

environment for operating system. The main aim of

ANEKA is to support open-ended set of abstractions and

features for distributed computing and deployment

scenarios. Aneka acts as a framework for building

customized applications and deploying them on either

public or private Clouds. One of the key features of Aneka

is its support for provisioning resources on different public

Cloud providers such as Amazon EC2, Windows Azure

and Go Grid.

Aneka works on RAD (Rapid Application Development)

environment to manage interconnected networks of

systems. The word market oriented in context of ANEKA

specifies that it is possible to build, schedule, monitor

results by giving some money for using IT services like

Quality of Service (QoS) in both public as well as private

clouds. ANEKA is available at PaaS in cloud

environment. It means that it provides programming

application programming interfaces (API‘s) for developing

distributed applications and virtual execution environment

in which the applications developed as per API can be

made to run.

Features of ANEKA

There are several features of ANEKA that helps in

development of enabling cloud based environment for

faster accessing of resources.

 It consists of RAD tools and framework.

 It combines with multiple virtual machines or existing

machines to provide results of applications

 It uses provision interface thus following parameters

like Quality of Service (QoS) and SLA (service level

agreements)

 It supports multiple programming environments

 In this multiple applications can be executed

simultaneously which increases utilization of resources.

 ANEKA means many forms. So, it has ability to provide

different ways of working in distributed network with

the help of programming models like Task Model, Map

Reduce model and many more

1.3.2 Mobile App development in Aneka for Resource

Intensive Applications

The latest developments in mobile devices technology

have made smartphones as the future computing and

service access devices. Users expect to run computational

intensive applications on Smart Mobile Devices. Mobile

device capabilities and increasing battery lifetime through

the extension of cloud services and resources, resulting in

an enhanced user experience. However, the development

of a mobile cloud application is challenging because it

involves dealing with different cloud providers and mobile

platforms. To tackle the above issues, mobile cloud

architecture is proposed to asynchronously delegate

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4815 75

resource-intensive mobile tasks in order to handle the

mobile device load and, consequently, extend the battery

life. We demonstrate this capability by developing an

interface that supports the delegation of heavy tasks from

mobile apps running under the Android mobile platform to

a cloud computing environment managed by the Aneka

Cloud Application Platform.

The Aneka Mobile Client Library encapsulates the

processes of communicating to cloud is provided, thus, the

effort and complexity of developing a mobile cloud

application is decreased. Aneka Mobile Client Library for

Android platform that encapsulates the processes of

connecting to cloud, serializing and de serializing

messages, sending messages, and collecting their

responses. Thus, the effort and complexity of developing a

mobile cloud application is decreased. In addition, the

library was designed to leverage the Aneka Cloud

Application Platform, which provides transparent resource

provisioning and job scheduling services and encapsulates

different cloud providers Web APIs.

1.3.3 Deadline and budget based provisioning in

Clouds for Resource Intensive Applications

Clouds can be used to provide extra resources whenever

required in order to achieve it requires both policies

defining when and how cloud resources are allocated to

applications and a platform implementing not only these

policies but also the whole software stack supporting

management of applications and resources. Aneka is a

cloud application platform capable of provisioning

resources obtained from a variety of sources, including

private and public clouds, clusters, grids, and desktops

grids. Aneka implement deadline driven provisioning

mechanism, which is responsible for supporting quality of

service (QoS)-aware for execution of scientific

applications. This mechanism shows that Aneka is able to

efficiently allocate resources from different sources in

order to reduce application execution times.

When the application resources may be insufficient in

certain periods of time which can lead to long waiting

times for utilization of these resources, or the available

resources for one application may be insufficient to

complete the application before its deadline. In these

cases, scientific resources may be complemented by cloud

resources. Moreover, by leasing cloud computing services

on a pay-per-use basis, even can easily access a large

number of resources, which are utilized and paid for only

for the time they are actually utilized. To achieve this a

middleware supporting provisioning of resources from

both local infrastructures and public clouds is required, so

that applications can transparently migrate to public virtual

infrastructures. Aneka is a software platform for building

and managing a wide range of distributed systems,

allowing applications to receive resources provisioned

from different sources, such as desktop grids, scientific

grids, clusters, private clouds, and public clouds managed

transparently by Aneka.

Aneka platform, which enables not only utilization of

clouds, but also utilization of virtually any kind of

computational resource available for applications,

including idle desktops from local networks, clusters, and

grids which present deadline-driven provisioning of

resources for scientific applications.

Deadline-driven resource provisioning algorithm

Algorithm: Deadline-driven provisioning in Aneka.

1. for each request with QoS constraints do

2. resources available resources for the application;

3. pendingTasks←number of tasks in the queue;

4. eft ← pending Tasks × average Task Runtime;

 Resources

5. if eft> application Time Remaining then

6. extra Resources ← pending Tasks × average Task

Runtime application Time Remaining

7. // invokes Algorithm 2 for resource provisioning

8. Provisioner.selectResources(applicationId, extra

Resources);

9. else

10. to Release ← 0;

11. if pending Tasks< resources then

12. to Release ← pending Tasks − resources;

13. end

14. else

15. pending Tasks ← pending Tasks + runningTasks;

16. left ←pending Tasks × averageTaskRuntime;

resources

17. if eft<applicationTimeRemaining then

18. to Release ←resources −pending Tasks ×

averageTaskRuntime applicationTimeRemaining

19. end

20. end

21. Provisioner.releaseResources(applicationId, to

Release);

22. end

23. end

This algorithm related to the management of resources

from different sources, other important aspects to be

considered that

(i) When such a process of resource allocation takes place

and how many resources are requested, and

(ii) Which of the available resource sources are used in a

particular provisioning request?

This decision is driven by the application QoS, which is

expressed in terms of the deadline for application

completion. The deadline driven policy is a best-effort

algorithm that considers the time left for the deadline and

the average execution time of tasks that compose an

application to determine the number of resources required.

For each request with QoS constraints, the Service

provider considers its deadline, number of tasks, and task

runtime estimation to determine if the deadline can be met.

If the Service detects that the deadline cannot be met, it

determines the number of extra resources required and

submits a request, containing the request and the number

of resources, to the Service provider.

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4815 76

This process takes place either to scale a single application

across multiple sites or to provide dynamic resources to

multiple applications in execution in the Aneka cloud, and

the process is repeated every time a new request is

received by Aneka and every time a task completes or

fails. On the other hand, if the Service provider detects

that the request does not require all the resources currently

allocated to it, it indicates to the Service provider that

some of these resources can be released to be used by

other requests.

For a decision about the specific source of resources to be

used for each resource request By default, resources are

allocated first from local static and dynamic resources,

then from ‗‗free‘‘ resource pools. Inside each of these

classes of resource sources (e.g., different public Cloud

providers in the case of paid external resources), the

source of resources and the preferred order is defined by

the Aneka administrator in an input configuration file.

Notice that this algorithm operates in a best effort manner:

if the provider cannot allocate the exact number of

resources requested by the user, it returns as much as it

can get from all the available sources. Moreover, the time

for preparation of the system (e.g., start up of VMs) is not

taken into account by the provisioning mechanism, and

thus there may be small delays in task processing.

Other policies, which consider data locality and

performance costs of file transferring, have currently to be

defined by the system administrator, though these policies

are planned to be automatically provided by Aneka in the

future. Once dynamic resources join the Aneka cloud, they

must be properly managed and these resources are

typically subject to a usage cost. In particular, current

practices for billing by use of cloud resources consider

their usage in terms of time units whose granularity varies

among providers.

II. LITERATURE SURVEY

Introduction:

Literature survey plays a major role in collecting the

literatures based on the objective. Using the literature

which was collected I am going to implement my

objective. Literature survey is an important step in a

development process. Before developing the concept it is

necessary to collect the literatures based on the objective.

In this chapter, I try to accomplish the following important

objectives in preparing a literature review:

1. The review should provide an overview of

previous research on the topic “Deadline-driven

provisioning of resources for scientific applications in

hybrid”.In this some applications require large computing

power, traditionally exceeding the amount that is available

within the premises. Clouds can be used to provide extra

resources whenever required. To achieve this, it requires

both policies defining when and how cloud resources are

allocated to applications and a platform implementing not

only these policies but also the whole software stack

supporting management of applications and resources.

Aneka is a cloud application platform capable of

provisioning resources obtained from a variety of sources,

including private and public clouds.

In this paper, we present Aneka‘s deadline driven

provisioning mechanism, which is responsible for

supporting quality of service (QoS)-aware execution of

scientific applications in clouds composed of resources

obtained from a variety of sources resulting that Aneka is

able to efficiently allocate resources from different sources

in order to reduce application execution times.

2. Another overview on previous research on the

topic “Cost-based scheduling of Scientific Workflow

Applications on Utility Grids”. Grid technologies have

progressed towards a service-oriented paradigm that

enables a new way of service provisioning based on utility

computing models. Users consume these services based on

their QoS (Quality of Service) requirements. In such ―pay-

per-use‖ workflow execution cost must be considered

during scheduling based on users QoS constraints.

In this paper, we propose a cost-based workflow

scheduling algorithm that minimizes execution cost while

meeting the deadline for delivering results. It can also

adapt to the delays of service executions by rescheduling

unexecuted tasks.

3. Another overview on previous research on the

topic “Outsourcing Resource-Intensive Tasks from

Mobile Apps to Clouds: Android and Aneka

Integration”. In this Mobile Cloud Computing enables

augmenting mobile device capabilities and increasing

battery lifetime through the extension of cloud services

and resources, resulting in an enhanced user experience.

However, the development of a mobile cloud application

is challenging because it involves dealing with different

cloud providers and mobile platforms. To tackle the above

issues, mobile cloud architecture is proposed to

asynchronously delegate resource-intensive mobile tasks

in order to handle the mobile device load and,

consequently, extend the battery life.

In this paper demonstrated that to handle this capability by

developing an interface that supports the delegation of

heavy tasks from mobile apps running under the Android

mobile platform to a cloud computing environment

managed by the Aneka Cloud Application Platform. The

Aneka Mobile Client Library encapsulates the processes of

communicating to cloud is provided and the effort and

complexity of developing a mobile cloud application is

decreased. A performance evaluation is conducted

showing the feasibility of architecture through the

reduction of application execution time and extension of

mobile device battery life.

3.1 System architecture

The layered architecture is depicted in Figure 3.1. The

layers are – Resource layer, Platform layer, SDK and

Application developments. The detailed description of

each layer is given below.

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4815 77

Fig3.1 Layered Architecture.

Figure3.1 provides a layered view of the framework. It is

an essentially implementation of the PaaS model, and it

provides a runtime environment for executing applications

by leveraging the underlying infrastructure of the cloud.

Developers can express distributed applications by using

the API contained in the Software Development Kit

(SDK) or by porting existing legacy applications to the

cloud. Such applications are executed on the Aneka

mobile cloud platform, represented by a collection of

nodes connected through the network hosting the Aneka.

System framework is the building block of the

middleware, and it represents the runtime environment for

executing applications, it contains the core functionalities

of the system and is constituted of an extensible collection

of services that allow administrators to customize the

cloud.

3.2 Elements:

There are three types of elements in layered architecture

that provides services to the applications namely

1. Resource Layer

2. Platform Layer

3. SDK Layer

1. Resource Layer:

Resource layer consist of

a. Pool manager

b. Virtualization resources.

Resource layer is a container of virtual resources that

mostly come from the same resource provider. A resource

pool is in charge of managing the virtual resources it

contains and eventually releasing them when they are no

longer in use. Since each vendor exposes its own specific

interfaces, the resource pools are

 Encapsulates the specific implementation of the

communication protocol required to interact with it and

 Provides the pool manager with a unified interface for

acquiring, terminating, and monitoring virtual resources.

Pool Manager:

The pool manager performs most of all the management

tasks of the pools and the place where dynamic

provisioning strategies can be implemented. The main

responsibility of the pool manager is controlling the life

cycle of pools and manages all the registered resource

pools and decides how to allocate resources from those

pools and provides a uniform interface for requesting

additional resources from any private or public cloud and

redirects a provisioning request, release, or query to the

appropriate pool which manages multiple pools to the

resource provisioning service. The pool manager also

notifies the provisioning service when a dynamic resource

is activated and terminated.

Virtualization Resource:

Virtualization resource is used to monitor and manage the

infrastructure and acquiring resources from different

implementations of virtualization technologies such as

Xen, KVM and VMware can help in building the

foundations of a virtual Infrastructure in order to scale

applications on demand. This task can be performed by

Virtual machine manager (VMM) technology that is able

to provide virtual infrastructure by creating and managing

templates, creating and controlling the life cycle of Virtual

machines.

Platform Layer:

It provides a runtime environment for executing

applications by leveraging the underlying infrastructure of

the cloud. This layer consist of

a. Dynamic Resource Provisioning.

b. Deadline and Budget Services

a. Dynamic Resource Provisioning:

This service is responsible for satisfying a provisioning

request. It mainly performs the following operations:

resource provision, resource release, resource status query,

and resource pool status query and these functionalities

can be handled by pool manager.

Aneka identifies two types of private resources: static and

dynamic resources. Static resources are constituted by

existing physical workstations and servers that may be idle

for a certain period of time. Their membership to the

Aneka cloud is manually configured by provider and does

not change over time. Dynamic resources are mostly

represented by virtual instances that join and leave the

Aneka cloud and are controlled by resource pool managers

that provision and release them when needed.

b. Dead line and budget services:

In order to schedule the execution of the tasks within the

expected deadline. If the local resources are not enough to

execute all the tasks in time, a request for additional

resources is issued.

3. SDK Layer:

Developers can express distributed applications by using

the API contained in the Software Development Kit

(SDK) or by porting existing legacy applications to the

cloud. Such applications are executed on the Aneka cloud.

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4815 78

3.2.1 Virtualization architecture – Xen

Virtualization is a framework or methodology of dividing

the resources of a computer into multiple execution

environments, by applying one or more concepts or

technologies such as hardware and software partitioning,

time-sharing, partial or complete machine simulation,

emulation, quality of service etc. Basically one physical

machine runs only one OS at any time where as by using

virtualizing the machine, we are able to run several

operating systems (and all of their applications) at the

same time.

E.g. Xen

Fig3.2 Virtualization

Xen is virtualization software which providing services

that allows multiple computer operating systems to

execute on the same computer hardware concurrently in

which we are going to create VMs.

Creating VMs:

VMs can be created by

 Physical to Virtual Conversion (P2V)

 Cloning an existing VM

Physical to Virtual Conversion (P2V)

P2V is the process by which an existing Windows

operating system on a physical server — its file system,

configuration, and so on — is converted to a virtualized

instance of the operating system. This is then is

transferred, instantiated, and started as a VM on the Xen

Server host

Cloning an Existing VM.

VMs are prepared from templates. A template is a "image"

that contains all the various configuration settings to

instantiate a specific VM. Xen Server ships with a base set

of templates, which are "raw" VMs, on which you can

install an operating system. Different operating systems

require different settings in order to run at their best. Xen

Server templates are tuned to maximize operating system

performance.

There are two basic methods by which you can create

VMs from templates:

 Using a complete pre-configured template

 Installing an operating system from a CD, ISO image or

network repository onto the appropriate provided

template

3.2.2 Aneka – Xen Dynamic Resource provisioning

Aneka provides resource provisioning facilities in

dynamic fashion. Applications managed by the Aneka that

can be dynamically mapped to heterogeneous resources,

which can grow or shrink according to the application‘s

needs. This elasticity is achieved by means of the Aneka

resource provisioning framework.

Fig3.3 Aneka Resource Provisioning Framework

Figure 3.3explain an overview of Aneka resource

provisioning over private and public clouds, it combines

privately owned resources with public rented resources to

dynamically increase the resource capacity to a larger

scale.

Private resources identify computing and storage elements

kept in the premises that share similar internal security and

administrative policies. Aneka identifies two types of

private resources: static and dynamic resources. Static

resources are constituted by existing physical workstations

and servers that may be idle for a certain period of time.

Their membership to the Aneka cloud is manually

configured by administrators and does not change over

time. Dynamic resources are mostly represented by virtual

instances that join and leave the Aneka cloud and are

controlled by resource pool managers that provision and

release them when needed.

Public resources reside outside the boundaries are

provisioned by establishing a service-level agreement with

the external provider. Even in this case we can identify

two classes: on-demand and reserved resources. On-

demand resources are dynamically provisioned by

resource pools for a fixed amount of time (for example, an

hour) with no long-term commitments and on a pay-as-

you-go basis. Reserved resources are provisioned in

advance by paying a low, one-time fee and mostly suited

for long-term usage. These resources are actually the same

as static resources, and no automation is needed in the

resource provisioning service to manage them. The

resources are managed uniformly once they have joined

the Aneka cloud and all the standard operations that are

performed on statically configured nodes can be

transparently applied to dynamic virtual instances.

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4815 79

Moreover, specific operations pertaining to dynamic

resources, such as join and leave, are seen as connection

and disconnection of nodes and transparently handled.

This is mostly due to the indirection layer provided by the

Aneka that abstracts the specific nature of the hosting

machine.

4.2 ALGORITHMIC IMPLEMENTATION PART –

DEAD LINE AND BUDGET

The implementation is on the main algorithm used in this

project. Here are the main algorithms to implementing in

the proposed system

Algorithm4.2.1:

Deadline-driven resource provisioning in Aneka algorithm

Input: No. of VM's

Output: No. of resources

1. for each request with QoS constraints do

2. resource available resources for the application;

3. pending Tasks ← number of tasks in the queue;

4. left ← pending Tasks × average Task Runtime;

Resources

5. if eft> application Time Remaining then

6. extra Resources ← pending Tasks × average Task

Runtime application Time Remaining

// invoking for resource provisioning

1. Provisioner.selectResources(applicationId, extra

Resources);

2. else

3. to Release ← 0;

4. if pending Tasks< resources then

5. to Release ← pending Tasks − resources;

6. end

7. else

8. pending Tasks ← pending Tasks + runningTasks;

9. eft ← pending Tasks ×

averageTaskRuntime;

i. resources

10. if eft<applicationTimeRemaining then

11. to Release ←

12. resources − pending Tasks ×

averageTaskRuntime

13. applicationTimeRemaining

14. end

15. end

16. Provisioner.releaseResources(applicationId, to

Release);

17. End

18. End

This algorithm related to the management of resources

from different sources, important aspects to be considered

(i) When such a process of resource allocation takes place

and how many resources are requested, and

 (ii) Which of the available resource sources are used in a

particular provisioning request.

This decision is driven by the application QoS, which is

expressed in terms of the deadline for application

completion. The deadline driven policy is a best-effort

algorithm that considers the time left for the deadline and

the average execution time of tasks that compose an

application to determine the number of resources required.

For each request with QoS constraints, the Service

provider considers its deadline, number of tasks, and task

runtime estimation to determine if the deadline can be met.

If the Service detects that the deadline cannot be met, it

determines the number of extra resources required and

submits a request, containing the request and the number

of resources, to the Service provider. This process takes

place either to scale a single application across multiple

sites or to provide dynamic resources to multiple

applications in execution in the Aneka cloud, and the

process is repeated every time a new request is received by

Aneka and every time a task completes or fails. On the

other hand, if the Service provider detects that the request

does not require all the resources currently allocated to it,

it indicates to the Service provider that some of these

resources can be released to be used by other requests.

For a decision about the specific source of resources to be

used for each resource request By default, resources are

allocated first from local static and dynamic resources,

then from ‗‗free‘‘ resource pools. Inside each of these

classes of resource sources (e.g., different public Cloud

providers in the case of paid external resources), the

source of resources and the preferred order is defined by

the Aneka administrator in an input configuration file.

Notice that this algorithm operates in a best effort manner:

if the provider cannot allocate the exact number of

resources requested by the user, it returns as much as it

can get from all the available sources. Moreover, the time

for preparation of the system (e.g., start up of VMs) is not

taken into account by the provisioning mechanism, and

thus there may be small delays in task processing.

Other policies, which consider data locality and

performance costs of file transferring, have currently to be

defined by the system administrator, though these policies

are planned to be automatically provided by Aneka in the

future. Once dynamic resources join the Aneka cloud, they

must be properly managed and these resources are

typically subject to a usage cost. In particular, current

practices for billing by use of cloud resources consider

their usage in terms of time units whose granularity varies

among providers.

4.2 Implementation

In this, we are going to implement Xen Server for creating

images and templates, dynamic resource provisioning,

Aneka, deadline, budget and mobile context and Mandel

Droid Mobile App.

4.2.1 Xen Server

Xen server that allow the services to multiple computer

operating systems to execute on the same computer

hardware concurrently. It is a virtualization platform that

lowers the total cost of ownership for desktop, clouds,

server‘s virtualization infrastructure.

a. First install Xen in server

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4815 80

Fig4.1Xen Sever

4.2.2 Images and templates

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4815 81

4.2.3 Deadline, Budget and Mobile Context

4.2.3 Dynamic Resource provisioning Xen and Aneka

4.2.5 Mandel Droid Mobile App

III. CONCLUSIONS AND FUTURE DIRECTIONS

Cloud computing quickly became the platform of choice

in many practical scenarios in a business context.

Nevertheless, its adoption is limited in the context of

computational science. Scientific applications requiring

larger amounts of computing power than can be delivered

by local resources within a given timeframe can utilize

clouds, which can deliver this required capacity with

minimal effort in terms of the configuration of hardware

platforms. An obstacle for the adoption of clouds for

scientific applications is taking advantage of such

platforms when legacy systems are still used. Different

operating systems, programming languages, and software

platforms supported by each system can make this

integration hard. Aneka addresses these issues by

supporting seamless integration of resources from a range

of sources that include desktop grids, clusters, grids,

public clouds, and private clouds to support QoS-aware

execution of applications. Aneka‘s features were

demonstrated in experiments that showed that it is able to

efficiently allocate resources from different sources in

order to reduce application execution times. Improvements

in Aneka‘s dynamic resource provisioning are under

development, applications will run more efficiently in

hybrid resources.

The experiment presented in this paper addressed the case

of applications requiring a small amount of data transfer:

the input files, output files, and application together were

smaller than 1 MB. Provisioning mechanisms more

suitable for data-intensive HPC applications – such as data

location-aware provisioning of hybrid resources, which

attempts to select providers that contains all or part of the

data required by the application – are also the subject of

future research. We are developing support for the

integration of multiple Clouds in Aneka according to the

Intercloud [26] model. In this model, providers interact via

a marketplace where they can either negotiate resources

for serving their jobs or they can outsource jobs to other

Clouds upon compensation to the party receiving the job.

This will further expand the range of different sources of

resources that can be integrated by Aneka, leading to its

ultimate goal of supporting QoS-aware execution of

applications using any relevant programming model.

REFERENCES

[1] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud
computing and emerging IT platforms: vision, hype, and reality for

delivering IT services as the 5th utility, Future Generation

Computer Systems 25 (6) (2009) 599–616.

[2] I. Foster, K. Kesselman (Eds.), The Grid 2: Blueprint for a New

Computing Infrastructure, 2nd ed., Morgan Kaufmann Publishers,

2004.
[3] C. Vecchiola, X. Chu, M. Mattess, R. Buyya, Aneka — integration

of private and public clouds, in: R. Buyya, J. Broberg, A. Goscinski

(Eds.), Cloud Computing: Principles and Paradigms, Wiley Press,
2011.

[4] C. Vecchiola, X. Chu, R. Buyya, Aneka: a software platform for.

NET-based cloud computing, in: W. Gentzsch, L. Grandinetti, G.
Joubert (Eds.), High Performance and Large Scale Computing, IOS

Press, 2009.

[5] F. Gagliardi, M. Begin, EGEE—providing a production quality grid
for e-Science, in: Proceedings of the IEEE International

Symposium on Mass Storage Systems and Technology, 2005.

[6] C. Catlett, TeraGrid: a foundation for US cyber infrastructure, in:
Proceedings of the International Conference on Network and

Parallel Computing, 2005.

[7] R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny, A. Roy, P.

Avery,K. Blackburn, T. Wenaus, F. Wurthwein, I. Foster, R.

Gardner, M. Wilde,A. Blatecky, J. McGee, R. Quick, The open
science grid, Journal of Physics: Conference Series 78 (1) (2007)

12–57.

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4815 82

[8] W. Gropp, E. Lusk, A. Skjellum, Using MPI—2nd Edition:

Portable Parallel Programming with the Message Passing Interface
(Scientific and Engineering Computation), The MIT Press, 1999.

[9] K. Keahey, T. Freeman, Science clouds: early experiences in cloud

computing for scientific applications, in: Proceedings of the Cloud
Computing and its Applications Conference, 2008.

[10] C. Evangelinos, C. Hill, Cloud computing for parallel scientific

HPC applications: feasibility of running coupled atmosphere–ocean
climate models on Amazon‘sEC2, in: Proceedings of the Cloud

Computing and Its Applications Conference, 2008.

[11] E. Deelman, G. Singh, M. Livny, B. Berriman, J. Good, The cost of
doing science on the cloud: the Montage example, in: Proceedings

of the 2008 ACM/IEEE Conference on Supercomputing, 2008.

[12] J. Miller, S. Ragsdale, The Common Language Infrastructure
Annotated Standard, Addison Wesley, 2004.

[13] J. Dean, S. Ghemawat, Map Reduce: simplified data processing on

large clusters, in: Proceedings of the 6th Symposium on Operating

Systems Design and Implementation, 2004.

[14] C. Varela, G. Agha, Programming dynamically reconfigurable open

systems with SALSA, ACMSIGPLAN Notices 36 (12) (2001) 2034
[15] M. Kirley, R. Stewart, Multi objective evolutionary algorithms on

complex networks, in: Proceedings of 4th International Conference
Evolutionary Multi-Criterion Optimization, 2007.

[16] K. Deb, Multi-Objective Optimization Using Evolutionary

Algorithms, JohnWiley & Sons, 2001.
[17] C. Vecchiola, M. Kirley, R. Buyya, Multi-objective problem

solving with offspring on enterprise clouds, in: Proceedings of the

10th International Conference on High-Performance Computing in
Asia-Pacific Region, 2009.

[18] M.D. de Assunção, A. di Costanzo, R. Buyya, A cost-benefit

analysis of using cloud computing to extend the capacity of
clusters, Cluster Computing 13 (3)(2010) 335–347.

[19] D. Kondo, B. Javadi, P. Malecot, F. Cappello, D.P. Anderson, Cost-

benefit analysis of cloud computing versus desktop grids, in:
Proceedings of the 18thInternational Heterogeneity in Computing

Workshop, 2009.

[20] H. Kim, Y. el Khamra, S. Jha, M. Parashar, Exploring application
and infrastructure adaptation on hybrid grid–cloud infrastructure,

in: Proceedings of the 19th ACM International Symposium on High

Performance Distributed Computing, 2010.
[21] S. Ostermann, R. Prodan, T. Fahringer, Extending grids with cloud

resource management for scientific computing, in: Proceedings of

the 10th IEEE/ACM International Conference on Grid Computing,
2009.

[22] W. Tan, R. Madduri, A. Nenadic, S. Soiland-Reyes, D. Sulakhe, I.

Foster, C. Goble,CaGrid Workflow Toolkit: a taverna based
workflow tool for cancer grid, BMC Bioinformatics 11 (1) (2010)

542.

[23] C. Vázquez, E. Huedo, R.S. Montero, I.M. Llorente, Dynamic
provision of computing resources from grid infrastructures and

cloud providers, in: Proceedings of the Workshops at the Grid and

Pervasive Computing Conference, 2009.

[24] P. Marshall, K. Keahey, T. Freeman, Elastic site: using clouds to

elastically extend site resources, in: Proceedings of the 10th

IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing, 2010.

[25] B. Soto mayor, R.S. Montero, I.M. Llorente, I. Foster, Virtual

infrastructure management in private and hybrid clouds, Internet
Computing 13 (5) (2009)14–22.

[26] R. Buyya, R. Ranjan, R.N. Calheiros, Inter Cloud: utility-oriented

federation of cloud computing environments for scaling of
application services, in: Proceedings of the 10th International

Conference on Algorithms and Architectures for Parallel

Processing, 2010.

BIOGRAPHY

Authors have the option to publish a

biography together with the paper, with the

academic qualification, past and present

positions, research interests, awards, etc.

This increases the profile of the authors and

is well received by international reader.

