

International Journal of Advanced Research in Computer and Communication Engineering Vol. 4. Issue 8. August 2015

Optimization of 64 bit Multiplier using Carry Save Adder and its DSP Application using Cadence

P.Rajani¹, G.L.Sumalata²

M.Tech, ECE, GRIET, Hyderabad, India¹

Assistant Professor, ECE, GRIET, Hyderabad, India²

Abstract: In this paper we have shown the design and implementation of multiplier in which carry save adder is used as an adder block for the addition of partial products of both multiplier and multiplicand as 64 bits and the product size is of 128 bit. Multiplication is the fundamental arithmetic operation that plays a critical role in several processors and digital signal processing systems. Digital signal processing systems need multiplication algorithms to implement DSP algorithms such as filtering where the multiplication algorithm is directly within the critical path. The Finite Impulse Response (FIR) filter is a digital filter widely used in Digital Signal Processing applications in various fields. The implementation of an FIR requires three basic building blocks i.e. Multiplication, Addition, Unit delay. In a DSP system the multiplier must be fast and must have sufficient precision (bit width) to support the desired application. A high quality filter will in general require more multiplications than one of lesser quality, so throughput suffers if the multiplier is not fast. Hence 64 bit multiplier with carry save adder is designed and the same block which is of 8 bit is implemented in FIR (8-tap) filter. A comparison between array multiplier and multiplier with carry save adder is shown and the proposed technique is efficient in terms of power. A comparison between FIR filter with array multiplier block and FIR filter with multiplier with carry save adder block is shown and the proposed technique is efficient in terms of power and speed. The code is written in Verilog and the simulation and synthesis is carried out in Cadence Encounter tool.

Keywords: Cadence Encounter, Verilog, Array Multiplier, Multiplier with Carry Save Adder, FIR Filter with Array Multiplier block, FIR Filter with Multiplier with Carry Save Adder block

I. INTRODUCTION

The major considerations while designing the digital Circuit operating at moderate sample rates. The main circuits are speed, power and area. Multiplication is a mathematical operation that at its simplest is an abbreviated process of adding an integer a specified FIR filter. The work carried out is described in brief as number of times. A basic multiplier can be divided into three parts i) partial product generation ii) partial product addition and iii) final addition. Multiplication plays an important role in Digital Signal Processing (DSP) applications, such as filtering and fast Fourier transform (FFT). Parallel array multipliers are widely used to achieve high speed execution. But these multipliers consume more power. In today's VLSI system design, Power consumption has become a critical concern. For the design of low-power DSP systems the designers need to concentrate on power efficient multipliers. The impulse response of the filter can be either finite or infinite. The methods for designing and implementing of these two filter classes differ considerably. Finite impulse response (FIR) filters are digital filters whose response to a unit impulse (unit sample function) is finite in duration. This is in contrast to infinite impulse response (IIR) filters whose response to a unit impulse (unit sample function) is infinite in duration. FIR and IIR filters each have advantages and disadvantages. In some applications, the FIR filter circuit must be able to operate at high sample rates, while in other applications the FIR filter circuit must be a low power.

objective of this project to design power efficient multiplier block and to design high speed and low power follows. Section II explains the multiplication of two numbers i.e. array multiplication. Section III represents the architecture of multiplier with carry save adder. Section IV describes the FIR filter with array multiplier block. Section V shows the FIR filter with multiplier with carry save adder block. Section VI consists of experimental results. Section VII concludes this paper.

II. ARRAY MULTIPLICATION

Array multiplier is well known due to its regular structure. Multiplier circuit is based on add and shift algorithm. Each partial product is generated by the multiplication of the

International Journal of Advanced Research in Computer and Communication Engineering Vol. 4, Issue 8, August 2015

multiplicand with one multiplier bit. The partial product are shifted according to their bit orders and then added. The addition can be performed with normal carry propagate adder. In array multiplication we need to add, as many partial products as there are multiplier bits.

III.ARCHITECTURE OF MULTIPLIER WITH CARRY SAVE ADDER

Figure.2.Multiplier with Carry saves Adder Architecture

In the Carry Save Addition method, the first row will be either Half-Adders or Full-Adders. If the first row of the partial products is implemented with Full-Adders, C_{in} will be considered '0'. Then the carries of each Full- Adder can be diagonally forwarded to the next row of the adder. The resulting multiplier is said to be Carry Save Multiplier, because the carry bits are not immediately added, but rather are saved for the next stage. In the design if the full adders have two input data the third input is considered as zero. In the final stage, carries and sums are merged in a fast carry-propagate (e.g. ripple carry or carry look ahead) adder stage.

IV.FIR FILTER

Figure.3.Basic Form of FIR Filter

Filters are signal processing components that are used to process interfered and corrupted signals. They can be classified to two main categories: analog and digital filters. Filters in these two categories are different in terms of cost, speed, accuracy, power consumption and implementation, but they are similar in the sense that they are both used to filter signals.

A commonly used method of implementing digital filters is by considering a subset of the filter's impulse response. Filter designed this way are called finite impulse response (FIR) filters. The mathematical process used to get the output of a linear system according to its impulse response is the convolution. When a digital signal x[n] is to be processed by a system of impulse response h[n], the output is the result of the following equation

$$y[n] = \sum_{k=0}^{N-1} h[k]x[n-k]$$

The above equation describes how each sample of the output signal is calculated. This is an application of the widely used mathematical operation of the dot product, which consists purely of multiplication and addition. Here multiplication is carried out using array multiplier and addition by the basic adder.

V.FIR FILTER WITH MULTIPLIER WITH CARRY SAVE ADDER

Here the basic form of FIR Filter structure is considered. The building blocks of FIR filter is multiplier, adder and delay unit. Here in case of multiplier we consider multiplier with carry save adder block. In case of adder we use basic adder for addition. Delay element we are using is D-Flipflop.FIR filter with multiplier with carry save adder block is the new technique which is proposed to improve speed and to reduce power.

VI.RESULTS

The analysis is done using Cadence Encounter tool to simulate and synthesize both Array Multiplier and Multiplier with Carry Save Adder, FIR Filter with Array Multiplier and FIR Filter with Multiplier with Carry Save Adder. The code is written in Verilog HDL to optimize the power of 64 bit multiplier and to optimize the power and speed of FIR filter.

Array multiplier

Simulation waveforms

64 bit array multiplier waveforms

Synthesis Report

International Journal of Advanced Research in Computer and Communication Engineering Vol. 4, Issue 8, August 2015

Power Report

rci/> report power								
Generated by:	Encounter	r(R) RTL Con	mpiler RC10.:	1.304 - v10.1	0-8339_3			
Generated on:	Jul 30 20	015 12:46:5	55 pm					
Module:	multiarre	ay64						
Technology library:	slow_normal 1.0							
Operating conditions:	slow (balanced tree)							
Wireload mode:	enclosed							
Area mode:	timing 1:	ibrary						
		Leakage	Dynamic	Total				
Instance	Cells	Power (nW)	Power (nW)	Power (nW)				
multiarray64	10050	467693.206	5420443.934	5000137.141				
×1	2464	113446.301	1152903.687	1266349.989				
×4	592	26652.809	235474.655	262127.464				
×4	136	5830.760	39643.409	45474.169				
×1	28	1058.052	4854.421	5912.474				
FAG	1	94.386	423.490	517.876				
FA4	1	94.329	351.196	445.524				
FA3	1	94.272	295.658	389.930				
FA7	1	94.211	596.757	690.969				
FAS	1	94.016	447.852	541.868				
FA2	1	93.997	276.785	370.782				
FAG	1	93,984	417,067	511.051				

Multiplier with carry save adder Simulation waveforms

[8			Waveform 1 - SimVision		
1	Elle	Edit View Explore For	mat Singlation	Windows Help		
ſ	5	200 X 0 B	× 303	🗉 📾 - 😻 - 💠 Send So 🗽 🚝 🔜 📰 🗮 🗮 🗮 🥂 🏷		
1	Sea	rch Names: Signal •	10.	💕 Search Times: Value 🕶 🧧 🛝 🛝		
ĺ	Ρ.	TimeA • = 400	n - 82	🔹 💁 - 🔝 🔛 👯 👯 🖳 🐞 🛲 400m + 0 📰		Time: ST 200ns 400ns
	20	Baseline == 0 17 Carsor-Baseline == 400ns				Tes
ł	a.	Namo •	Cursor +	260ns 210ns 220ns 220ns 240ns 250ns 260ns 270ns 280ns 290ns	300ns 310ns 320ns 330ns \$40ns	350ns 360ns 370ns 280ns
	в	ជ្ញា 🔷 ស្មោះស្	.P 00102034	00006754	00005624	
	₽.	🕀 🔷 601.0]	.P 00102015	00002534	00005632	
	3	🕀 🧆 e[63:0]	.F coscost+	0000000_0822#190	0000000_20942488	
	님			3 Design Browser 1 - SimVision		
	۳			Elle Edit View Select Explore Simulation Windows Help	cādence'	
				👷 😓 🝙 🏡 🗶 🗈 🛍 🗙 🛷 👘 🆓 😓 💠 Send Se 🖏	***	
				🔊 👯 TimeA 🔹 400 🧧 ns 🖷 👯 🐂 🤙 🐏 Search Times: Value	- 🖬 🕮 🕮	
				📴 • 🛄 🔛 👷 🐺 🝓 📖 400×+0		
				Design Browser X (B) Objects Michors		
				Browse: - 🚳 All Available Data 🔽 😒 🖭 🐘 Name -	Value (as recorded)	
				R 📭 simulativ	'h 00005624	
				8-0 mitical4 th	'h 00005612	
				D* B-S p(63.0)	'h 05000000_10P*	

64 bit multiplier with carry save adder waveforms

Synthesis Report

Power Report

rc:/> report power							
Generated by:	Encounter	r (R) RTL COM	mpiler RC10.	1.304 - v10.1	3-#339_:		
Generated on:	Jul 30 21	01:07:	55 pm				
Module:	multicsa	64					
Technology library:	slow_normal 1.0						
Operating conditions:	ons: slow (balanced tree)						
Wireload mode:	enclosed	_					
Area mode:	timing 1	ibrary					
		Leakage	Dynamic	Total			
Instance	Cells	Power (nW)	Power (nW)	Power (nW)			
multicsa64	15426	451914.303	5400644.307	5852558.610			
×4	3808	109519.181	1141260.016	1250779.197			
×3	928	25664.906	227295.061	252959.966			
×1	220	5578.215	38730.980	44309.195			
×2	49	995.817	4842.706	5838.522			
×7	1	29.599	322.573	352.172			
×12	1	29.492	175.083	204.575			
×9	1	29.322	126.245	155.567			
×4	1	29.264	170.670	199.934			

Fir filter with array multiplier Simulation waveforms

8 tap FIR Filter waveforms

Synthesis report

Power Report

rc:/> report power					
Generated by:	Encounter	(R) RTL Con	mpiler RC10.	1.304 - v10.	10-8339_1
Generated on:	Jul 30 20:	10:39:	12 am		
Hodule:	fir8				
Technology library:	slow_norms	al 1.0			
Operating conditions:	slow (bale	anced tree;			
Wireload mode:	enclosed				
Area mode:	timing lik	brary			
		Leakage	Dynamic	Total	
Instance	Cells	Power (nW)	Power (nW)	Power (nW)	
fir8	1094	63378.123	899520.571	962898.694	
12	107	6068.052	55985.454	62053.506	
cee tree e 129 60 gro	umi 43	4006 502	51190 698	56097 291	

12	107	6068.052	55985.454	62053.50
csa_tree_a129_60_groupi	43	4906.592	51190.698	56097.29
13	107	6062.640	58155.847	64218.48
csa tree a129 60 groupi	43	4901.290	53353.571	58254.86
17	107	6056.133	63044.190	69100.323
csa tree a129 60 groupi	43	4889.470	58144.914	63034.384
14	107	6053.633	62972.471	69026.10

Timing Report

add0099/2[15] f7/s[15] y[15] (fir_constraints.g_line_14)	out port ext delay	+0 +1000	3881 F 4881 F
(clock clk)	capture		10000 R
Cost Group : 'clk' (path_group Timing slack : 5119ps Start-point : x[1] End-point : y[15]	·'clk')		

Fir filter with multiplier with carry save adder Simulation waveforms

I.	۰.	Applications Places Sy	stem 🚺	😻 🎕 🗾				*	0	4 0	# K.	Thu Jul 30, 1	1:32 AM
3					D	esign Browser	1 - SimVision						-
				w	aveform 1 - SimVis	lon			_ 0 ×				cā
7	ile.	Edit View Explore Form	at Simulation	Windows Help					cådence		- Sent To	1. MA D. BA	201 mm
н					della di facci de No.	AMA []]. (Rep. 1976)		14 Sc.		- 64		194 535 194 Bla	
μ	8	200800	× 19.9	ar w.	* • • • • • •	CT 104, 85 194		0.43					
UP.	Sea	ch Names: Signal •	10.	ff Search Tim	es: Value •	🖬 🔍 🔍							
Ī	ų,	TimeA 🔹 = 979,781,663 🖬 ns	- 85	e e. 🖬 🖬	🖾 땅 땅 몇 🗣	2,506,523,150	n + 0 📰 Time:	an 979,781,350ns :	97 <mark>-1</mark> 24				
Ē	Q	Baseline ** 0								ecorded)	•		
	ы	Cursor-Baseline *+ 070,701,063ns			TimeA = 979,781,662ns								
li:	2	Namo *	Cursor *	979,701	500ns 979,	782,00011	979,782,500m	979,7	83,000ns				
1Ë	끡		1							1			
18	2	© 🐴 h07:0	.F 2h	58									
16	a)	9 🔷 M73	'h 17	17									
1B	н	P +27:4	·h 47	47									
10	2	e - 🔁 1-3(7:5)	·h 16	16									
10		© 💊 147.0	·h 56	56			h						
ш		D 15731	"h 55	55			15						
ш		80 - HE7 S	·h 11	11									
ш		Br Wild		<i>"</i>									
ш			° 										
ш		B	18.57	37									
ш		an Alicel											
ш													
ш													
Ш													
Ш													
Ш			PT 17 8		A 600 A00 A00 A00	- 000 000 000	11 400 000 000		00 212 05 00 V				

8 tap FIR Filter with multiplier with carry save adder

Synthesis Report

Applications Pla	ces System 🚦 😻 🛎 🗾		*	🕑 🔃 🖪 🖉 🔒	Thu Jul 30, 10:46 /
3	Cadence Encounter(R) RTL	Compiler RC10.1.304 - v10.10-s339_1 - /	oot/Cadence_digital_labs/Wo	karea/rajani/FIRFILTE	_ 0 ×
Eile Edit View Sea	Elle Report Tools Preferences	Window Help			cådence'
root wle subdesign all subdesign all	Hierarchy HDL Clock Tree	Schematic Physical			
subdesign all	FIRCSA8	0 4 4 4 🕅 🗛 🖶 🚍 🚍		1	1
subdesign aut	-dl [dffl6]				2
Send us feedback a	-d3 [dff16] -d4 [dff16] -d5 [dff16]				
GUI is already vis	B-de [dff16]	P-			
rc:/> set_attribut	B-d7 [dff16]				
setting attribut	B-f2 [fa 16]				
Setting attribut	0-f3 [fa_16]				
rc:/> set_attribut	€-£4 [£a_16]				
i Operatio	0-f5 [fa_16]				
: The nomi	0-f6 [fa_16]				VT value
1.0, 1.0).	B-11 [multiRecal				
Into : Library	-12 [multi8csa]		المصالحصي ع		
List of un	-13 [multiScsa]	4 4 4	- 4 - V		
: The numb	14 [multi8csa]				ue less
the list is limit	15 [multi@csa]				
rc:/> read hdl {F1	B-16 [multi8csa]				
rc:/> elaborate	-18 [multiScal]				
Info : Library	a to (more to can)				
List of ur					
Flaborating top					6

International Journal of Advanced Research in Computer and Communication Engineering Vol. 4, Issue 8, August 2015

Power Report

Generated	by:	Enc	counter(R)	RTL Compiler	RC10.1.304 ·	v10.10-s339
Generated	on:	Jui	L 30 2015 :	10:49:31 am		
Module:		FII	RCSAB			
Technology	libra	ry: slo	ow_normal 1	.0		
Operating	condit:	ions: slo	ow (balance)	d_tree)		
Wireload m	ode:	enc	losed			
Area mode:		tir	aing library	7		
_	_	Leakage	Dynamic	Total		
Instance	Cells	Leakage Power (nW)	Dynamic Power (nW)	Total Power (nW)		
Instance	Cells	Leakage Power (nW)	Dynamic Power (nW)	Total Power(nW)		
Instance FIRCSA6	Cells 1998	Leakage Power(nW) 75702.432	Dynamic Power (nW) 771585.021	Total Power(nW) 847287.453		
Instance FIRCSA6 13	Cells 1998 220	Leakage Power(nW) 75702.432 7596.349	Dynamic Power (nW) 771585.021 43471.760	Total Power(nW) 847287.453 51068.110		
Instance FIRCS&8 13 ×2	Cells 1998 220 49	Leakage Power (nW) 75702.432 7596.349 1488.086	Dynamic Power(nW) 771585.021 43471.760 6337.839	Total Power(nW) 847287.453 51068.110 7825.925		
Instance FIRCSA8 13 x2 x15	Cells 1998 220 49 1	Leakage Power (nW) 75702.432 7596.349 1488.086 44.879	Dynamic Power (nW) 771585.021 43471.760 6337.839 118.203	Total Power(nW) 847287.453 51068.110 7825.925 163.082		
Instance FIRCSA6 13 ×2 ×15 ×14	Cells 1998 220 49 1 1	Leakage Power (nW) 75702.432 7596.349 1488.086 44.879 44.478	Dynamic Power (nW) 771585.021 43471.760 6337.839 118.203 83.537	Total Power(nW) 847287.453 51068.110 7825.925 163.082 128.015		
Instance FIRCSA6 13 ×2 ×15 ×14 ×16	Cells 1998 220 49 1 1 1	Leakage Power (nW) 75702.432 7596.349 1488.086 44.879 44.478 44.408	Dynamic Power(nW) 771585.021 43471.760 6337.839 118.203 83.537 124.398	Total Power (nW) 847287.453 51068.110 7825.925 163.082 128.015 168.806		

Timing Report

y[15] (fir_constrai	nt	out port s.g_line_14) ext delay	+0 +1000	4328 F 5328 F
(clock clk)		capture		10000 R
Cost Group Timing slack Start-point End-point	:	'clk' (path_group 'clk') 4672ps x[0] y[15]		

The power consumption of 64 bit conventional multiplier [11]. and proposed multiplier is shown in the table.

S.No	Multiplier	Total Power (nW)
1.	Conventional Multiplier	5888137.141
2.	Proposed Multiplier	5852558.610

Table.1.Total Power comparison of different multipliers.

The power consumption and timing performance of 8 tap conventional FIR filter and proposed FIR filter is shown in the table.

S.No.	FIR Filter	Total	Time(Ps)
		Power(nW)	
1.	Conventional	962898.694	5119
	FIR Filter		
2.	Proposed FIR	847287.453	4672
	Filter		

Table.2.Total Power and Timing comparison of different FIR filters.

VII.CONCLUSION

This paper presents two different multipliers and two different FIR filters that are modeled using verilog. The proposed multiplier is more efficient in power than the conventional multiplier. The proposed FIR filter is more efficient in power and timing performance than the conventional FIR filter. The simulation and synthesis reports are obtained using the Cadence tool.

REFERENCES

- A text book on "CMOS VLSI DESIGN, A Circuits and Systems Perspective",4th Edition by Neil H.E.Weste, 2011.
- [2].S. Smith, The Scientist and Engineer's Guide to Digital Signal Processing, San Diego: California Technical Publishing, 1997.
- [3]. Nik Ghazali Nik Daud, Forkful Ridzuan Hashim, "Hybrid Modified Booth Encoded Algorithm-Carry Save Adder Fast Multiplier", IEEE 2014.

- [4]. Maroju SaiKumar,"Design and Performance Analysis of Various Adders using Verilog", International Journal of Computer Science and Mobile Computing, IJCSMC, Vol. 2, Issue. 9, September 2013.
- [5]. A. Arun, "Design of Novel FIR Filter Using Add and Shift Multiplier and Carry Save Adder", IJCSEC-International Journal of Computer Science and Engineering Communications, Vol.2 Issue.3, May 2014.
- [6]. Hesham Altwaijry, "FIR Filter Design Using The Signed-Digit Number System and Carry Save Adders – A Comparison", (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 4, No. 12, 2013.
- [7]. N. Jhansi," Design and Analysis of High Performance FIR Filter using MAC Unit", International Journal of Advanced Research in Computer and Communication Engineering Vol. 3, Issue 11, November 2014.
- [8]. Mr. Pravin Y.Kadu1," High Speed and Low Power FIR Filter Implementation Using Optimized Adder And Multiplier Based On Xilinx FPGA", IORD Journal of Science & Technology E-ISSN: 2348-0831 Volume 1, Issue III (MAR-APR 2014).
- [9]. Ravi, A.Satish, "A New Design for Array Multiplier with Trade off in Power and Area", IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, May 2011.
- [10]. Bahram Rashidi, Bahman Rashidi and Majid Pourormazd "Design and Implementation of Low Power Digital FIR Filter based on low power multipliers and adders on xilinx FPGA" IEEE 2011.
- [11]. V.Vijayalakshmil, R.Seshadd, Dr.S.Ramakrishnan3 "Design and Implementation of 32 Bit Unsigned Multiplier Using CLAA and CSLA" IEEE 2013.