
 ISSN (Online) 2278-1021
 ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4843 206

Modified Genetic Algorithm for Efficient

Regression Test Cases

Jyoti
1
, Mrs. Lekha Bhambhu

2

M.Tech, CSE, JCDM College of Engineering, Sirsa, India
 1

Asst Professor, CSE, JCDM College of Engineering, Sirsa, India
 2

Abstract: Regression testing is the process of validating modified software to detect errors that have been introduced

into previously tested code. As the software is modified, the size of the test suite grows and the cost of regression

testing increases. In this situation, test case prioritization aims to improve the effectiveness of regression testing by

ordering the test cases so that most beneficial test cases are executed first. In this research paper, a modified genetic

algorithm is introduced that will prioritize regression test suite within a time constrained environment on the basis of

total fault coverage. The proposed algorithm has been automated and the results are analysed. The results representing

the effectiveness of algorithm are presented with the help of Average Percentage of Faults Detected (APFD). Our

objective is to achieve more efficiency than existing results.

Keywords: GA (Genetic Algorithm).

I. INTRODUCTION

Software maintenance is an activity which includes

enhancements, error corrections, optimization and deletion

of obsolete capabilities. These modifications in the

software may cause the software to work incorrectly and

may also affect the other parts of the software, so to

prevent this Regression testing is performed.

1.1 Regression Testing

Regression testing is frequently executed maintenance

process used to revalidate modified software. Regression

testing is a type of software testing that seeks to uncover

new software bugs, or regressions, in existing functional

and non-functional areas of a system after changes such as

enhancements, patches or configuration changes, have

been made to them [8]. The intent of regression testing is

to ensure that a change such as those mentioned above has

not introduced new faults. One of the main reasons for

regression testing is to determine whether a change in one

part of the software affects other parts of the software [1].

Common methods of regression testing include rerunning

previously completed tests and checking whether program

behavior has changed and whether previously fixed faults

have re-emerged [3]. Regression testing can be performed

to test a system efficiently by systematically selecting the

appropriate minimum set of tests needed to adequately

cover a particular change. Regression testing can be used

not only for testing the correctness of a program, but often

also for tracking the quality of its output. For instance, in

the design of a compiler, regression testing could track the

code size, simulation time and compilation time of the test

suite cases.

Regression tests can be broadly categorized as functional

tests or unit tests. Functional tests exercise the complete

program with various inputs. Unit tests exercise individual

functions, subroutines, or object methods. Both functional

testing tools and unit testing tools tend to be third-party

products that are not part of the compiler suite, and both

tend to be automated. A functional test may be a scripted

series of program inputs, possibly even involving an

automated mechanism for controlling mouse movements

and clicks. A unit test may be a set of separate functions

within the code itself, or a driver layer that links to the

code without altering the code being tested. As the

software is modified and new test cases are added to the

test suite to test new or changed requirements and need to

prioritize [4] or to maintain test-suite adequacy, the size of

the test suite grows and the cost of regression testing

increases [2]. Thus, Regression testing is an expensive, but

important process in software testing.

1.2 Genetic Algorithms

Genetic algorithms are a part of evolutionary computing,

which is a rapidly growing area of artificial intelligence.

Genetic algorithms belong to the larger class of

evolutionary algorithms (EA), which generate solutions to

optimization problems using techniques inspired by

natural evolution, such as inheritance, mutation, selection,

and crossover [3]. Genetic algorithms are inspired by

Darwin's theory about evolution. Solution to a problem

solved by genetic algorithms is evolved.

In a genetic algorithm, a population of candidate solutions

(called individuals, creatures, or phenotypes) to an

optimization problem is evolved toward better solutions

[5]. Each candidate solution has a set of properties (its

chromosomes or genotype) which can be mutated and

altered; traditionally, solutions are represented in binary as

strings of 0s and 1s, but other encodings are also possible.

 The evolution usually starts from a population of

randomly generated individuals, and is an iterative

process, with the population in each iteration called a

generation [6]. In each generation, the fitness of every

individual in the population is evaluated; the fitness is

usually the value of the objective function in the

optimization problem being solved.

 ISSN (Online) 2278-1021
 ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4843 207

The more fit individuals are stochastically selected from

the current population, and each individual's genome is

modified (recombined and possibly randomly mutated) to

form a new generation. The new generation of candidate

solutions is then used in the next iteration of the algorithm.

Commonly, the algorithm terminates when either a

maximum number of generations has been produced, or a

satisfactory fitness level has been reached for the

population.

A typical genetic algorithm requires:

i. a genetic representation of the solution domain,

ii. A fitness function to evaluate the solution domain.

A standard representation of each candidate solution is as

an array of bits. Arrays of other types and structures can

be used in essentially the same way. The main property

that makes these genetic representations convenient is that

their parts are easily aligned due to their fixed size, which

facilitates simple crossover operations.

1.3 Significance of the Research

The main disadvantage in regression testing is that it is an

expensive process used to validate modified software.

Approximately 50% of the software cost is involved in the

maintenance phase so researchers are working hard to

come up with best results by developing new Regression

Testing techniques so that the expenditure made in this

phase can be reduced to some extent. The industrial

collaborators reports show that if there are approximately

20,000 lines of code, running the entire test cases requires

seven weeks. Test case prioritization methods and

processes are required, because: (i) the regression testing

phase consumes a lot of time and cost to run, (ii) there is

not enough time or resources to run the entire test suite,

and, (iii) there is a need to decide which test cases to run

first.

The regression test suite is typically large and needs a

method to choose those test cases which will detect

maximum or all faults at the earliest. The three broad

categories for prioritization are Greedy algorithms, non-

evolutionary algorithms and evolutionary algorithms.

Evolutionary algorithms (EA) are chosen as they are

global optimization methods and scale well to higher

dimensional problems. They can be easily adjusted to the

problem at hand and can be change and customized. Most

of the implementations of evolutionary algorithms came

from any of these three basic types: Genetic Algorithm

(GA), Evolutionary Programming (EP) and Evolutionary

Strategies (ES). All these are strongly related but

independently developed. Among evolutionary techniques,

the Genetic Algorithm, invented by John Holland in the

1960s at the University of Michigan, study the

phenomenon of evolution and adaptation as it occurs in

nature. They depend on the use of selection, crossover

(recombination) and mutation operators. Genetic

Algorithm works with a set of prefixed steps and thereby

investigates the solution. Studies regarding the

performance of metaheuristic algorithms led to several

conclusions that have practical ramifications. The results

of the empirical study show that the Additional Greedy, 2-

Optimal, and Genetic Algorithms always outperform the

Greedy Algorithm. The results produced by Hill Climbing

show that the nature of the fitness landscape is

multimodal. The results produced by the Genetic

Algorithm indicate that it is not the best considered in all

cases, but that, in most cases, the differences between the

performance of Genetic Algorithm and that of the Greedy

approach is significant. However, an analysis of the fitness

function shows that there are situations in which it is

important to consider the entire ordering and, for such

cases, Greedy Algorithms are unlikely to be appropriate.

Given their generality, the fact that Genetic Algorithms

perform so well is cause for encouragement.

Genetic Algorithm is well suited for solving problems

where solution space is huge and time taken to search

exhaustively is very high. Another advantage of genetic

algorithm is that it has ability to solve problems with no

previous knowledge. Researchers are investigating on

hybrid approaches to Regression Testing which include

both regression test selection and test case prioritization.

The approach being proposed here would be the use of

Genetic Algorithm with another optimization technique to

propose a hybrid technique for optimizing test cases and

hence further reduce the cost of regression testing.

II. LITERATURE REVIEW

Gregg Rothermel et al [1] explained that the Test case

prioritization techniques schedule test cases for execution

in an order that attempts to increase their effectiveness at

meeting some performance goal. Various goals are

possible; one involves rate of fault detection. The measure

of how quickly faults are detected within the testing

process. An improved rate of fault detection during testing

can provide faster feedback on the system under test and

let software engineers begin correcting faults earlier than

might otherwise be possible. One application of

prioritization techniques involves regression testing the

retesting of software following modifications; in this

context, prioritization techniques can take advantage of

information gathered about the previous execution of test

cases to obtain test case orderings.

 In this work, they describe several techniques for using

test execution information to prioritize test cases for

regression testing, including:

1) Techniques that order test cases based on their total

coverage of code components.

2) Techniques that order test cases based on their coverage

of code components not previously covered

3) Techniques that order test cases based on their

estimated ability to reveal faults in the code components

that they cover.

They report the results of several experiments in which we

applied these techniques to various test suites for various

programs and measured the rates of fault detection

achieved by the prioritized test suites, comparing those

rates to the rates achieved by untreated, randomly ordered,

and optimally ordered suites. Analysis of the data shows

that each of the prioritization techniques studied improved

the rate of fault detection of test suites, and this

 ISSN (Online) 2278-1021
 ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4843 208

improvement occurred even with the least expensive of

those techniques. The data also shows, however, that

considerable room remains for improvement. The studies

highlight several cost-benefit trades-offs among the

techniques studied. In this research, they have described

several techniques for prioritizing test cases for regression

testing and empirically examined their relative abilities to

improve how quickly faults can be detected during

regression testing. Their results suggest that these

techniques can improve the rate of fault detection of test

suites.

Zheng Li et al [2] assimilated the knowledge about the

concept of Regression testing. Regression testing is an

expensive, but important, process. Unfortunately, there

may be insufficient resources to allow for the re-execution

of all test cases during regression testing. In this situation,

test case prioritization techniques aim to improve the

effectiveness of regression testing by ordering the test

cases so that the most beneficial are executed first.

Previous work on Regression test case prioritization has

focused on Greedy Algorithms. However, it is known that

these algorithms may produce suboptimal results because

they may construct results that denote only local minima

within the search space. By contrast, metaheuristic and

evolutionary search algorithms aim to avoid such

problems. Author presents results from an empirical study

of the application of several greedy, metaheuristic, and

evolutionary search algorithms to six programs, ranging

from 374 to 11,148 lines of code for three choices of

fitness metric. They explained the problems of choice of

fitness metric, characterization of landscape modality, and

determination of the most suitable search technique to

apply. The empirical results replicate previous results

concerning Greedy Algorithms. The results also show that

Genetic Algorithms perform well, although Greedy

approaches are surprisingly effective, given the

multimodal nature of the landscape. They described five

algorithms for the sequencing problem in test case

prioritization for regression testing. They presented the

results of an empirical study that investigated their relative

effectiveness.

R.Krishnamoorthi et al [3] explained the importance and

effectiveness of Regression testing. Regression testing is

an expensive, but important process in software testing.

Unfortunately, there may be insufficient resources to allow

for the re-execution of all test cases during regression

testing. In this situation, test case prioritization techniques

aim to improve the effectiveness of regression testing by

ordering the test cases so that the most beneficial are

executed first. In this paper they proposed a new test case

prioritization technique using Genetic Algorithm (GA).

The proposed technique prioritizes subsequences of the

original test suite so that the new suite, which is run within

a time-constrained execution environment, will have a

superior rate of fault detection when compared to rates of

randomly prioritized test suites. This experiment analyzes

the genetic algorithm with regard to effectiveness and time

overhead by utilizing structurally-based criterion to

prioritize test cases. An Average Percentage of Faults

Detected (APFD) metric is used to determine the

effectiveness of the new test case orderings.

Arvinder Kaur et al [4] has been assimilated the

knowledge about Regression testing and the techniques for

implementation. Regression testing is a testing technique

which is used to validate the modified software. The

regression test suite is typically large and needs an

intelligent method to choose those test cases which will

detect maximum or all faults at the earliest. Many existing

prioritization techniques arrange the test cases on the basis

of code coverage with respect to older version of the

modified software. In their approach, a new Genetic

Algorithm to prioritize the Regression test suite has been

introduced that will prioritize test cases on the basis of

complete code coverage. The genetic algorithm has also

automated the process of test case prioritization. The

results representing the effectiveness of algorithms are

presented with the help of an Average Percentage of Code

Covered (APCC) metric. The algorithm has been proposed

to prioritize test cases using Genetic Algorithm. Here,

different prioritization approaches have been analyzed,

namely: total fault coverage with in time constrained

environment and amount of code coverage on different

examples and their finite solution obtained, respectively.

Through Genetic Algorithm technique, an approach has

been identified to pull out suitable population, which was

further formulated by Genetic Algorithm operations to

make it more flexible and efficient. The elaborations of

results are shown with the help of APCC values. The

APCC has been calculated for example for code coverage

testing to evaluate the usefulness of the proposed

algorithm.

Wang Jun et al [5] explained software testing concept.

With the rapid development of information technology,

software testing, as a software quality assurance, is

becoming more and more important. In the software life

cycle, each time the code has changed there needs to be

regression testing. The huge test case library makes

running a full test case library being challenged. To this

end, they designed a genetic algorithm-based test case

prioritization algorithm and improved the genetic

algorithm proposed software test case prioritization

algorithm.

Liang You et al [6] explained the cost incur in software

testing. After the programmer fixes the bugs and enhances

the functionality of the software project, regression testing

reruns the regression testing suite to ensure that the new

version software projects can run smoothly and correctly.

Because the regression testing is the most expensive phase

of the software testing, regression testing reduction

eliminates the redundant test cases in the regression testing

suite and saves the cost of the regression testing.

Author formally defines the time-aware regression testing

reduction problem. They also propose a novel genetic

algorithm for the time-aware regression testing reduction

problem. They define the representation and fitness

 ISSN (Online) 2278-1021
 ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4843 209

function of the genetic algorithm; Algorithm also

describes the parent selection, crossover and mutation

operator of the genetic algorithm. The novel algorithm not

only removes redundant test cases in the regression testing

suite but also minimizes the total running time of the

remaining test cases. Finally, the paper evaluates the

genetic algorithm using eight example programs. The

experimental result illustrates the efficiency of the

proposed genetic algorithm for the time-aware regression

testing reduction problem.

III. OBJECTIVES

This section will cover the topic problem formulation,

objective, methodology and results of Simulation. The

problem definition section explains the existing problem in

the test cases prioritization and explains the factor needs to

be considered. After analyzing the problems, the

objectives and methodology will be explained for

implementing the Genetic Algorithm. This algorithm will

be implementing in .Net Technology with Framework 4.0

and VC# Programming Language.

In software testing, tests cases need to be generated for

detecting the errors in software. But in regression testing,

the modified software needs to be tested for identifying the

errors and to validate them. Once the software has been

modified, the test cases need to be executed again but now

the number of test cases has been increased and there is no

need to check every test case as in this situation, the cost

of regression testing will be increased in terms of time. So

as per our literature survey we have analyzed the

following Problems

i. To select and prioritize regression test suite within a

time constrained environment

ii. To cover the total fault coverage.

iii. Analyse drawbacks in existing technique.

iv. To implement Modified Genetic Algorithm (GA) for

test cases that will cover major risks / faults in minimum

time.

v. To improve the success rate of Genetic Algorithm (GA).

vi. Compare the efficiency of improved Genetic Algorithm

with existing Results..

IV. PROPOSED METHODOLOGY

i. Study of existing Genetic Algorithm.

ii. Research on working of Genetic Algorithm Steps.

iii. Flow Development of new research and its

Implementation in C#.net language

iv. Analysis of results.

v. Analysis the benefits of Genetic Algorithm.

REFERENCES
[1] Zheng Li, Mark Harman, and Robert M. Hierons, “Search Algorithms

for Regression Test Case Prioritization”, Transactions on Software

Engineering, Vol. 33, No.4, 2007.

[2] Harrold, M.J. “Retesting software during development and
maintenance”, IEEE, Page(s):99 – 108, 2008.

[3] R.Krishnamoorthi, S.A.Sahaaya, Arul Mary, “Regression Test Suite

Prioritization using Genetic Algorithms”, International Journal of

Hybrid Information Technology Vol.2, No.3, 2009.

[4] G. Rothermel, “Prioritizing Test Cases For Regression Testing”,

IEEE Transactions On Software Engineering, Vol. 27, No. 10,
2011.

[5] Arvinder Kaur, ShubhraGoyal, “A Genetic Algorithm for Regression

Test Case Prioritization Using Code Coverage”, International
Journal of Computational Science and Engineering, Vol. 3 No. 5,

2011.

[6] Wang Jun, Zhuang Yan, “Test Case Prioritization Technique based on
Genetic Algorithm”, IEEE, pg. 173 – 175, 2011.

[7] Liang You Yansheng Lu, “A Genetic Algorithm for the Time-Aware

Regression Testing Reduction Problem”, IEEE, Page(s):596 – 599,
2012.

[8] http://en.wikipedia.org/wiki/Regression_testing

