
ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4868 322

Extending Modular Software Model Checking to

Peer-to-Peer Architecture systems

Kaveti Sujana
1
, M.C.Bhanu Prasad

2

M.Tech Student, Tadipatri Engineering College
1

Vice Principal, Tadipatri Engineering College
2

Abstract: Appropriated frameworks are unpredictable, being typically made out of a few subsystems running in

parallel. Simultaneous execution and between procedure correspondence in these frameworks are inclined to lapses that

are hard to recognize by customary testing, which does not cover each conceivable system execution. Not at all like

testing, model checking can distinguish such blames in a simultaneous framework by investigating each conceivable

condition of the framework. In any case, most model-checking strategies oblige that a framework be portrayed in a

modeling dialect. In spite of the fact that this improves check, shortcomings may be presented in the execution. As of

late, some model checkers check system code at runtime yet have a tendency to be constrained to remain solitary

projects. This paper proposes cache based model checking for peer to peer systems, which unwinds the restriction to

some degree by checking one procedure at once and running different procedures in another execution environment.

This methodology has been executed as an augmentation of Java PathFinder, a Java model checker. It is a versatile and

promising procedure to handle conveyed frameworks. To bolster a bigger class of circulated frameworks, a check

pointing apparatus is additionally coordinated into the check framework. Test results on different conveyed frameworks

demonstrate the ability and adaptability of store based model checking.

Keywords: Model checker, I/O Cache, Peer process.

1. INTRODUCTION

Appropriated computing is turning out to be more critical

nowadays as most frameworks being used are circulated.

Case in point, portable applications, the ubiquity of which

continues rising, are basically conveyed [2]. A few

samples of generally utilized, Java-based, portable

applications are Google maps versatile and Gmail

portable. There are a few key elements driving the

improvement of appropriated applications [3, 4]. A few

administrations inherently oblige the utilization of a

correspondence system to unite diverse segments. Greatly

multiplayer web recreations are among such

administrations which permit a substantial quantities of

individuals to play at the same time, e.g., RuneScape2

which is composed in Java. Conveyed computing can

likewise consider creating flaw tolerant applications where

a disappointment in a procedure does not prevent different

procedures from running, and the application can at

present finish its assignment. The Netix API is an

illustration of a framework that uses circulated segments

to give adaptation to internal failure.

In addition, disseminated frameworks give the utilization

of the computational force of various machines to process

undertakings quicker and handle bigger issues. Case in

point, Memcached is an elite dispersed memory reserving

framework intended to accelerate element web

applications. The Netix EV Cache open-source task

utilizes Memcached. Some different clients of the

Memcached storing framework are Facebook, Twitter,

Wikipedia, YouTube. Dispersed computing is likewise

utilized as a part of concentrated exploratory recreations to

increase speed, e.g., CartaBlanca is a physical framework

reproduction bundle written in Java which utilizes MPJ

Express (a Java message passing library) to parallelize its

processing. At long last, utilizing disseminated

applications considers sharing assets in an organized

framework, for example, circle, printers, and databases.

This can be found in frameworks taking into account

distributed computing [5] which are circulated frameworks

taking after the customer server model wherein one or

more customers solicitation data from a server. Distributed

computing is one of the major centers of driving

organizations in the PC business, for example, Apple,

Amazon, Google. The larger part of Google

administrations take after the distributed computing

model. Some of those administrations are in light of Java,

for example, Google Docs, Google Calendar, and Gmail.

When all is said in done, circulated applications are

difficult to create.

These applications are naturally simultaneous, and their

conduct is nondeterministic which makes it hard for

developers to consider every single conceivable conduct of

the application. Other than concurrency mistakes,

designers of such applications need to manage different

issues tied with a conveyed setting, for example, the

likelihood of disappointments at different levels, for

instance, inside of the procedure starting the

correspondence, between the time that information is

transmitted between procedures, inside of the procedure

accepting information. Another issue in programming

disseminated applications is picking up a steady

perspective of information over the framework. By and

large, testing conveyed frameworks is hard. Distinctive

segments of the framework may have diverse

programming and equipment prerequisites, and

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4868 323

consequently setting up a situation to test such

applications can be troublesome. Besides, because of the

likelihood of disappointments at diverse levels, testing

such applications against potential deformities obliges

infusion or reenactment of disappointments at a few

unique layers.

Java is a standout amongst the most prevalent

programming dialects . It is viewed as a dialect of decision

for some engineers of dispersed applications, e.g., the

dominant part of top most watched Java extends on

GitHub, which is a prevalent online facilitating

administration for programming frameworks, are

appropriated applications. Java has a few components

which makes it a capable domain for growing such

applications [5]. Java is stage autonomous, that is, a

solitary adaptation of Java code can keep running on any

stage with a Java virtual machine (JVM). It underpins

multithreaded programming and offers an exemption

taking care of component which is valuable for creating

deficiency tolerant applications. It additionally gives

multilevel backing to network correspondence including

essential systems administration backing, for example,

attachments used to set up association in the middle of

procedures, and information correspondence conventions,

for example, TCP and UDP. At a larger amount, it gives

organizing capacities, for example, conveyed items,

correspondence with databases. At long last, Java

underpins two parts of security for circulated applications.

Since in a circulated Java application, running parts, (for

example, Java applets) can move over the system, Java

gives approaches to secure the runtime environment of

beneficiary procedures, for instance, by limiting access to

the neighborhood file framework. It likewise takes into

account including client verification, and encryption of

information sent over the system to set up secure system

associations.

2. RELATED WORK

Routine model checking systems executed by different

Java model checkers are just material to single-procedure

applications, and they can't deal with disseminated

frameworks [6]. All in all, applying the model checking

system on appropriated Java applications is not minor. The

methods that have been proposed to model check

conveyed Java applications can be separated into two

fundamental classifications: (1) reserve based, (2)

centralization. In the store based methodology, the model

checker checks stand out procedure and its correspondence

with whatever is left of the procedures. In the

centralization approach, the disseminated application is

caught inside of a solitary procedure, and the model

checker has the capacity confirm all the conveying

procedures.

The reserve based methodology runs stand out procedure,

as a SUT (System Under Test) [7], inside of the model

checker, and rest of the procedures, hereafter called peers,

keep running outside of the model checker either inside of

their local surroundings or a virtualization thereof. The

principle test of this methodology is to keep the SUT in

synchronization with its peers subsequent to the model

checker does not have any control over the execution of

peers, and their execution is not subject to backtracking.

After the model checker backtracks, the SUT might resend

information which may intrude on the right conduct of the

peers. Also, in the wake of backtracking, peers don't

resend beforehand sent information to the SUT. Existing

store based strategies location this issue by presenting a

reserve layer between the SUT and its peers.

An option approach for the store based methodology is

centralization. The current centralization strategies can be

connected at either the SUT level or the working

framework (OS) level. In centralization at the SUT level,

the appropriated application is changed into a solitary

procedure application which is then nourished to a model

checker as a SUT. In this strategy, circulated procedures

are mapped onto conveying strings inside of a solitary

procedure application. This as a rule incorporates a model

of the between procedure correspondence (IPC) [8]

instrument that is utilized for correspondence.

Centralization at the SUT level obliges managing a few

issues. How are procedures spoken to? How restrictive

access to static characteristics is accommodated diverse

procedures? How static synchronized routines are took

care of? How is the shutdown semantics determined?

Since the strategy proposed in this exploration is likewise

subjected to comparative issues, we give an itemized talk

of methods applying centralization at the SUT level.

One of the disadvantages of this methodology is that it

obliges manual client intercession, e.g., the client needs to

determine non determinism focuses inside of procedures.

Additionally, in this approach, the OS alongside the

running procedures frame the SUT, and along these lines

states incorporate excess data if one is keen on the conduct

of the disseminated application, and not the OS. It expends

a lot of time and memory assets, and irritates the state

space blast issue.

3. PROPOSED SYSTEM

 Appropriated frameworks are complex because of

various units of execution working in parallel. They are

made out of a few procedures, by and large running on

diverse stages. Procedures correspond with one another

more than a system. As system correspondence is not

impeccable by and by, messages may be postponed or

even lost. Model checking is a method to recognize

property infringement in a simultaneous framework by

investigating each conceivable execution way. As needs

be, each conceivable condition of the framework is

checked against given properties. The beneath figure

demonstrates the general model checking procedure where

framework under test (SUT) is the data to the model

checker and the peer is the procedure in which the model

is sent. The correspondence between the model checker

and peer is spoken to in bolts. The SUT is a procedure that

an analyzer needs to check in a product model checker.

 Modules:

 Synchronizing

 I/O Determinism

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4868 324

 Cache Implementation

 Model Checking

Figure 1: SUT model

 This condition of execution characterizes the peer

in which model checking must be performed and unites

with that peer and gets the model subtle elements and sets

up a correspondence between the model checker and the

peer framework. In the wake of setting up this module will

considered mindful to keep up and stay informed

regarding the correspondence channel.

Figure 2: Proposed Model

Synchronizing

 The above figure demonstrates the information

stream of the synchronizing module where the bolt checks

portray the synchronizing procedure. At whatever point

the correspondence channel built up its the work of this

module to keep up that and if any drops happen then the

synchronizing module promptly interfaces back to the peer

process.

I/O Determination:

This module is dependable to keep up Input/ Output

interchanges between the peer and the model checker at

whatever point the model checker needs a data a trigger is

sent to the client to give the information. At the point

when client gives the information the I/O module

exchanges that to model checker.

Cache Implementation:

In this module, the expression "solicitation" (Out) alludes

to a message sent from a SUT to a peer while the

"reaction" (In) alludes to a message sent from a peer to a

SUT. A reserve stores a solicitation message and a

reaction message in pair. We call it the I/O store, on the

grounds that it records the system information and yield of

every procedure. The I/O store will be in the middle of the

SUT and the peer process.

Model Checking:

Model checking has a few points of interest that make it

better than other check systems, for example, testing,

runtime confirmation, hypothesis demonstrating, sort

checking, and unique elucidation. Model checking is

normally wanted to testing and runtime check when

concurrency becomes an integral factor, following

dissimilar to model checking these procedures don't have

any control over the booking of the simultaneously

running segments, and hence are not ready to check all

conceivable execution ways of the application. Model

checkers can likewise effortlessly give counter

illustrations which make the procedure of settling blunders

much less demanding.

Model checking is for the most part robotized, and it is by

and large simpler to apply contrasted with strategies, for

example, hypothesis demonstrating which obliges an

abnormal state of aptitude and client connection.

Also, model checkers take into account the detail of

properties identified with the usefulness of the application,

henceforth considering confirming an extensive variety of

necessities, i.e., not at all like the sort checking system and

static analyzers in view of conceptual entomb predation

which are executed particular to specific properties. A

point by point depiction of confirmation methods said

above and their examination with model checking can be

found in my qualifying exam.

The real test in model checking is the state space blast

issue which happens when the state space of the

framework under test (SUT) turns out to be too substantial

and accessible memory assets are insufficient to store it. A

generally utilized strategy to address this issue is fractional

request diminishment which lessens the quantity of

executions that should be checked by considering

simultaneously executed guidelines that don't influence

one another. In view of the way that states are spoken to,

model checking calculations can be arranged into two

fundamental classes: unequivocal state model checking

which specifically manages states versus typical model

checking which manages sets of states [1].

In this work we utilize unequivocal state model checking.

This method uses diagram calculations to make and

investigate the state space. Vertices of the chart speak to

states and the edges speak to guidelines which, when

executed, take the framework starting with one state then

onto the next. While investigating the chart, the states are

checked against the craved properties. The calculation

keeps a record of went by states so it can backtrack to

states which exemplify non-deterministic decisions to

investigate new ways.

This is the principle module which gives all the

functionalities of the model checker. We consider Java

PathFinder as premise to this model checker and

actualized on checking the java byte code.

The model checking checks all the conceivable state

moves of the code to check for the conceivable

deficiencies. It efficiently investigates the whole state

space of a framework by investigating the result of every

conceivable follow in a framework, beginning from a

given starting state.

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4868 325

4. RESULTS

 The main aspect of this paper is to reduce the

time taken to compute the model checking the file size,

means while the size increases the computation of peer

communication has to be reduced.

 The figure 2 clearly depicts the time variations

between the related work and the proposed work.

Figure 3: Time Comparison

 As the figure above clearly depicts that the

proposed work takes much less time as the file size keeps

on increasing. It clearly explains that at initial it takes

more time once the keys are computed then further it takes

much lesser time.

5. CONCLUSION

This paper has exhibited various methodologies that check

a solitary process (the SUT), which speaks with other peer

forms. The key issue in the check of arranged

programming is that the condition of the SUT is returned

(backtracked) by a model checker amid confirmation, yet

the conditions of the peers are most certainly not. A

synchronization instrument is expected to keep up the

consistency of the framework. Two methodologies have

been displayed: peer restart and peer state catch. The

previous restarts the peer from the earliest starting point

and replays a correspondence follow to recuperate

framework consistency. The peer state catch methodology

takes a depiction of the peer in every state and stores it in a

checkpoint. The checkpoint can be utilized to restore the

peer in the state relating to the SUT. To enhance the

execution of check, reserve based model checking has

been exhibited. It makes utilization of a reserve for

catching correspondence follows between the SUT and its

peers.

REFERENCES
[1] Watcharin Leungwattanakit, Cyrille Artho, Masami Hagiya,

“Modular Software Model Checking for Distributed Systems”,
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.

40, NO. 5, MAY 2014, PP.483-501.

[2] Valentino Lee, Heather Schneider, and Robbie Schell. Mobile
Applications: Architecture, Design, and Development. Prentice

Hall, 2004.

[3] Jim Farley. Java Distributed Computing. O'Reilly, 1998.

[4] Esmond Pitt. Fundamental Networking in Java. Springer-Verlag,

2010.
[5] Peter Mell and Tim Grance. The NIST De_nition of Cloud

Computing. Technical report, National Institute of Standards and

Technology, http: //www.nist.gov/itl/cloud/upload/cloud-def-
v15.pdf, 2009.

[6] Glenford J. Myers. The Art of Software Testing. Wiley, 2004.

[7] Klaus Havelund and Grigore Rosu. Monitoring Java Programs with
Java PathExplorer. In Proceedings of the Logical Aspects of

Cryptographic Protocol Veri_cation, volume 55 of Electronic Notes

in Theoretical Computer Science, pages 200{217, Paris, France,
July 2001. Elsevier.

[8] Moonzoo Kim, Mahesh Viswanathan, Sampath Kannan, Insup Lee,

and Oleg Sokolsky. Java-MaC: A Run-Time Assurance Approach
for Java Programs. Formal Methods in System Design,

24(2):129{155, March 2004.

