
ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4898 453

Design, Analysis and FPGA Implementation of

N Bit Vedic Multiplier Based on Different Adder

Architectures

S.Tamilselvan
1
, V. Anil Kumar

2
, V. Kamalkannan

3
, CH.V.M.S.N.Pavan Kumar

4

Assistant Professor, Department of ECE, Pondicherry Engg. College, Pondicherry, India
 1

Assistant Professor, Department of ECE, Tirumala Engg. College, Jonnalagadda, India
 2

Research Scholar, Department of ECE, Pondicherry Engg. College, Pondicherry, India
 3,4

Abstract: The speed of the multipliers depends on the speed of the adders which are used for addition of partial

products. The papers main focus is on the time delay of the multiplication operation on multipliers based on the ancient

Vedic mathematical Sutra called Urdhva Tiryakbhyam i.e. vertically and cross wise Sutra. This Vedic multiplier is

implemented using adder which has lesser time delay among carry look ahead adder, ripple carry adder, carry skip

adder and carry select adder. The Vedic multiplier is coded in Verilog HDL and simulated using Xilinx ISE 14.3

software. This multiplier is implemented on Spartan 6 FPGA devices. The Vedic multiplier is compared in terms of

time delay with conventional multiplier and it is used in Fast Fourier Transform algorithm.

Index Terms: Ripple Carry Adder (RCA), Carry Look Ahead Adder (CLA), Carry Select Adder (CSA), Urdhva

Tiryakbhyam, Fast Fourier Transform.

I. INTRODUCTION

Multipliers play a very important in today‘s computers,

image processing and various applications. Many

scientists and researchers has tried and are trying to design

a multiplier which will offer the following design targets –

high speed, less area, low power consumption and thus

makes it suitable for various high speed, low power VLSI

implementations. The multiplication commonly used is

based on ―shift and add‖ method [1]. In this multiplier, the

number of partial products to be added is the main

parameter that determines the performance of the

multiplier. The number of partial products to be added is

reduced using Modified Booth algorithm which is one of

the most popular algorithms [2-5]. To improve speed,

Wallace Tree algorithm can be used to reduce the number

of sequential adding stages. Combination of both Modified

Booth algorithm and Wallace Tree technique can provide

advantage of both algorithms in one multiplier. But with

increasing parallelism, the number of shifts between the

partial products and intermediate sums to be added will

increase which may result in reduced speed and increase in

silicon area and also increased power consumption due to

increase in interconnect resulting from complex routing.

On the other hand ―serial-parallel‖ multipliers compromise

speed to achieve better performance for area and power

consumption [18-19]. The selection of parallel or serial

multiplier is actually depends on the nature of application.

In this paper we introduce the multiplier using Vedic

algorithm and its architecture and compare them in terms

of time delay [6]. In microprocessor, DSP etc., addition

and multiplication of two binary digits is the basic and

most commonly used arithmetic operations. Statics shows

that more than 70% instructions in microprocessor and

most of DSP algorithms perform addition and

multiplication [7]. So, addition and multiplication

operations dominate the execution time. That‘s why; there

is need of high speed multiplier [14-15]. The high speed

processor demand has been increasing as a result of

increasing computer and signal processing applications

[16]. The consumption of power is also an important issue

in multiplier design. In order to reduce power

consumption, it is good to reduce the number of operation

thereby reducing dynamic power which is a major part of

total power consumption so the need of high speed and

low power multiplier has increased [6]. Designer mainly

concentrates on high speed and low power efficient circuit

design. A good multiplier should be compactly packed and

provide high speed and low power consumption unit [8].

II.URDHVA TIRYAKBHYAM SUTRA

The Vedic multiplier is based on the Vedic multiplication

formulae called Sutra. This Urdhva Tiryakbhyam is for the

multiplication of two digits [5]. In this paper, we will

apply the same ideas to make the proposed multiplier

compatible with the digital hardware.

Urdhva Tiryakbhyam Sutra is a general multiplication

sutra applicable to all cases of multiplication. The meaning

of Urdhva Tiryakbhyam is ―Vertically and crosswise‖.

The end digits of two lines are multiplied and the output is

summed with the previous carry [6]. Initially the carry-in

is taken to be as zero. When there are more lines in single

step, all the outputs are summed to the previous carry.

LSB of the number will be one of the final output digits

and the rest wills act as the carry in for next step [20].

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4898 454

The multiplication of two 4-bit numbers is as shown in

Fig. 1. Consider an example, which describes the

multiplication of two decimal numbers 123x456. In First

step, we take the product of LSBs of the multiplier and

multiplicand, the LSB of the result i.e. 8 in this case, is

stored and carry is generated for the next step i.e. 1. In step

two, the two LSBs are multiplied crosswise, and their

product is added with the previous carry.

Fig. 1.Line diagram of Urdhva Tiryakbhyam

Likewise in the next step all the bits are multiplied

crosswise and their products are summed up with the

previous carry. Again In the next step, two MSBs are

crosswise multiplied, and their results are added in the

similar manner. And finally, the MSBs of the multiplier

and multiplicand are multiplied, and the output is added

with the previously generated carry to get the end result.

We can apply this sutra to multiply binary numbers. As

shown in Fig. 1 the bits of multiplier and multiplicand are

crosswise multiplied and their result is added with

previous carry to get the result of that step [10]. Then the

final product is obtained by concatenating the results from

each step and the carry in the last step. In Fig.1 bits are

represented by circles [11].

A 2x2 Vedic Multiplier Architecture is obtained by using

2 half adders and four AND gates [9], as shown in Fig. 2.

The product a0b0 is directly given to the output, a1b0 and

a0Yb1 are added using first half adder and the half adder

sum output is directly given to the output and the carry is

added with product a1b1 using second half adder.

S0=a0xb0,

S1=a0xb1+a1xb0,

S2=a1xb1+C1,

Result= {C2S2S1S0}.

In this Vedic multiplier, different adders have been used

and their performance has been analyzed based on time

delay [6].

III. DIFFERENT ADDER ARCHITECTUERS

The different adders used for analysis and comparison in

our project are

 Ripple Carry adder

 Carry Look ahead adder

 Carry Skip adder

 Carry Select adder

Fig.2 Architecture of a 2x2 multiplier

A. Ripple carry adder

Input: Binary stream A, Binary stream B, Carry in (C0)

Output: SUM (Sn), Carry OUT (Cout)

N-bit Ripple Carry Adder has N Full Adders cascaded

serially where the carry ripples along the n-1 stages to

generate the final Carry Out. Each full Adder (FA)

generates the sum (Si) and carry (Ci) from the input bit

stream and the sum output of each stage is calculated by

Si= (Ai^Bi)^Ci-1 and the carry by

Ci= (Ai & Bi) + (Ai+Bi)Ci-1.

Fig.3 N-bit Ripple Carry Adder

Fig. 3 shows the block description of n-bit Ripple Carry

Adder. Ripple-carry adders are the simplest and most

compact adders but its performance is limited by the carry

which must ripple from the LSB to MSB.

N full adder (FA) circuits are parallerley cascaded to add

an N-bit number. N full adder circuits are required for N-

bit addition. A ripple carry adder (RCA) is an adder circuit

in which the full adders carry out is given as carry in of the

succeeding full adder. It is so called ripple carry adder

because each carry bit generated in a stage gets rippled

into the next stage of full adder. In a ripple carry adder, the

sum and carry out of a half adder circuit is not valid before

the carry in of that half adder circuit occurs. The

Propagation delays inside the RCA circuitry are the reason

behind this which is the time delay between the

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4898 455

application of an input and occurrence of the

corresponding output. In a NOT gate, when the input is

―0‖, the output will be ―1‖ and vice- versa. Propagation

delay is the reason for the delay in NOT gate to get the

output as ―1‖ after the application of logic ―0‖ to the input.

Thus the propagation delay of carry is the time delay

between the application of the carry in (Cin) signal and the

occurrence of the carry out (Cout) signal.

B. Carry Look Ahead Adder

The below figure describes the block diagram of the CLA

in two modules

A. Describes the Partial Full Adder

B. Describes the Carry Look ahead Logic.

Fig. 4.4-bit Carry Look Ahead Adder

The Carry Look Ahead Adder (CLA) is the most widely

used design for high-speed adders in modern Computers.

The boon of using a carry look-ahead design over a ripple

carry adder is that the Look-ahead is faster in computing

the carry out. The carry-in values of each stage in a carry

look-ahead design are calculated independent of each

other through a series of logic circuits.

Process:

The equations of propagate and generate terms are

Gi= ai+ bi and Pi = ai^ bi

C1=G0+P0.C0 (1)

C2=G1+P1.C1=G1+P1.G0+P1.P0.C0 (2)

C3=G2+P2.G1+P2.P1.G0+P2.P1.P0.C0 (3)

C4 = G3 + P3.G2 + P3.P2.G1 + P3P2.P1.G0 + P3P2.P1.P0.C0`

(4)

The time delay difference between a ripple and a carry

look-ahead adder increases as the size of the input

increases because look-ahead generates carry out based on

the initial carry in.

It is observed that the Carry-in‘s are independent of each

other instead of rippling together. They are instead

predicted by another logic device from A and B‘s inputs.

The operational logic for this process is somewhat

complicated and more involved than the ripple carry

adder.

C. Carry select adder

Carry select Adder (CSA) is a better adder especially in

the case of delay of carry. In a ripple-carry adder, every

full adder stage has to wait for the incoming carry before a

carry out of that stage can be generated. This limitation

can be overcome by calculating sum and carry out for

possible values of the carry input (0,1) in advance. Once

the correct value of the incoming carry is known, the

correct carry out result is easily selected with a simple

multiplexer stage. The idea leads to the implementation of

an adder called the linear carry select adder and the block

diagram of the first four bit linear carry select adder is

shown below.

Fig. 5.Carry Select block diagram

In the above diagram, all the inputs are given at a time to

both carry in Ci =0 and the Ci =1 carry logic. The carry

circuits generate the appropriate carry-out and depending

upon the original carry input the correct carry out and sum

are selected from the multiplexer. This is the Basic 4 bit

carry select adder. Thus for implementing the Higher order

bit the carry out from the Multiplexer passes as the carry

in for the next 4-bit, while the inputs are given at the same

time. It is clear that the time delay is reduced to a large

extent by performing the carry calculations in advance, but

the disadvantage is that the hardware over head of the

carry select adder is depends on the additional carry path

and a multiplexer.

D. Carry skip adder

The carry skip adder provides a compromise between a

ripple carry adder (RSA) and a CLA. The carry skip adder

divides the words to be added into blocks. In each block,

ripple carry is used to produce the sum bit and the carry.

The Carry Skip Adder reduces the time delay due to the

computation of carry i.e. by skipping over groups of

consecutive adder stages. If Ai is not equal to Bi in a

group, then there is need to compute the new value of

Ci+1 for that block and the carry-in of the block can be

propagated directly to the next block. If Ai = Bi = 1 for

some i in the group, a new carry is generated which may

be propagated up to the input of next group. If Ai = Bi = 0,

a new carry will be generated and fed as input to next

group. The basic idea behind the carry-skip adder is to

detect if in each group all Ai is not equal to Bi, then enable

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4898 456

the block‗s carry-in to skip the block [12-13]. In general a

block-skip delay can be different from the delay due to the

propagation of a carry to the next bit position. In a carry

skip adder, the growth of carry chain delay with the input

digit size is reduced by making carry to skip the blocks of

bits than rippling through them.

Fig.6 Carry skip adder

A carry-skip adder consists of ripple carry-adders (RCA)

with a special speed up mechanism called a skip

mechanism. Carry skip adder is a faster when compared to

ripple carry adder. In an addition of large number of bits

(n), carry skip adder has O (√n) delay which gives a better

performance in terms of delay and layout of the circuit.

Carry skip adder is based on carry skip mechanism which

requires ripple carry blocks. A Carry skip adder is

designed to increase the speed of addition by doing the

skipping of a carry bit over a portion of the adder.

Moreover the ripple carry adder (RCA) is faster for lesser

number of bits. The industries of these days‘ uses desktop

computers which use word lengths of 32 bits which in turn

makes the carry skip structure more important. The

crossover point between the carry skip adder and ripple-

carry adder (RCA) is dependent on technology

considerations. The carry-skip mechanism requires logic

gate AND which accepts the propagate input of each full

adder and if the output of the AND gate is 1 then the carry

input is skipped and given as input to next block. The

block diagram of carry skip adder is shown in figure 6.

IV. FAST FOURIER TRANSFORM

A Fast Fourier Transform (FFT) is an effective algorithm

to calculate the Discrete Fourier Transform (DFT) and

Inverse Discrete Fourier Transform (IDFT). The FFT is

based on method of decomposition of transform into

smaller transforms and combining the smaller transforms

to get the full transform. Fast Fourier Transform (FFT)

efficiently performs Discrete Fourier transform and the

performance is increased by a factor of 100 over direct

computation of the DFT [17].

The algorithm of Fast Fourier Transform provides the two

basic properties such as twiddle factor - the symmetry

property and periodicity property. This properties reduces

the number of complex multiplications involved to

compute DFT. Calculating a N point DFT in the direct

way requires O(N^2) operations, while an Fast Fourier

Transform requires only O(N log N) operations to

compute the same result [7].

Fast Fourier Transform (FFT) algorithms are based on the

principle of decomposing a sequence of length N discrete

Fourier Transform into successively smaller discrete

Fourier transforms.

There are basically two classes of FFT algorithms.

Decimation In Time (DIT) algorithm

Decimation In Frequency (DIF) algorithm.

A. Decimation In Time (DIT) Algorithm

The Radix-2 Decimation In Time (DIT) algorithm divides

the Discrete Fourier Transform of the function x(n) of

length N into two terms: a sum over the indices of even-

numbered n = 2m and a sum over indices of odd-

numbered n = 2m + 1.

 ∑

∑

 (5)

Since these smaller DFTs have a length of N/2, only N/2

outputs are need to be computed, DFT outputs for N/2 < k

< N of length N/2 are identical to the DFT outputs for 0< k

< N/2.So, Ek + N / 2 = Ek and Ok + N / 2 = Ok. The phase

factor exp [− 2πik / N] is known as twiddle factor which

obeys the relation: exp[− 2πi(k + N / 2) / N] = e
-πi

exp[−

2πik / N] = − exp[− 2πik / N], turning over the sign of the

Ok +N / 2 terms.

 {

 (6)

If N/2 is even, we can further split the computation of each

DFT of size N/2 into two computations of half size DFT.

When N=2
r
 this can be done until DFT of size 2 (i.e.

butterfly diagram of two elements).

The Vedic multiplier is used in the FFT algorithm

wherever multiplication is involved. According to the

algorithm, in each stage the twiddle factor is multiplied

with corresponding input and then added or subtracted to

corresponding term to get output of that stage.

Fig. 7 8 point Radix 2 FFT general diagram

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4898 457

The multiplier used in the twiddle Factor multiplication is

Vedic multiplier. In the addition part of the algorithm,

carry select adder is used. In 8 point FFT 8, 16 and 32 bit

carry select adders are used in the addition process of the

algorithm and 8 and 16 bit multipliers are used in the

multiplication process of the algorithm.

V. RESULTS AND COMPARISIONS

A. Simulation results of 4-bit adders

Fig. 8 Simulation of 4-bit carry look ahead adder

Fig.9. Simulation of 4-bit ripple carry adder

Fig. 10.Simulation of 4-bit carry select adder

Fig.11 Simulation of 4-bit carry skip adder

Table I Comparison of 4 Bit Adders Based On Time Delay

The time delay of carry select adder is lesser than that of

the other adders.

B. Simulation Results of Vedic Multiplier Using 8, 16 Bit

Carry Select Adder

Fig.12 Vedic multiplier using 8-bit carry select adder

Fig.13 Vedic multiplier using 16-bit carry select adder

Table II Summary of Vedic Multiplier Using Carry Select

Adder

Bit Number of

slice LUTs

Time

delay(ns)

4bit 25 10.386

8bit 127 15.916

16bit 577 24.047

Since carry select adder had lesser time delay it was used

in the Vedic multiplier for addition process and the above

results was obtained.

C. Simulation results of Fast Fourier Transform using

Vedic multiplier

Technology schematic

Adders Number of

slice LUTs

Time

delay(ns)

CLA 10 6.494

Ripple carry 6 7.682

Carry select 6 6.494

Carry skip 8 6.494

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4898 458

Fig.14 Technology schematic of FFT

Simulation Results

Fig.15 Input of 8 point FFT

1
st
 stage output

Fig.16 1
st
 stage output of 8 point FFT

2
nd

 stage output

Fig.17 2nd stage output of 8 point FFT

Final stage output

Fig.18 Final stage output of 8 point FFT

Table III Comparison of FFT Using Vedic and

Conventional Multiplier

FFT using Time delay(ns)

Vedic multiplier 23.47

conventional multiplier 41.055

FFT using Vedic multiplier has better time delay than that

of FFT using conventional multiplier.

D. Implementation of Proposed Vedic Multiplier in

Spartan 6 FPGA Board

Fig.19. SPARTAN 6 FPGA BOARD

VI. CONCLUSION

A Conclusion

Carry Select Adder (CSA) had lesser time delay when

compared to Ripple carry Adder, Carry look ahead adder

and Carry skip ahead adder architectures from our

analysis. The Vedic multiplier was designed using carry

select adder. The proposed Vedic multiplier was used in

the Fast Fourier Transform algorithm and its time delay

was better compared to that of the Fast Fourier transform

using conventional multiplier. The proposed Vedic

multiplier was implemented in the Spartan 6 FPGA board.

B. Future work

Digital technology which are now in almost every

engineering field. In Digital Signal Processing Faster

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 8, August 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4898 459

computation of additions and multiplications are required

for faster computation of convolution, DFT etc. The basic

computing process in any digital device is always a

multiplication process. Therefore, Digital Signal

Processing engineers are constantly looking for new

efficient algorithms and hardware to implement them. The

increasing demand on Digital Signal Processing

application makes the researchers and engineers to pay

attention on low cost, high speed, single chip

implementation of DSP algorithm. Fast Fourier Transform

(FFT) is the one of the basic algorithm that is primarily

performed in any Digital Signal Processing system. The

Fast Fourier Transform is widely used in digital signal

processing (DSP) applications such as image processing,

wireless communication, instrumentation and inspection

of machines. The Vedic mathematics methods are

complementary, direct and easy. Employing Vedic

Mathematic sutra in the computation algorithms of the

processor will decrease the execution time, area, power

dissipated etc. Urdhva Tiryakbhyam, being a general

multiplication sutra, is generally applicable to all types of

multiplication. Another Vedic mathematics sutra called

Nikhilam algorithm has the compatibility to different data

types. This Nikhilam sutra can be used to build a high

speed power efficient reconfigurable FFT.

REFERENCES

[1] Gaurav Sharma, Arjun Singh Chauhan, Himanshu Joshi and Satish

Kumar Alaria, ―Delay Comparison of 4 by 4 Vedic Multiplier based
on Different Adder Architectures using VHDL‖, International

Journal of IT, Engineering and Applied Sciences Research

(IJIEASR), ISSN:2319-4413, Volume 2, No.6, pp: 28-32, June
2013.

[2] Bathija, R.K., Meena, R.S., Sarkar, S., Sahu, Rajesh, ―Low Power

High speed 16X16 bit Multiplier using Vedic Mathematics‖,
International Journalof Computer Applications(IJCA), Vol. 59,

Number 6, December 2012.

[3] Premananda B.S., Samarth S. Pai, Shashank B., Shashank S. Bhat,
―Design and Implementation of 8-Bit Vedic Multiplier‖,

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering, ISSN: 2320 – 3765
Vol. 2, Issue 12, December 2013.

[4] Anju and V.K. Agrawal, ―FPGA Implementation of Low Power and

High Speed Vedic Multiplier using Vedic Mathematics‖, IOSR
Journal of VLSI and Signal Processing (IOSR-JVSP), ISSN: 2319 –

4200, Volume 2, Issue No.5, pp: 51-57, June 2013.

[5] R. Sridevi, AnirudhPalakurthi, AkhilaSadhula, HafsaMahreen,
―Design of a High Speed Multiplier (Ancient Vedic Mathematics

Approach)‖, International Journal of Engineering Research, ISSN:

2319-6890 Volume No.2, Issue No.3, pp: 183-186, July 2013.
[6] Basant Kumar Mohanty and Sujit Kumar Patel, ―Area–Delay–Power

Efficient Carry-Select Adder‖, IEEE Transaction on Circuits and

Systems—II: Express Briefs, VOL. 61, NO. 6, June 2014.
[7] Lakshmi Santhosh and Anoop Thomas, ―Implementa- tion of Radix 2

and Radix 2^2 FFT Algorithms on Spartan6 FPGA‖, Fourth

International Conference on Computing, Communications and
Networking Technologies (ICCCNT), IEEE, 6th July 2013.

[8] Wallace, C.S., ―A suggestion for a fast multiplier,‖ IEEE Trans. Elec.

Comput., vol. EC-13, no. 1, pp. 14–17, Feb. 1964.
[9] Booth, A.D., ―A signed binary multiplication technique,‖ Quarterly

Journal of Mechanics and Applied Mathematics, vol. 4, pt. 2, pp.

236– 240, 1951.
[10] Jagadguru Swami Sri Bharath, Krsna Tirathji, ―Vedic Mathematics

or Sixteen Simple Sutras from the Vedas‖, Motilal Banarsidas,
Varanasi (India), 1986.

[11] A.P. Nicholas, K.R Williams, J. Pickles, ―Application of Urdhva

Sutra‖, Spiritual Study Group, Roorkee (India), 1984.

[12] Neil H.E Weste, David Harris, Ayan anerjee,‖CMOS VLSI Design,

A Circuits and Systems Perspective‖, Third Edition, Published by
Person Education, PP-327-328]

[13] Mrs. M. Ramalatha, Prof. D. Sridharan, ―VLSI Based High Speed

Karatsuba Multiplier for Cryptographic Applications Using Vedic
Mathematics‖, IJSCI, 2007.

[14] Thapliyal H. and Srinivas M.B. ―High Speed Efficient N x N Bit

Parallel Hierarchical Overlay Multiplier Architecture Based on
Ancient Indian Vedic Mathematics‖, Transactions on Engineering,

Computing and Technology, 2004, Vol.2.

[15] ―A Reduced-Bit Multiplication Algorithm for Digital Arithmetic‖
Harpreet Singh Dhilon and Abhijit Mitra, International Journal of

Computational and Mathematical Sciences, Waset, Spring, 2008.

[16] D. Zuras, On squaring and multiplying large integers, In
Proceedings of International Symposium on Computer Arithmetic,

IEEE Computer Society Press, pp. 260-271, 1993.

[17] Shripad Kulkarni, ―Discrete Fourier Transform (DFT) by using
Vedic Mathematics‖Papers on implementation of DSP

algorithms/VLSI structures using Vedic Mathematics, 2006,

www.edaindia.com, IC Design portal.
[18] M.C. Hanumantharaju, H. Jayalaxmi, R.K. Renuka, M. Ravishankar,

"A High Speed Block Convolution Using Ancient Indian Vedic
Mathematics", vol. 2, pp.169-173, International Conference on

Computational Intelligence and Multimedia Applications, 2007.

[19] Himanshu Thapliyal, ―Vedic Mathematics for Faster Mental
Calculations and High Speed VLSI Arithmetic‖, Invited talk at

IEEE Computer Society Student Chapter, University of South

Florida, Tampa, FL, Nov 14 2008.
[20] Jeganathan Sriskandarajah, ―Secrets of Ancient Maths: Vedic

Mathematics‖, Journal of Indic Studies Foundation, California,

pages 15 and 16.

