
ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 4, Issue 9, September 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4910 44

Sine-Cosine Computation Using CORDIC

Algorithm

Ranjita Naik
1
, Riyazahammad Nadaf

2

UG Student, Dept of Computer Science, BVB College of Engineering & Technology, Hubli, India
 1

PG Student, Dept of Electronics and Communication, SDM College of Engineering & Technology, Dharwad, India
 2

Abstract: CORDIC stands for Coordinate Rotation Digital Computer. The CORDIC algorithm was introduced for the

computation of Trigonometric functions, Multiplication, Division, Data type conversion, Square Root and Logarithms.

It is a highly efficient, low complexity, hardware efficient algorithm giving a robust technique to compute the

elementary functions. In the paper the CORDIC algorithm, its usage in calculating quadrature functions, its applications

and advantages and disadvantages are explained.

Keywords: CORDIC (Coordinate Rotation Digital Computer), Sine-Cosine, CORDIC Algorithm.

I. INTRODUCTION

CORDIC stands for Coordinate Rotation Digital

Computer. It calculates the value of trigonometric

functions like sine, cosine, magnitude and phase to any

desired precision. It can also calculate hyperbolic

functions (such as sinh, cosh and tanh). The CORDIC

algorithm does not use calculus based methods such as

polynomial or rational function approximation. It is used

as approximation function values on all popular graphic

calculators, including HP-48G as the hardware restriction

of calculators require that the elementary functions should

be computed using only additions, subtractions, digit

shifts, comparisons and stored constants. CORDIC

algorithm revolves around the idea of "rotating" the phase

of a complex number, by multiplying it by a succession of

constant values.

However, the "multipliers" can all be powers of 2, so in

binary arithmetic they can be done using just shifts and

adds. There is no actual "multiplier" needed, thus it is

simpler and does not require a complex hardware structure

as in the case of multiplier. Earlier methods used for

evaluation of trigonometric functions are table look up

method, polynomial approximation method etc. CORDIC

is useful in designing computing devices. As it was

originally designed for hardware applications, there are

features that make CORDIC an excellent choice for small

computing devices. Since it is an iterative method it has

the advantage over the other methods of being able to get

better accuracy by doing more iteration, whereas the

Taylor approximation and the Polynomial interpolation

methods need to be averaged to get better results.

These properties, in addition to getting a very accurate

approximation is perhaps the reason why CORDIC is used

in many scientific calculators today. Due to thesimplicity

of the involved operations the CORDIC algorithm is very

well suited for VLSI implementation. However, the

CORDIC iteration is not a perfect rotation which would

involve multiplications with sine and cosine. The rotated

vector is also scaled making a scale factor correction

necessary.

II. CORDIC ALGORITHM

Volder's algorithm is derived from the general equations

for a vector rotation. If a vector V with coordinates (x, y)

is rotated through an angle Ø then a new vector V’ with

new coordinates (x’, y’) is formed where x’ and y’ can be

obtained using x, y and Ø from the following method.

For the ease of calculation here only rotation in

anticlockwise direction is observed first. So the individual

equations for x’ and y’ can be rewritten as

Fig 2.Rotation of vector V by an angle Ø

Volder observed that by factoring out a {cos Ø} from both

sides, resulting equation will be in terms of the tangent of

the angle Ø. Next if it is assumed that the angle φ is being

an aggregate of small angles, and composite angles is

chosen such that their tangents are all inverse powers of

two, then this equation can be rewritten as an iterative

formula

here Ø is the angle of rotation and z is the argument.

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 4, Issue 9, September 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4910 45

The multiplication by the tangent term can be avoided if

the rotation angles and tan(Ø) are restricted so that tan(Ø)

= 2-i .In digital hardware thisdenotes a simple shift

operation.

Furthermore, if those rotations are performed iteratively

 and in both directions every value of tan(Ø) is

representable. With Ø = tan-1(2-i) the cosine term could

also be simplified and since cos(Ø) = cos(-Ø) it is

constant for a fixed number of iterations. This iterative

rotation can now be expressed as:

Where, i denotes the number of rotations required to reach

the required angle of the required vector Ki=cos (tan
-1

 2
-i
)

and d=±1. αiis nothing but φi ,represented for convenience

purpose.The product of the Ki represent the so called K

factor

Where φiis the angle of rotation of each iteration.

ki is the gain and its value changes as the number of

iteration increases. For 8-bit hardware CORDIC

approximation method the value of kias

From the previous table it can be seen that precision up to

0.44690 is possible for 8-bit CORDIC hardware. These Øi

are stored in the ROM of the hard ware of the CORDIC

hardware as a look up table.

The CORDIC Algorithm can be used in iterative mode, to

simplify each rotation, picking αi(angle of rotation in ith

iteration) such that αi= (di .2
-i
). di is such that it has value

+1 or -1 depending upon the rotation i. e. di ϵ {+1,-1} .

Then

The computation of xi+1 or yi+1 requires an i-bit right shift

and an add/subtract. If the function tan
-1

2
-i
 is pre computed

and stored in table for different values of i, a single

add/subtract suffices to compute zi+1. Each CORDIC

iteration thus involves two shifts, a table lookup and three

additions.

If the rotation is done by the same set of angles (with + or-

signs), then the expansion factor K, is a constant, and can

be pre computed. For example to rotate by 30 degrees, the

following sequence of angles be followed that add up to ϵ

30 degree. 30.0 ϵ 45.0 - 26.6 + 14.0 - 7.1 + 3.6 + 1.8 -0.9 +

0.4 - 0.2 + 0.1 ϵ 30.1 In effect, what actually happens in

CORDIC is that z is initialized to 30 degree and then, in

each step, the sign of the next rotation angle is selected to

try to change the sign of z, that is, di = sign(zi) is chosen,

where the sign function is defined to be -1 or 1 depending

on whether the argument is negative or nonnegative. This

is reminiscent of non-restoring division. The table shows

the process of selecting the signs of the rotation angles for

a desired rotation of +30 degree. In CORDIC terminology

the preceding selection rule for di , which makes z

converge to zero, is known as rotation mode. Rewriting

the CORDIC iteration, where αi= tan
-1

2
-i

After m iteration in rotation mode, when z (m) is

sufficiently close to zero. We have Σαi=z, and the

CORDIC equations become:

The constant K in the preceding equation is k =

1.646760258121……

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 4, Issue 9, September 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4910 46

Rule: choose di ϵ { -1,1} such that z --> 0

Thus, to compute cos z and sin z, one can start with x =

1/K = 0.607252935….. And y = 0, then, as zm tends to 0

with CORDIC iterations in rotation mode, xm and ym

converge to cos z and sin z, respectively. Once sin z and

cos z are known, tan z can be found out through necessary

division.

Fig 2.First 3 iteration of rotating the vector

For k bits of precision in the resulting trigonometric

functions, k CORDIC iterations are needed. The reason is

that for large iit can be approximated that tan
-1

 2
-i
≈2-i .

Hence, for i> k, the = change in the z will be less than ulp

(Unit in the Last Place). In the rotation mode, convergence

of z to zero is possible because each angle in table 1 is

more than half the previous angle or, equivalently, each

angle is less than the sum of the entire angle following it.

The domain of convergence is - 99.7 < z < 99.7, where

99.7 is the sum of all the angles in table 3.1. Fortunately,

this range includes angle from -900 to +900. For outside

the preceding range, trigonometric identities can be

converted to the problem, to one that is within the domain

of convergence:

III.CORDIC HARDWARE AND ARCHITECTURE

CORDIC is generally faster than other approaches when a

hardware multiplier is unavailable (e.g. in a

microcontroller) or when the number of gates required

toimplement the function is to be minimized (e.g. in an

FPGA). On the other hand, when a hardware multiplier is

available (e.g. in a DSP microprocessor), table lookup

methods and power series are generally faster than

CORDIC. In recent years, the CORDIC algorithm has

been used extensively for various biomedical applications,

especially in FPGA implementations. Various CORDIC

architectures like bit parallel iterative CORDIC, a bit

parallel unrolled CORDIC, a bit-serial iterative CORDIC

and the comparison of various CORDIC architecture has

been discussed in the literatures. It can be seen that

CORDIC is a feasible way to approximate cosine and sine.

There are two ways in CORDIC algorithm for calculation

of trigonometric and other related functions. They are

rotation modeand Vector mode. Both methods initialize

the angle accumulator with the desired angle value. The

rotation mode, determines the right sequence as the angle

accumulator approaches zero while the vector mode

minimizes the y component of the input vector.

A straight forward hardware implementation for CORDIC

arithmetic is shownbelow. It requires three registers for x,

y and z, a look up table to store the valuesof αi=tan
-1

2
-i
,

and two shifter to supply the terms 2
-i
 x and 2

-i
 y to the

adder/subtractor units. The di factor (-1 and 1) is

accommodated by selecting the (shift) operand or its

complement.

Of, course a single adder and one shifter can be shared by

three computations if a reduction in speed by a factor of 3

is acceptable. In the extreme, CORDIC iterations can be

implemented in firmware (micro program)or even

software using the ALU and general purpose registers of a

standard microprocessor. In this case, the look up table

supplying the termαi can be stored in the control ROM or

in main memory.

Fig3.Hardware Elements and Architecture for the

CORDIC Algorithm (Single Stage)

Fig 4.Hardware Elements and Architecture for the

CORDIC Algorithm (Iterative)

Each branch consists of an adder-subtractor combination,

a shift unit and a register for buffering the output. At the

beginning of a calculation initial values are fed into the

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 4, Issue 9, September 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4910 47

register by the multiplexer where the MSB of the stored

value in the z-branch determines the operation mode for

the adder-subtractor, signal in the xand y branch pass the

shift units and are then added to or subtracted from the

unshifted signal in the opposite path.

The z branch arithmetically combines the registers values

with the values taken from a look up table whose address

is changed accordingly to the number of iteration.

For n iterations the output is mapped back to the registers

before initial values are fed in again and the final

sine value can be accessed at the output. A simple finite-

state machine is needed to control the multiplexers, the

shift distance and the addressing of the constant values.

IV.PIN DIAGRAM OF CORDIC

Fig6. Pin Diagram of CORDIC Implementation

Advantages

 Hardware requirement and cost of CORDIC processor is

less as onlyshift registers, adders and look-up table

(ROM) are required.

 Number of gates required in hardware implementation,

such as on an FPGA, is minimum as hardware

complexity is greatly reduced compared to other

processors such as DSP multipliers.

 It is relatively simple in design.

 No multiplication and only addition, subtraction and bit-

shiftingoperation ensures simple VLSI implementation.

 Delay involved during processing is comparable to that

during the implementation of a division or square-

rooting operation.

 Either if there is an absence of a hardware multiplier

(e.g. uC, uP) or there is a necessity to optimize the

number of logic gates (e.g. FPGA)CORDIC is the

preferred choice.

Disadvantages

 Large number of iterations required for accurate results

and thus the speed is low and time delay is high.

 Power consumption is high in some architecture types.

 Whenever a hardware multiplier is available, e.g. in a

DSP

 Microprocessor, table look-up methods and good old-

fashioned power series methods are generally quicker

than this CORDIC algorithm.

Output waveform of sine computation using CORDIC algorithm

Fig 5 . verilog Implementation Showing Outputs

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 4, Issue 9, September 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4910 48

IV. CONCLUSION

Efficient method to calculate sine and cosine is

implemented using Verilog coding. Applications in several

diverse areas including signal processing, image

processing, communication, robotics and graphics apart

from general scientific and technical computations have

been explored.

REFERENCES

[1] J. Volder, The CORDIC trigonometric computing technique, IRE

Transactions on Electronic Computers, Vol. EC-8, 1959,pp. 330-
334.

[2] R. Andraka, A survey of CORDIC algorithms for FPGA-based

computers, Proceedings of ACM/SIGDA Sixth International
Symposium on Field Programmable Gate Arrays, 1998, pp.191-

200[]

[3] LeenaVachhani, K. Sridharan, P.K. Meher, Efficient CORDIC
algorithms and architectures for low area and high throughput

implementation, IEEE Transactions on Circuits and Systems - Part

II: Express Briefs, Vol. 56, No. 1, January 2009, pp. 61-65

BIOGRAPHIES

RANJITA NAIK Pursuing Bachelor of

Engineering in Computer science from

BVB College of engineering and

technology Hubli. Area of interest is

cryptography.

RIYAZAHAMMAD NADAF did

Bachelor of Engineering in Electronics

and communication Engineering from

Tontadarya College of Engineering,

Gadag and currently pursuing M.Tech in

Digital Electronics from Sri

Dharmasthala Manjunatheshwara

college of engineering and Technology

(SDMCET), Dharwad, Karnataka, India. Area of interest

includes cryptography, Nanotechnology and Atomic

Physics.

