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Abstract: CORDIC stands for Coordinate Rotation Digital Computer. The CORDIC algorithm was introduced for the 

computation of Trigonometric functions, Multiplication, Division, Data type conversion, Square Root and Logarithms. 

It is a highly efficient, low complexity, hardware efficient algorithm giving a robust technique to compute the 

elementary functions. In the paper the CORDIC algorithm, its usage in calculating quadrature functions, its applications 

and advantages and disadvantages are explained. 
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I. INTRODUCTION 

 

CORDIC stands for Coordinate Rotation Digital 

Computer. It calculates the value of trigonometric 

functions like sine, cosine, magnitude and phase to any 

desired precision. It can also calculate hyperbolic 

functions (such as sinh, cosh and tanh). The CORDIC 

algorithm does not use calculus based methods such as 

polynomial or rational function approximation. It is used 

as approximation function values on all popular graphic 

calculators, including HP-48G as the hardware restriction 

of calculators require that the elementary functions should 

be computed using only additions, subtractions, digit 

shifts, comparisons and stored constants. CORDIC 

algorithm revolves around the idea of "rotating" the phase 

of a complex number, by multiplying it by a succession of 

constant values.  

However, the "multipliers" can all be powers of 2, so in 

binary arithmetic they can be done using just shifts and 

adds. There is no actual "multiplier" needed, thus it is 

simpler and does not require a complex hardware structure 

as in the case of multiplier. Earlier methods used for 

evaluation of trigonometric functions are table look up 

method, polynomial approximation method etc. CORDIC 

is useful in designing computing devices. As it was 

originally designed for hardware applications, there are 

features that make CORDIC an excellent choice for small 

computing devices. Since it is an iterative method it has 

the advantage over the other methods of being able to get 

better accuracy by doing more iteration, whereas the 

Taylor approximation and the Polynomial interpolation 

methods need to be averaged to get better results.  
 

These properties, in addition to getting a very accurate 

approximation is perhaps the reason why CORDIC is used 

in many scientific calculators today. Due to thesimplicity 

of the involved operations the CORDIC algorithm is very 

well suited for VLSI implementation. However, the 

CORDIC iteration is not a perfect rotation which would 

involve multiplications with sine and cosine. The rotated 

vector is also scaled making a scale factor correction 

necessary. 

II. CORDIC ALGORITHM 

 

Volder's algorithm is derived from the general equations 

for a vector rotation. If a vector V with coordinates (x, y) 

is rotated through an angle Ø then a new vector V’ with 

new coordinates (x’, y’) is formed where x’ and y’ can be 

obtained using x, y and Ø from the following method. 

For the ease of calculation here only rotation in 

anticlockwise direction is observed first. So the individual 

equations for x’ and y’ can be rewritten as 
 

 
 

 
 

Fig 2.Rotation of vector V by an angle Ø 
 

Volder observed that by factoring out a {cos Ø} from both 

sides, resulting equation will be in terms of the tangent of 

the angle Ø. Next if it is assumed that the angle φ is being 

an aggregate of small angles, and composite angles is 

chosen such that their tangents are all inverse powers of 

two, then this equation can be rewritten as an iterative 

formula 
 

 
here Ø is the angle of rotation and z is the argument. 
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The multiplication by the tangent term can be avoided if 

the rotation angles and tan(Ø) are restricted so that tan(Ø) 

= 2-i .In digital hardware thisdenotes a simple shift 

operation. 
 

Furthermore, if those rotations are performed iteratively 

 and in both directions every value of tan(Ø) is 

representable. With Ø = tan-1(2-i) the cosine term could 

also be simplified and since cos(Ø) = cos(-Ø ) it is 

constant for a fixed number of iterations. This iterative 

rotation can now be expressed as: 
 

 

 

 
 

Where, i denotes the number of rotations required to reach 

the required angle of the required vector Ki=cos (tan
-1

 2
-i
) 

and d=±1. αiis nothing but φi ,represented for convenience 

purpose.The product of the Ki represent the so called K 

factor 
 

 
 

Where φiis the angle of rotation of each iteration. 

ki is the gain and its value changes as the number of 

iteration increases. For 8-bit hardware CORDIC 

approximation method the value of kias 
 

 
 

From the previous table it can be seen that precision up to 

0.44690 is possible for 8-bit CORDIC hardware. These Øi 

are stored in the ROM of the hard ware of the CORDIC 

hardware as a look up table. 
 

The CORDIC Algorithm can be used in iterative mode, to 

simplify each rotation, picking αi(angle of rotation in ith 

iteration) such that αi= ( di .2
-i
 ). di is such that it has value 

+1 or -1 depending upon the rotation i. e. di ϵ {+1,-1} . 

 
 

Then 

 
 

The computation of xi+1 or yi+1 requires an i-bit right shift 

and an add/subtract. If the function tan
-1

2
-i
 is pre computed 

and stored in table for different values of i, a single 

add/subtract suffices to compute zi+1. Each CORDIC 

iteration thus involves two shifts, a table lookup and three 

additions. 

If the rotation is done by the same set of angles (with + or- 

signs), then the expansion factor K, is a constant, and can 

be pre computed. For example to rotate by 30 degrees, the 

following sequence of angles be followed that add up to ϵ 

30 degree. 30.0 ϵ 45.0 - 26.6 + 14.0 - 7.1 + 3.6 + 1.8 -0.9 + 

0.4 - 0.2 + 0.1 ϵ 30.1 In effect, what actually happens in 

CORDIC is that z is initialized to 30 degree and then, in 

each step, the sign of the next rotation angle is selected to 

try to change the sign of z, that is, di = sign(zi ) is chosen, 

where the sign function is defined to be -1 or 1 depending 

on whether the argument is negative or nonnegative. This 

is reminiscent of non-restoring division. The table shows 

the process of selecting the signs of the rotation angles for 

a desired rotation of +30 degree. In CORDIC terminology 

the preceding selection rule for di , which makes z 

converge to zero, is known as rotation mode. Rewriting 

the CORDIC iteration, where αi= tan
-1

2
-i
 

 

 
 

After m iteration in rotation mode, when z (m) is 

sufficiently close to zero. We have Σαi=z, and the 

CORDIC equations become: 

The constant K in the preceding equation is k = 

1.646760258121…… 
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Rule: choose di ϵ { -1,1} such that z --> 0 

 

Thus, to compute cos z and sin z, one can start with x = 

1/K = 0.607252935….. And y = 0, then, as zm tends to 0 

with CORDIC iterations in rotation mode, xm and ym 

converge to cos z and sin z, respectively. Once sin z and 

cos z are known, tan z can be found out through necessary 

division. 
 

 
 

Fig 2.First 3 iteration of rotating the vector 
 

For k bits of precision in the resulting trigonometric 

functions, k CORDIC iterations are needed. The reason is 

that for large iit can be approximated that tan
-1

 2
-i
≈2-i . 

Hence, for i> k, the = change in the z will be less than ulp 

(Unit in the Last Place). In the rotation mode, convergence 

of z to zero is possible because each angle in table 1 is 

more than half the previous angle or, equivalently, each 

angle is less than the sum of the entire angle following it. 

The domain of convergence is - 99.7 < z < 99.7, where 

99.7 is the sum of all the angles in table 3.1. Fortunately, 

this range includes angle from -900 to +900. For outside 

the preceding range, trigonometric identities can be 

converted to the problem, to one that is within the domain 

of convergence: 

 

III.CORDIC HARDWARE AND ARCHITECTURE 

 

CORDIC is generally faster than other approaches when a 

hardware multiplier is unavailable (e.g. in a 

microcontroller) or when the number of gates required 

toimplement the function is to be minimized (e.g. in an 

FPGA). On the other hand, when a hardware multiplier is 

available (e.g. in a DSP microprocessor), table lookup 

methods and power series are generally faster than 

CORDIC. In recent years, the CORDIC algorithm has 

been used extensively for various biomedical applications, 

especially in FPGA implementations. Various CORDIC 

architectures like bit parallel iterative CORDIC, a bit 

parallel unrolled CORDIC, a bit-serial iterative CORDIC 

and the comparison of various CORDIC architecture has 

been discussed in the literatures. It can be seen that 

CORDIC is a feasible way to approximate cosine and sine. 

There are two ways in CORDIC algorithm for calculation 

of trigonometric and other related functions. They are 

rotation modeand Vector mode. Both methods initialize 

the angle accumulator with the desired angle value. The 

rotation mode, determines the right sequence as the angle 

accumulator approaches zero while the vector mode 

minimizes the y component of the input vector. 

A straight forward hardware implementation for CORDIC 

arithmetic is shownbelow. It requires three registers for x, 

y and z, a look up table to store the valuesof αi=tan
-1

2
-i
, 

and two shifter to supply the terms 2
-i
 x and 2

-i
 y to the 

adder/subtractor units. The di factor (-1 and 1) is 

accommodated by selecting the (shift) operand or its 

complement. 

Of, course a single adder and one shifter can be shared by 

three computations if a reduction in speed by a factor of 3 

is acceptable. In the extreme, CORDIC iterations can be 

implemented in firmware (micro program)or even 

software using the ALU and general purpose registers of a 

standard microprocessor. In this case, the look up table 

supplying the termαi  can be stored in the control ROM or 

in main memory.  
 

 
 

Fig3.Hardware Elements and Architecture for the 

CORDIC Algorithm (Single Stage) 
 

 
 

Fig 4.Hardware Elements and Architecture for the 

CORDIC Algorithm (Iterative) 
 

Each branch consists of an adder-subtractor combination, 

a shift unit and a register for buffering the output. At the 

beginning of a calculation initial values are fed into the 
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register by the multiplexer where the MSB of the stored 

value in the z-branch determines the operation mode for 

the adder-subtractor, signal in the xand y branch pass the 

shift units and are then added to or subtracted from the 

unshifted signal in the opposite path. 
 

The z branch arithmetically combines the registers values 

with the values taken from a look up table whose address 

is changed accordingly to the number of iteration. 

For n iterations the output is mapped back to the registers 

before initial values are fed in again and the final  

sine value can be accessed at the output. A simple finite-

state machine is needed to control the multiplexers, the 

shift distance and the addressing of the constant values. 

 

IV.PIN DIAGRAM OF CORDIC 
 

 
 

Fig6. Pin Diagram of CORDIC Implementation 

Advantages  
 

 Hardware requirement and cost of CORDIC processor is 

less as onlyshift registers, adders and look-up table 

(ROM) are required. 

 Number of gates required in hardware implementation, 

such as on an FPGA, is minimum as hardware 

complexity is greatly reduced compared to other 

processors such as DSP multipliers. 

 It is relatively simple in design. 

 No multiplication and only addition, subtraction and bit-

shiftingoperation ensures simple VLSI implementation. 

 Delay involved during processing is comparable to that 

during the implementation of a division or square-

rooting operation. 

 Either if there is an absence of a hardware multiplier 

(e.g. uC, uP) or there is a necessity to optimize the 

number of logic gates (e.g. FPGA)CORDIC is the 

preferred choice. 

 

Disadvantages 
 

 Large number of iterations required for accurate results 

and thus the speed is low and time delay is high.  

 Power consumption is high in some architecture types. 

 Whenever a hardware multiplier is available, e.g. in a 

DSP  

 Microprocessor, table look-up methods and good old-

fashioned power series methods are generally quicker 

than this CORDIC algorithm. 

Output waveform of sine computation using CORDIC algorithm 

 

 
 

Fig 5 . verilog Implementation Showing Outputs 
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IV. CONCLUSION 
 

Efficient method to calculate sine and cosine is 

implemented using Verilog coding. Applications in several 

diverse areas including signal processing, image 

processing, communication, robotics and graphics apart 

from general scientific and technical computations have 

been explored. 
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