
                ISSN (Online) 2278-1021 
                                                                                                                                                                                                                ISSN (Print) 2319-5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 9, September 2015 
 

Copyright to IJARCCE                                              DOI 10.17148/IJARCCE.2015.49120                                                     542 

Enhancing Security in Cloud by Self-Destruction 

Mechanism 
 

Kshama Bothra
1
, Sudipta Giri

2
 

Student, Department of Information Technology, MIT College of Engineering, Pune, India
 1
 

Professor, Department of Information Technology, MIT College of Engineering, Pune, India
 2
 

 
Abstract: Cloud computing, a recent computing technology is preferred by most of the users to store their data. Large 
amount of data can be stored in cloud. It is possible to access data stored in cloud by any third party. Providing security 
to the data stored in cloud is the prime concern. Data stored in cloud may contain personal notes, account information, 
password. To overcome the problem self-destruction method is proposed. All the data and their copies become self-
destructed after user specified time period. Shamir secret sharing algorithm is used which generate key shares. Self-
Destruction mechanism is conjoined with time-to-live field to specify the life time of the keys. After user specified time 
period key should be destructed or become unreadable. Any legitimate user can download file till the timeout. The file 
should be encrypted before upload and decrypted before download. Self-destruction mechanism indicates that it is 
practical to use and meet all preserving goals. Self-destruction mechanism reduces the time taken to upload and 
download file as compared to native system. 

 

Keywords: Cloud computing, self-destruction, Active Storage Object, Time to live (ttl), data privacy. 

I. INTRODUCTION 

Due to easy access and availability cloud services are 
becoming very important in people’s life. People are 
desired to post personal private information to the cloud 
by the internet. People hope that service provider will 
provide security to their data stored in cloud. Security and 
privacy are the main concern for the data stored in cloud. 
Data stored in cloud is replicated in many nodes and 
authorized user does not have information about the 
storage of these copies. Unauthorized users can access 
these data and can store it for their future use. Cloud 
Service Providers negligence, hacker’s intrusion or legal 
action is also responsible for imparting the privacy. 

Vanish [1] supplies a new idea for sharing and protecting 
privacy of data. In Vanish secret key is divided and stored 
in a P2P system with distributed hash tables (DHTs). 
Vanish integrates the cryptographic techniques with global 
scale, P2P and distributed hash tables. DHT have property 
of discarding data older than certain age. Since one cannot 
get enough parts of a key, decrypting data encrypted with 
the key won’t be possible. 

Characteristics of P2P are challenges of Vanish, duration 
of key survival is also not known in Vanish, attack like 
Sybil attack and hopping attack are possible in Vanish. 
Sybil attacks can recover about 99% of the Vanish 
messages. 

Length range of key shares was increased in SafeVanish. 
This increased the attack cost but was unable to control the 
attack to large extent. 

This paper presents a solution to implement self-
destructing data system. Self-destruct method defines two 
new modules, self-destruct method that is associated with 
each secret key part and survival time parameter for each 
secret key part. Shamir secret sharing algorithm is used to 
generate key shares. 
 
1. Shamir secret sharing algorithm is used to generate key  

 
 

shares. Data is divided into parts and each part is stored 
in different nodes to reconstruct the original data some 
or all parts are needed. 

2. We split encrypted data and store them in different 
nodes of Hadoop. 

3. Self-destructing data supports security by erasing files 
and encrypted data stored in different nodes. 

4. By evaluating functionality and security properties it is 
found that proposed method is practical to use. 

5. Self-destruction method protects the privacy of against 
accidental, malicious and legal attacks. 

6. Ensures that all the copy of data stored in different 
nodes becomes unreadable after user-specified time 
without users involvement. 

The rest of this paper is organized as follows. We review 
the related work in Section II. We describe the 
architecture, design and implementation of Self-
destruction in Section III. The extensive evaluations are 
presented in Section IV, and we conclude this paper in 
Section V. 

II. LITERATURE SURVEY 

Cloud computing is use to outsource data to third party. It 
is very important to provide security to the data stored in 
cloud. Tang et al. [1] proposed FADE which is built upon 
standard cryptographic techniques. FADE is readily 

deployable cloud technique used to protect deleted data 
with policy based file based assured deletion. FADE is 
built upon standard cryptographic techniques it firsts 
encrypts data files to guarantee privacy and assuredly 

deletes files to make them inaccessible to anyone. Each 
file is associated with single atomic file access policy. 
When the policy of the file is revoked the corresponding 
key will be removed from the key manager. Thus when the 
policy of file is revoked user won’t be able to access the 



                ISSN (Online) 2278-1021 
                                                                                                                                                                                                                ISSN (Print) 2319-5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 9, September 2015 
 

Copyright to IJARCCE                                              DOI 10.17148/IJARCCE.2015.49120                                                     543 

file. Perlman et al. [12] presented three types of implicit 
delete: expiration time known at file creation, on-demand 
deletion of single file, and custom keys for classes of data. 

Vanish [2] is a system that automatically self-destruct data 
after a period of time. It integrates cryptographic 
techniques with global-scale, P2P, distributed hash tables 
(DHTs). DHT have a property of discarding data older 
than certain age. Key with which data is encrypted is 
permanently lost hence encrypted data becomes 
permanently unreadable. Vanish takes a data object D, and 
encapsulates it into VDO V. To encapsulate the data D, 
Vanish picks random data key, K, and encrypts D with K 
to obtain a ciphertext C. Vanish uses threshold secret 

sharing to split data key K into N pieces K1,….,KN. A 

parameter of secret sharing is a threshold that can be set by 
the user or by an application using Vanish. Threshold 
determines how many of the N shares are required to 
reconstruct the original key. Sybil attack [6] may endanger 
the system by continuously crawling, the DHT and saving 
value before it ages out. It is seen that about 99% of 
Vanish messages can be recovered easily. Wolchok et al. 
[6] inferred that public DHTs like VuzeDHT cannot 
provide enough security to Vanish. 

Using both OpenDHT and VuzeDHT will help in 
providing more security as compared to using only one. 
Vanish is novel approach to provide security, but, in its 
current form it is found to be insecure. 

Since Vanish is vulnerable to hopping attack and sniffer 
attack. SafeVanish[3] is proposed by L. Zeng et al., in 
SafeVanish length range of the key shares is increased to 
increase the attack cost substantially. Improved approach 
against sniffing attack is proposed in SafeVanish by using 
public key cryptosystem. In SafeVanish sender will first 
encrypt message with private key before pushing them to 
DHT node to store. Then will use the receiver’s public key 
to encrypt the key shares and completes encryption 
process. Encrypted cipher text key shares will be sent by 
sender to the DHT node, to save shares safely. Attacker 
won’t be able to access data, since they don’t have 
knowledge of private key corresponding to public key. 
Receiver will first decrypt text using receiver’s private 
key, than decrypt it using sender’s public key. 

III. PROPOSED WORK 

Self-destructive system describes two new modules, a self-
destruct method that is linked with each secret key part 
and each secret key part is associated with survival time 
parameter. 

A. Self-destructive architecture 

Figure 1, shows the architecture of self-destructive (self-
des). In the architecture there are mainly four blocks. 
 

i) Metadata server: Metadata server is responsible for 
session management, server management, user 
management and file metadata management. 
 

ii) User layer: User layer is for the authorized client who 
uses the service of self-destructive architecture. New 
user is required to fill his/her basic information and 
registers. If user is already registered than he/she needs 
to validate himself/herself. 

 
 

Figure 1:  Proposed Architecture 
 

iii) Security layer: This is the core part of the architecture. 
To generate key shares Shamir secret sharing algorithm 
is used. If the key is divided into n pieces then 
knowledge of at least k pieces will be required to 
decrypt data. If user has knowledge of less than k pieces 
than it would be hard to recover data. AES algorithm is 
used to encrypt and decrypt data. AES algorithm is not 
susceptible to attack and is faster than traditional 
algorithm. 
 

iv) Storage node: Hadoop is used as a storage node. 
Hadoop can process large amount of data in very less 
time interval. Encrypted data is divided and stored in 
different nodes in Hadoop along with key. Storing data 
in different nodes in Hadoop will provide more security. 
Attacker is required to collect all the parts of data stored 
in different nodes in Hadoop. Since attacker won’t have 
knowledge where data is stored it will be difficult to 
download it. Data stored in different nodes will be 
destructed after time-to-live value expires, no user will 
be able to download data. 

 

B. Proposed plan of work: 
Proposed plan of work describes different modules used in 
the proposed system. 

1. Development of Login System: Login page is created in 
this module. Registration form contains field like First 
Name, Last Name, Address, Login ID and password. If 
the user is already registered than they need to validate 
themselves by filling login detail like login ID and 
Password. If the entries filled by user are incorrect then 
message ―Sorry! Entered details are incorrect‖ message 
will pop up. If entered details are correct then user will 
be able to perform Upload and Download operation. 

2. Secret Key Part: Shamir Secret Sharing algorithm is 
used in secret key part. It is a type of secret sharing, 
where a secret is divided into parts. Each part is stored 
in different nodes in Hadoop. To reconstruct the data 
some or all parts are required. User provides key and 
Shamir Secret Sharing algorithm is used to generate 
key shares. Data is encrypted with the key shares and 
divided into parts before uploading it into different 
nodes in Hadoop. Each of the secret part must be kept 
highly confidential. 



                ISSN (Online) 2278-1021 
                                                                                                                                                                                                                ISSN (Print) 2319-5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 9, September 2015 
 

Copyright to IJARCCE                                              DOI 10.17148/IJARCCE.2015.49120                                                     544 

3. File uploading: User has to browse and select the 
location of the file which is to be uploaded. User has to 
first encrypt the file by using pair of keys generated by 
Shamir algorithm. File is encrypted using AES 
algorithm. File, key and ttl should be supplied as 
argument for uploading procedure. Below are the steps 
for uploading file. 

 

Step1: UploadFile(data,key,ttl)  
data: data read from file to be uploaded  
key: data read from the key 
ttl: time-to-live of the key 

Step2: encrypt the input data with the key    
buffer=ENCRYPT(data,key) 

Step3: connect to data storage server if failed 
then return fail; 

Step4: create file in the data storage server and write 
buffer into it; 

Step5: use ShamirSecretSharing algorithm to get key 
Shares  

Step6: Connect to DS[i];  
if successful then create_object 
(sharedkeys[i],ttl); 

else  
for j from 1 to i then  
delete key shares created before this one 
 

4. Self-Destruction Method: Self-destruction mechanism 
mainly aims at protecting user’s data privacy against 
malicious attack. Data stored in different node will be 
destructed after user specified time period. Results 
demonstrate that self-destruction mechanism is practical 
to use and it meets all the privacy preserving goals 
described. 
 

5. Downloading File:  Authorized user can access the data 

uploaded by downloading it. Data must be decrypted 

before using. If the time-to-live field is not expired than 

user can download file. User won’t be able to download 

file after time-to-live value expires. After the timeout if 

user is trying to access file then it gives message 

―Sorry! You cannot access the file. 
 

C. Mathematical Model 
 
The system is modeled as S = {s, e, X, Y, t, F| ϕ}  
 Where, s is the initial state 

 The user will input the data (D)  
 Provides key (k) and 
  timespan (tm) 

 

 e is the end state of the system which comprise  
of two states : 

 If t < tm: Data will be retrieved from nodes 
             (N) 

 If t > tm: Data will be deleted from all nodes 
 

 X = Set of inputs in the system 

X = {D, k, tm} 
 D = {d1, d2, d3,.,.,.,dn}  
 k = encryption key 
 tm = time for which the data is present 

 

 Y = Set of outputs 

        Y = {RD} 

 RD = Retrieved data after decryption from various 
nodes using key (k) 
  

 t = the time for which the data is present in the database. 
 

 Function F = {Enck(D), Decrk(E)}  
 Where, Enck(D) = Encryption of data using key (k) 

for storing data in encrypted format  
 Deck(E) = Decryption of data for retrieving 

original data 
  

 Φ = Constraint on whole system.  
 Constraint on the whole system is network 

connection 

IV.  EVALUATION 

A.  Functional Testing 

Authorized user can access Cloud service provided by the 
service provider. User can perform two operations file 
uploading and file downloading. To upload file user has to 
first enter key and then select the location of the file which 
is to be uploaded. Time-to-live (ttl) value is also provided 
by the user. The system encrypts data and split encrypted 
data and store in different nodes. File is uploaded 
successfully. Sample text file was also downloaded 
successfully before time-to-live (ttl) value expires. 
 

B.  Performance Evaluation 

We uploaded file using two method native system and 
proposed system. Results show that uploading time by 
using proposed system decreases by 43%. Figure 2, 
Represents time taken to upload file using native and 
proposed scheme. 
 

 
 

Figure 2: Time taken to Upload file 
 

Figure 3, represents time taken to download file using 
existing method and proposed method. 
We downloaded file using two method native system and 
proposed system. Found that downloading time by using 
proposed system decreases by 25%. 

 
 

Figure 3: Time taken to Download file 



                ISSN (Online) 2278-1021 
                                                                                                                                                                                                                ISSN (Print) 2319-5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 9, September 2015 
 

Copyright to IJARCCE                                              DOI 10.17148/IJARCCE.2015.49120                                                     545 

Figure 4, represents the throughput during file upload and 
download process. Throughput is calculated in MB/s. 
Throughput decreases because upload/download process 
require much more CPU computation. 

 

 
 

Figure 4: Throughput during file Upload and Download 
 

In summary, the time taken to upload and download file 
using self-destructing system is less as compared to with 
native system. 

V. CONCLUSION 
 

Data privacy is one of the main aspects in cloud 
environment. Different approaches are used to protect 

privacy of data. Self-destruction is a mechanism to protect 
data from the user who retroactively obtain another user’s 
stored data and key. Hadoop is used to store data in 
different nodes. Hadoop allows storing huge amount of 

data, and processing it in much more efficient manner and 
faster manner. File is encrypted and stored in different 
nodes in Hadoop. To decrypt file user will not only require 
key but also all the encrypted parts of a file. Authentic 
user will be able to download file. Also time-to-live field 

is provided, once time-to-live value expires user won’t be 
able to download file. It is found that uploading time 
decreases by 43% and downloading time by 25% as 
compared to using native system. 
 

ACKNOWLEDGEMENT 

I am indeed thankful to my internal guide Prof. Sudipta 
Giri for his able guidance and assistance to complete this 
paper. I am grateful for their valued support and faith on 
me. I extend my special thanks to Head of Department of 
Information Technology, Prof. Anil S. Hiwale who 
extended the preparatory steps of this paper-work. 
 

REFERENCES 
 

[1] Y. Tang, P. P. C. Lee, J. C. S. Lui, and R. Perlman, ―FADE: 

Secure overlay cloud storage with file assured deletion,‖ in Proc. 
SecureComm, 2010. 

[2] R. Geambasu, T. Kohno, A. Levy, and H. M. Levy, ―Vanish: 

Increasing data privacy   with self-destructing data,‖ in Proc. 
USENIX Security Symp., Montreal, Canada, Aug. 2009, pp. 299–

315. 

[3] L. Zeng, Z. Shi, S. Xu, and D. Feng, ―Safevanish: An improved 
data self-destruction for protecting data privacy, in Proc. Second 

Int. Conf. Cloud Computing Technology and Science (CloudCom), 

Indianapolis, IN, USA, Dec. 2010, pp. 521–528. 
[4] Lingfang Zeng , Shibin Chen , ―SeDas: A Self-Destructing Data 

System Based on Active Storage Framework,‖ IEEE Transactions 

On Magnetics, Vol. 49, No. 6, June 2013 
[5] A. Shamir, ―How to share a secret,‖ Commun. ACM, vol. 22, no. 

11, pp. 612–613, 1979. 

[6] S.  Wolchok,  O.  S.  Hofmann,  N.  Heninger,  E.  W.  Felten,  J.  
A. Halderman, C. J. Rossbach, B. Waters, and E. Witchel, 

―Defeating vanish with low-cost sybil attacks against large DHEs, 

in Proc. Network and Distributed System Security Symp., 2010. 
[7] Y. Xie, K.-K. Muniswamy-Reddy, D. Feng, D. D. E. Long, Y. 

Kang, Z. Niu, and Z. Tan, ―Design and evaluation of Oasis: An 

active storage framework based on t10 OSD standard, in Proc. 27th 
IEEE Symp. Massive Storage Systems and Technologies (MSST), 

2011. 

[8] C. Wang, Q. Wang, K. Ren, and W. Lou, ―Privacy-preserving 
public auditing for storage security in cloud computing, in Proc. 

IEEE INFOCOM, 2010. 

[9] R. Perlman, ―File system design with assured delete, in Proc. 
Third IEEE Int. Security Storage Workshop (SISW), 2005. 

[10] R. Geambasu, J. Falkner, P. Gardner, T. Kohno, A. Krishnamurthy, 

and H. M. Levy, ―Experiences building security applications on 

DHTs‖, technical report, UWCSE- 09-09-01, 2009. 

[11] C. Wang, Q. Wang, K. Ren, and W. Lou, ―Privacy-preserving 

public auditing for storage security in cloud computing, in Proc. 
IEEE INFOCOM, 2010. 

[12] R. Perlman, ―File system design with assured delete, in Proc. 
Third IEEE Int. Security Storage Workshop (SISW), 2005. 

 

BIOGRAPHIES 
 

Kshama Bothra Research Scholor, MIT college of 
Engineering, University of Pune. He has received the B.E. 
degree in Information Technology from Raisoni College 
of Engineering, Nagpur in 2012 and currently pursuing 
M.E from M.I.T College of Engineering, Pune.  

 
Prof. Sudipta Giri done MTech from IISc Banglore. He 
is currently working as Assistant Professor in MIT College 
of Engineering, Information Technology Department, 
Pune Has received the BTech degree from IIT Kanpur. 


