
 ISSN (Online) 2278-1021
 ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 9, September 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4990 418

A New Methodology to Avoid Deadlock with

Dining Philospher Problem in Rust and

Go System Programming Languages

Tata A S K Ishwarya
1
, Dr.R.China Appala Naidu

2

Assistant Professor, IT Department, St. Martin's Engineering College, Hyderabad, Telangana
1

Professor, CSE Department, St. Martin's Engineering College, Hyderabad, Telangana
2

Abstract: Operating System is playing a major role now-a-days. Operating System acts as a interface between

hardware and user. So when number of processes are increased and resources are in limited state then deadlock occurs

.To avoid deadlock we have different approaches like dining – philosopher problem one of the approach to omit

deadlock concept. In this paper we focus mainly on obtaining deadlock free solution to the dining – philosopher

problem. The solution mainly imposes the restriction that a philosopher may only pick the chopsticks if both of them

are available. RUST and GO system programming language are used in the coding part. In this paper we also try to

justify why Go is widely used than Rust by providing the values for following details program source code details ,

CPU Seconds, Elapsed seconds, Memory KB Code B and CPU Load.

Key Terms: RUST, GO, dining – philosopher problem, program source code, CPU Seconds, Elapsed seconds,

Memory KB Code B, CPU Load.

1. DINING PHILOSOPHER PROBLEM

1.1 Thought Process Related To Dining Philosopher

model

In ancient times, a wealthy King Started a College that had

five eminent philosophers. All the philosophers were

assigned a work that is related to their profession and in

the process of thinking related to work if at all they feel

hungry they can have the noodles which is placed on the

centre of the rounded table by picking the sliver fork

which is towards their left side .

They involved themselves into thought process related to

professional work if so they felt hungry they can go to

their common dining room sit on the chair labeled by their

name and pick their own fork on their left and can start

having noodles. But the noodles gets twisted it is

necessary to make use of second fork carry it to the mouth.

Then philosopher should make use of fork that is towards

his right. Once he is done with eating then he should put

down the fork and start thinking. A philosopher can make

use of one fork at a time . If another philosopher wants the

fork he has to wait no matter how hungry he is.

1.2 Dining Philosopher Problem

Consider five philosophers spending their lives

thinking and eating. The five philosophers seated on five

different chairs. Bowl of noodles was placed in center and

to eat the noodles single chopsticks was given.

When a philosopher gets hungry they try to eat

the food by picking nearest chopstick. Since only single

chopstick is given they can take their own chopstick. If

they want another chopstick they can pick their neighbors

one only if they are not using it.

Fig 1.21. Representing Dining Philosopher Model

1- Represents Bowl of Noodles placed on table

2- Represents Philosopher1 with chopsticks in hand

3- Represents Philosopher2 with chopsticks in hand

4- Represents Philosopher3 with chopsticks in hand

5- Represents Philosopher4 with chopsticks in hand

6- Represents Philosopher5 with chopsticks in hand

2. IMPLEMENTATION OF DINING

PHILOSOPHER PROBLEM USING RUST

2.1 Rust System Programming Language

Rust was started as a personal project which was

developed by Mozilla employee Graydon Hoare . Later in

year 2009 Mozilla liked the idea of the project and started

sponsoring it and announced about in year 2010 and

released pre-alpha version in year 2012 January Rust 1.0.

Stable version was released in year 2015 May 15.

 Rust is a system programming language that doesn’t

contain garbage collector and yet it maintains three goals

safety, speed and concurrency.

It is useful for use cases embedding and other languages

and writing low level code like operating system and

device drivers.

 ISSN (Online) 2278-1021
 ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 9, September 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4990 419

It is possible to write programs for space and time

requirements. Compile time and runtime overheads are

reduced that is we can get the output in very less time.

2.2 Practical Implementation Dining Philosopher

Problem using Rust

Coding and the logic technique involved in rust

use std::thread;

use std::sync::{Mutex, Arc};

struct T {

 fks: Vec<Mutex<()>>,

}

struct Phil {

 name: String,

 lt: usize,

 rt: usize,

}

impl Phils {

 fn new(name: &str, lt: &usize, rt: &usize) -> Phil {

 Phils {

 name: name.to_string(),

 lt: lt,

 rt: rt,

 }

 }

 fn eat(&self, table: &T) {

 let _lt = table.fks[self.left].lock().unwrap();

 let_rt

= table.fks[self.right].lock().unwrap();

 println!("{} is eating.", self.name);

 thread::sleep_ms(1000);

 println!("{} is Completed eating.", self.name);

 }

}

fn main() {

 let table = Arc::new(T { fks: vec![

 Mutex::new(()),

 Mutex::new(()),

 Mutex::new(()),

 Mutex::new(()),

 Mutex::new(()),

]});

 let phils = vec![

 Phil::new("John", 0, 1),

 Phil::new("James", 1, 2),

 Phil::new("Jennifer", 2, 3),

 Phil::new("Franklin", 3, 4),

 Phil::new("Mathew", 0, 4),

];

 let handles: Vec<_> =

philosophers.into_iter().map(|p| {

 let t = t.clone();

 thread::spawn(move || {

 p.eat();

 })

 }).collect();

 for h in handles {

 h.join().unwrap();

 }

}

When the following code executed in Rust the following

output is generated

John is Completed eating.

James is Completed eating.

Jennifer is Completed eating.

Franklin is Completed eating.

Mathew is Completed eating.

3. IMPLEMENTATION OF DINING

PHILOSOPHER PROBLEM USING GO

3.1 Go System Programming Language

Go, also commonly referred to as golang. It is a

programming language developed in year 2007 at by three

people namely Robert Griesemer, Rob Pike, and Ken
Thompson . It is loosely derived from C with additional

features like built –in types like key value maps, type

safety and large standard library . Several high production

were written by using Go and it is very popular at Google.

Example: The server such as Chrome which provides

Google binaries for download were rewritten in Go

3.2 Practical Implementation of Dining Philosopher

Problem using Go

package main

import (

 "fmt"

 "sync"

 "time"

)

var wg sync.WaitGroup

type table struct {

 fks []sync.Mutex

}

type phil struct {

 name string

 lt int

 rt int

}

func (p phil) eat(t *table) {

 defer wg.Done()

 t.fks[p.lt].Lock()

 defer t.fks[p.lt].Unlock()

 t.fks[p.rt].Lock()

 defer t.fks[p.rt].Unlock()

 fmt.Println(p.name, "is eating.")

 time.Sleep(1 * time.Second)

 fmt.Println(p.name, "finished eating.")

}

func main() {

 phil := [...]phil{

 phil{"One", 0, 1},

 phil{"Two", 1, 2},

 phil{"Three", 2, 3},

 phil{"Four", 3, 4},

 phil{"Five", 0, 4},

 }

 t := table{fks: make([]sync.Mutex, len(phil))}

 for _, p := range phil{

 wg.Add(1)

 ISSN (Online) 2278-1021
 ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 9, September 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4990 420

 go p.eat(&t)

 }

 wg.Wait()

}

When the following code executed in Go the following

output is generated

John is Completed eating.

James is Completed eating.

Jennifer is Completed eating.

Franklin is Completed eating.

4. GO IS BETTER THAN RUST: JUSTIFICATION

4.1 The Total lines of code used for dinning

philosopher problem

System Programming

Language

Lines of code

Rust 63 Lines of code

Go 50 Lines of Code

Table 4.1.1 The Lines of Code Used in System

Programming Language

4.2 We can even Conclude by considering the

following data that GO is better than RUST

Program

source

code

Cpu

Seconds

Elapsed

Seconds

Memory

KB

Code

B

CPU LOAD

GO 1.77 1.77 1,668 1237 1%0%1%99%

RUST 3.70 3.70 6,056 1747 1%0%0%100%

Table 4.2.1 comparative data analysis between GO and

RUST

With reference Table 4.1.1 and Table 4.2.1 we can

conclude that Go is better than RUST

5. CONCLUSION

 We have proposed a methodology this methodology

identified deadlock well before with the use of Go and

RUST. Go and RUST will perform the task in less

amount time that is compilation and execution time is

reduced very much. We have tried to explore GO and

RUST how it is evolved in the current Market. By taking a

simple concept like Dining philosopher problem we have

tried to explain the way this Go and Rust Works. We have

shown how the simple concepts of operating system by

using code snippets of RUST and Go and finally we can

conclude they are many programming languages which

programming users are not aware this programming

language makes the life of programmer simpler

REFERENCES

[1] http://userpage.fuberlin.de/~lex/drop/drinking_philosophers.pdf

[2]http://www.researchgate.net/publication/220630692_Application_of_

TLRO_to_dining_philosophers_problem
[3] Silberschatz, A., Peterson, J.L.: Operating Systems Concepts.

Addison-Wesley, Reading (1988)

[4] Peterson, G.L.: Myths About the Mutual Exclusion Problem.
IPL 12(3), 115–116 (1981)

[5] Shavit, N.: Lecture Notes for Lecture 2, Chapter 2.4.1. Tel-Aviv

University (2003), http://www.cs.tau.ac.il/~shanir/multiprocessor-
synch-2003/

[6] https://en.wikipedia.org/wiki/Rust_(programming_language)

[7]https://en.wikipedia.org/wiki/Comparison_of_programming_language

s
 [8] https://en.wikipedia.org/wiki/Go_(programming_language)

 [9] https://en.wikipedia.org/wiki/Dining_philosophers_problem

	[1] http://userpage.fuberlin.de/~lex/drop/drinking_philosophers.pdf

