
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41111 44

Towards Effective Troubleshooting With

Data Truncation

Karishma Musale
1
, Gorakshanath Gagare

 2

M.E.Student, Department of Computer Engineering, SVIT, Nasik, India
 1

 Assistant Professor, Department of Computer Engineering, SVIT, Nasik, India
 2

Abstract: The process of fixing bug is bug triage or bug assortment. The aim of this, to correctly assign a developer to

a new bug. Triaging these incoming reports manually is error-prone and time consuming.Software companies pay most

of their cost in dealing with these bugs. For software repositories traditional software analysis is not completely suitable

for the large-scale and complex data.To reduce time and cost of bug triaging,present an automatic approach to predict a

developer with relevant experience to solve the new coming report. In proposed approach explain data reduction on

bug data set which will reduce the scale of the data as well as increase the quality of the data.And also give domain

specific bugs with their solution by developers. For implementing this use instance selection and feature selection for

reducing bug of data. And Top-K pruning algorithms for tackling domain specific task.

Keywords: Bug,Bug Triage,repositories,instance selection.

I. INTRODUCTION

For managing software bugs bug repository or bug fixing

plays an important role. Large of software which are open

source projects have an open bug repository which allows

developers as well as users to submit issues or defects in

the software that suggest possible solutions and remark on

existing bug reports. The number of regular occurring

bugs for open source large-scale software projects is so

much large that makes the triaging process very difficult

and challenging .For fixing software bugs most of

software companies pays a lot . The large scale and the

low quality are main two challenges which are related

with bug data that may affect the effective use of bug

repositories in software development tasks. Bug is

maintained as a bug report in a bug repository that records

the reproducing bug in textual form and updates

according to the status of bug fixing[1].

A. Objectives:

1) Simultaneously reduce the scales of the bug dimension

and the word dimension.

2) Improve the accuracy of bug triage.

3) Improve the results of data reduction in bug triaging to

explore how to prepare a high quality set of bug data

and tackle a domain specific task.

II. LITERATURE SURVEY

Following are the existing papers name with their

description:

 Automatic bug triage using text categorization

 In this paper[2], authors used an application of

supervised machine learning using a naive Bayes classifier

for automatically assign bug reports to developers. For

that they experimented their approach on bug reports

from a large open-source project such as Eclipse.org. And

get 30% classification accuracy.

 Improving Bug Triage with Bug Tossing Graphs

In this paper[3], authors studied on 445,000 bug reports as

well as their overall activities from the Mozilla and

Eclipse projects.This steps takes long time for assign and

toss bugs. For improving the bug assignment process and

reduce unnecessary tossing steps, they used tossing graph

model which used existing tossing history.This results as

model reduces tossing steps by up to 72% and up to 23

percentage points improving the accuracy of automatic

bug assignment.

 COSTRIAGE: A Cost-Aware Triage Algorithm for

Bug Reporting Systems:

In this paper[4], authors used COSTRIAGE technique.

The experiments reduces the cost without significantly

sacrificing accuracy. They used a proof-of-concept

implementation by using cost of bug fixing time.

Developer profile model is general enough to support

other code indicators such as interests, efforts, and

expertise to optimize for both accuracy and cost for

automatic bug triage.

 Towards more accurate retrieval of duplicate bug

reports

In this paper[8],improved the accuracy of duplicate bug

retrieval in two ways. First, BM25F is an effective textual

similarity measure which is originally designed for short

unstructured queries, and extend it to BM25Fext specially

or lengthy structured report queries by considering weight

of terms in queries. Second, authors proposed a new

retrieval function REP fully utilizing not only text but also

other information available in reports such as product,

component, priority etc: A two-round gradient descent

contrasting similar pairs of reports against dissimilar ones,

is adopted to optimize REP based on a training set. They

experimented on 4 sizable bug datasets extracted from 3

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41111 45

large open-source projects like OpenOffice, Firefox and

Eclipse; and find that BM25Fext and REP are able to

improve the retrieval performance. The experiments on the

this showed that BM25Fext improves recall rate by 3–

13% and MAP by 4–11% over BM25F.

 Memories of bug fixes

In this paper[7],authors used project-specific bug finding

tool using memories of bug fixes. Potential bugs are

detected by BugMem and which suggests corresponding

fixes.They found that 19.3%-40.3% of bugs arrived

repeatedly, and 7.9%-15.5% of bug and fix pairs arrived

repeatedly in the history.To store histories and make

backups, source code repositories such as CVS and

Subversion are typically used.Their approach of

computing memories of bug fixes provides a useful way to

extract and deploy the knowledge latent in source code

repositories. They tackle this information to improve the

quality of source code and provide detailed guidance to

developers.

 Towards Effective Bug Triage with Software Data

Reduction Techniques

In this paper[1], For reducing the scale of bug data sets as

well as improve the data quality combine feature selection

with instance selection. For determinining the order of

applying instance selection and feature selection for a new

bug data set, This takes attributes of each bug data set and

train a predictive model based on historical data sets. For

experiments they use bug data set of Eclipse and Mozilla

and get high quality bug data set.

III. PROPOSED SYSTEM

Manual Bug fixing is time consuming task and did’t get

accurate result.So that proposed system is provided.There

is problem of getting accurate bug solution according to

domain.In existing approach, get reduced bug dataset and

high quality bug dataset. For that purpose, proposed

system is provided.We used existing system instance

selection and feature selection for reducing bug

dataset.And additionaly use Top-K pruning algorithm for

improving results of data reduction quality as compared to

existing system and get domain wise bug solution.

A. Architecture

For fixing the bugs first we have to assign the bugs to

developer.So,In this figure when there is new bugs arrived

that time check this bug in bug repository, if this bug

solution is already available, then fix this bug by already

assign developers. But there is no bug solution that time

assign this bug to new developer for fixing the bug based

on the knowledge of historical bug fixing.For that purpose

use instance selection and feature selection combinely for

reducing the bug dataset and use Top-K pruning algorithm

for solving the bug domain wise.

 IS(Instance selection) is for obtaining a subset of

relevant instances (i.e., bug reports in bug data) .

 Remove noise and redundant instances

 Remove non-representative instances

 FS(feature selection) which aims to obtain a subset of

relevant features (i.e.,words in bug data).

 Sorting of words according to feature values

In that uses FS->IS to denote the bug data reduction,

which first applies FS and then IS; on the other hand, IS-

>FS denotes first applying IS and then FS. After applying

this get reduced dataset .When developer wants bug

according to domain that time use Top-K Pruning

algorithms.

Fig. 1 System Architecture

B. Algorithm

Following algorithm is used for data reduction in bug

fixing,which is based on feature selection and instance

selection.

IV. CONCLUSION

Software Companies spend most of their money for fixing

bug.This is necessary for companies to solve the bugs.And

this task is time consuming.So,In this paper we use

existing system instance selection and feature selection

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41111 46

method for getting reduced bug dataset.And additionaly

use Top-K pruning algorithm for improving results of data

reduction quality as compared to existing system and get

domain wise bug solution.This work provides the accurate

high quality bug dataset as well as provide domain specific

task.

REFERENCES

[1] B Jifeng Xuan, He Jiang, Yan Hu, Zhilei Ren, Weiqin Zou,

Zhongxuan Luo, and Xindong Wu,” Towards Effective Bug Triage

with Software Data Reduction Techniques” ieee transactions on
knowledge and data engineering, vol. 27, no. 1, january 2015.

[2] D. Cubranic and G. C. Murphy, “Automatic bug triage using text

categorization,” in Proc. 16th Int. Conf. Softw. Eng. Knowl.

Eng.,Jun. 2004, pp. 92–97.

[3] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with

tossing graphs,” in Proc. Joint Meeting 12th Eur. Softw. Eng. Conf.
17th ACM SIGSOFT Symp. Found. Softw. Eng., Aug. 2009,pp.

111–120.

[4] J. W. Park, M. W. Lee, J. Kim, S. W. Hwang, and S.
Kim,“Costriage: A cost-aware triage algorithm for bug reporting

systems,”in Proc. 25th Conf. Artif. Intell., Aug. 2011, pp. 139–144.

[5] A. E. Hassan, “The road ahead for mining software repositories,”in
Proc. Front. Softw. Maintenance, Sep. 2008, pp. 48–57.

[6] J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Developer prioritization in

bug repositories,” in Proc. 34th Int. Conf. Softw. Eng., 2012, pp.
25–35.

[7] S. Kim, K. Pan, E. J. Whitehead, Jr., “Memories of bug fixes,” in

Proc. ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2006, pp.
35–45.

[8] J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Developer prioritization in
bug repositories,” in Proc. 34th Int. Conf. Softw. Eng., 2012, pp.

25–35.

[9] H. Brighton and C. Mellish, “Advances in instance selection for
instance-based learning algorithms,” Data Mining Knowl.

Discovery, vol. 6, no. 2, pp. 153–172, Apr. 2002.

[10] C. Sun, D. Lo, S. C. Khoo, and J. Jiang, “Towards more accurate
retrieval of duplicate bug reports,” in Proc. 26th IEEE/ACM Int.

Conf. Automated Softw. Eng., 2011, pp. 253–262.

