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Abstract: Compressed sensing is new technique for an efficient data acquisition.in this paper, we proposed, a multi- 

scale variant of block compressed sensing of images coupled with Smoothed Projected Landweber Reconstruction. In 

essence, block-based compressed sampling is deployed independently with each subband of each decomposition level 

of a wavelet transform of an image. The corresponding multi-scale reconstruction interleaves Landweber steps on the 

individual blocks with a smoothing filter in the spatial domain of the image and thresholding within a sparsity 

transform. Experimental results shows that the proposed multi-scale reconstruction outperform over original block 

compressed sensing with Smoothed Projected Landweber. 
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I. INTRODUCTION 

Compressed sensing has emerged as a new framework for 

signal acquisition and sensor design that enables a 

potentially large reduction in the sampling and 

computation costs for sensing signals that have a sparse or 

compressible representation. While the Nyquist–Shannon 

sampling theorem states that a certain minimum number of 

samples is required in order to perfectly capture an 

arbitrary band limited signal, when the signal is sparse in a 

known basis we can vastly reduce the number of 

measurements that need to be stored. Consequently, when 

sensing sparse signals we might be able to do better than 

suggested by classical results. This is the fundamental idea 

behind CS: rather than first sampling at a high rate and 

then compressing the sampled data, we would like to find 

ways to directly sense the data in a compressed form – i.e., 

at a lower sampling rate. The field of CS grew out of the 

work of Candès, Romberg, and Tao and of Donoho, who 

showed that a finite-dimensional signal having a sparse or 

compressible representation can be recovered from a small 

set of linear, non-adaptive measurements [1–2].There has 

been significant interest in the paradigm of compressed 

sensing for the sampling and reconstruction of image data. 

One of the primary challenges for compressed sensing on 

image data is the large computational cost associated with 

reconstruction for multidimensional signals. One 

prominent technique to mitigating such computational 

burdens is to limit CS sampling to relatively small blocks 

(e.g., [3, 4]). Block based CS image reconstruction with 

smoothed Projected Landweber algorithm (BCS-SPL) [4] 

deployed in the domain of discrete wavelet transform 

(DWT), typically provide much faster reconstruction than 

techniques based on full-image CS sampling. 
 

In this paper, we proposed a multi-scale algorithm that 

deploys existed block based CS image reconstruction [4] 

in the domain of a wavelet transform. In detail, block-  

 

 
based compressed sampling is deployed independently 

with each subband of each decomposition level of a 

wavelet transform of an image. The corresponding multi-

scale reconstruction interleaves iterative thresholding on 

the individual blocks with a smoothing filter. 

Experimental results for image demonstrate that this 

proposed multi-scale reconstructions usually provide 

significant gain in reconstruction quality over existed 

algorithm. 

II. BACKGROUND 

Suppose we want to recover real-valued signal  𝑥 ∈ ℝ𝑁  

from 𝑀 measurements such that   𝑀 ≪ 𝑁 ; i.e.,    𝑦 = Φ𝑥, 
where 𝑦 = ℝ𝑀 , and Φ is a  𝑀 × 𝑁  measurement matrix 

with sampling rate, being  𝑆 = 𝑀 𝑁 . Because the number 

of unknowns is much larger than the number of 

observations, recovery every 𝑥  from its corresponding 

𝑀 measurements is impossible in general; however CS 

theory holds that, if   𝑥  is sufficiently sparse in some 

domain  Ψ  then exact recovery of  𝑥  is recoverable 

from  𝑦  by the optimization. 
 

𝑥 = Ψ𝑥  →  1          
                                                

𝑥 =


a rg  m in

x

  𝑥  1 , such that 𝑦 = ΦΨ−1𝑥   →  2  

Where the measurement matrix Φ is a random matrix; here, 

we further assume that Φ is orthonormal such that ΦΦ𝑇 =

𝐼 and  Ψ−1 is the inverse transform.  
 

Recently CS reconstruction techniques based on 

projections have been proposed [5]. Algorithms of this 

class form 𝑥  by successively projecting and thresholding: 

for example, the reconstruction in [5] starts from some 

initial approximation 𝑥  0   and forms the approximation at 

iteration 𝑖 + 1 as 
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𝑥   𝑖 = 𝑥  𝑖 +
1

𝛾
ΨΦ𝑇 𝑦 − ΦΨ−1𝑥  𝑖    →  3   

 

𝑥  𝑖 =  
 𝑥   𝑖          𝑥   𝑖  ≥ 𝜏 𝑖 ,

0        else.           
   →  4  

 

Here 𝛾 is a scaling factor ([5] uses the largest eigenvalue 

of Φ𝑇Φ) while 𝜏 𝑖  is a threshold set appropriately at each 

iteration. It is straightforward to see that this procedure is 

like a Projected Landweber (PL) algorithm [6]. The next 

section explores Block based CS and wiener filtering into 

the Projected Landweber to search for compressed sensing 

reconstruction of image. 

III. BLOCK BASED CS WITH SMOOTHED PL 

RECONSTRUCTION 

In [3] compressed sensing of  2D images was proposed.in 

this scheme ,the sampling of image using random matrices 

applied on block by block basis while the recovery of 

image based on the PL reconstruction of (3)-(4) that 

incorporates a smoothing operation. The overall technique 

was called BCS-SPL in [4] 

A. Block based CS sampling 

in BCS, an image is partitioned into smaller blocks while 

sampling is applied on block- by-block basis. In such BCS, 

the global measurement matrix takes a block-diagonal 

structure, 
 

Φ =  
Φ𝐵 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ Φ𝐵

   →  5      

                         

wherein   Φ𝐵 independently samples blocks within the 

image. That is 𝑦 = Φ𝐵𝑥𝑖 ; where  𝑥𝑖 , a column vector with 

length 𝐵2  representing block 𝑖  of the image, and Φ𝐵  is a 

𝑀𝐵 × 𝐵2  measurement matrix such that the subrate of 

BCS is   𝑆 = 𝑀𝐵 𝐵2 . Using block based CS sampling 

rather than random sampling applied to entire image𝑥 has 

several advantages [3]. First, the sampling operator Φ𝐵  

conveniently stored and employed because of its small 

size. Second, the encoder does not need to wait until the 

whole image is measured, but may send each block after 

its linear random projection. Last, an initial approximation 

𝑥0 with MMSE can be easily calculated due to compact 

size of Φ𝐵[3]. 

B. Smoothed Projected Landweber variant 

The recovery of image based on the variant PL 

reconstruction that incorporates a smoothing .This 

operation imposes smoothness, in addition to the sparsity 

inherent to PL. Here wiener filter used for smoothening in 

order to remove blocking artifacts. A smoothing filter step  

Was interleaved with the Pl projection of (3)-(4); thus, the 

approximation to the image at iteration  𝑖 + 1, 𝑥 𝑖+1 , is 

produce from 𝑥 𝑖  as: 
 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑥(𝑖+1) = 𝑆𝑃𝐿(𝑥 𝑖 , 𝑦, Φ𝐵 , Ψ, 𝜆 

𝑥  𝑖 = 𝑤𝑖𝑒𝑛𝑒𝑟 𝑥 𝑖   
 

           𝑓𝑜𝑟 𝑒𝑎𝑐𝑕 𝑏𝑙𝑜𝑐𝑘  𝑗 

 𝑥  𝑗
(𝑖)

= 𝑥 𝑗
(𝑖) + Φ𝐵

𝑇(𝑦 − Φ𝐵𝑥 𝑗
 𝑖 ) 

𝑥  (𝑖) = Ψ𝑥  𝑗
(𝑖)

 

𝑥 (𝑖) = 𝑇𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑(𝑥   𝑖 , 𝜆) 

𝑥 (𝑖) = Ψ−1𝑥 (𝑖) 

              𝑓𝑜𝑟 𝑒𝑎𝑐𝑕 𝑏𝑙𝑜𝑐𝑘  𝑗 

 𝑥𝑗
(𝑖+1) = 𝑥 𝑗

(𝑖) + Φ𝐵
𝑇(𝑦 − Φ𝐵𝑥 𝑗

(𝑖)). 
 

Here,𝑤𝑖𝑒𝑛𝑒𝑟 .   lowpass-filters a grayscale image that has 

been degraded by constant power additive noise. This 

filter uses a pixelwise adaptive Wiener method on 

statistics estimated from a local neighbourhood of each 

pixel. And  𝑇𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑(. )  I s thresholding method as 

discussed below. In our use of SPL reconstruction, we 

initialize with   𝑥(0)=Φ𝑇𝑦 and terminate when  𝐷(𝑖+1) −

𝐷(𝑖)<10−4  where 𝐷(𝑖)=𝑥𝑖−𝑥(𝑖+1)2 

 

C. Thresholding 

As originally described in [3], 𝑆𝑃𝐿(・)  used hard 

thresholding in the form of (4). To set a proper 𝜏 for hard 

thresholding, we employ the universal threshold method of 

[7]. Specifically, in (4), 
 

𝜏 𝑖 = 𝜆𝜎 𝑖  2 log𝐾    →  6  
 

where 𝜆  convergence control factor, 𝐾  is the number of 

transform coefficients, and noise variance 𝜎 𝑖  is estimated 

using a robust median estimator, 
 

𝜎(𝑖) =
𝑚𝑒𝑑𝑖𝑎𝑛 ( 𝑥   𝑖  

0.6745
   →  7    

 

hard thersholding cannot model statistical dependencies 

between wavelet coefficients. However, In [8], a non-

Gaussian bivariate (having 2 variables) distribution was 

proposed for wavelet coefficients of natural images in 

order to characterize the dependencies between a current 

coefficient and its parent  based on an empirical joint 

histogram of DWT coefficients. The corresponding 

bivariate shrinkage functions are derived from them using 

Bayesian estimation, in particular, the MAP estimator. Let 

𝜉  is specific transform coefficient its parent coefficient 

is 𝜉𝑝  . 
 

𝑇𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑 𝜉, 𝜆 =

  𝜉2 + 𝜉𝑝
2 − 𝜆

 3𝜎 𝑖 

𝜎𝜉
 

+

 𝜉2 + 𝜉𝑝
2

. 𝜉  →  8  

 

Where  𝑔 + = 0  for 𝑔 < 0 ,  𝑔 + = 𝑔  else; 𝜎(𝑖)  is the 

median estimator of (7) and again, 𝜆 is a constant control 

factor. Here, 𝜎𝜉  is the marginal standard deviation of 

coefficient 𝜉  estimated in a local 3 × 3   neighborhood 

surrounding 𝜉. 

IV. MULTI-SCALE BLOCK BASED CS WITH 

SMOOTHED PL RECONSTRUCTION 

A. Multi-scale Block based CS sampling 

The measurement operator Φ for multi-scale BCS is split 

into two components-a multi-scale transform Ω  (DWT) 

and a multi-scale block based sampling measurement 

process Φ′ such that Φ = Φ′Ω, then we have 
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y = Φ′Ω𝑥  →  9                           
 

Assume that Ω produces L levels of wavelet 

decomposition, thus Φ' consists of L different block based 

sampling operators, one for each level. That is let the 

Discrete wavelet transform of image x be 
 

𝑥 = Ω𝑥  →  10                                   
 

suband 𝑠 at level 𝑙 of 𝑥  is then divided into 𝐵𝑙 × 𝐵𝑙  blocks 

and measure using an appropriately sized Φ𝑙  (here,𝑙 = 𝐿 is 

the highest resolution level).That is, suppose 𝑥 𝑙 ,𝑠,𝑗  is a 

vector representing, in raster scan fashion, block j of 

subband 𝑠 at level 𝑙, such that 1 ≤ 𝑙 ≤ 𝐿. Then, 
 

𝑦𝑙 ,𝑠,𝑗 = Φ𝑙𝑥 𝑙 ,𝑠,𝑗   →  11                             
 

Since the different levels of wavelet decomposition have 

different importance to the final image reconstruction 

quality, here we adjust the sampling process so as to yield 

a different subrate,𝑆𝑙  at each level 𝑙. In all cases, we set the 

subrate of the wavelet subband to full measurement 
 𝑆0 = 1 .Then, we let the subrate for level 𝑙 be 
 

𝑆𝑙 = 𝑊𝑙𝑆
′   →  12  

 

such that the overall subrate becomes 
 

𝑆 =
1

4𝐿
𝑆0  

3

4𝐿−𝑙+1
𝑊𝑙𝑆

′   →  13 

𝐿

𝑙=1

 

 

TABLE I 

Wavelet domain block based CS subrates 𝑆𝑙  at level 𝑙 for 

target overall subrate 𝑆 for DWT with 𝐿 = 3 levels. In all 

cases, the subband is given full measurement (𝑆0 = 1). 
 

Level subrate 𝑆𝑙   
𝑆 𝑆1 𝑆2 𝑆3 

0.1 1.0000 0.1600 0.0100 

0.2 1.0000 0.5867 0.0367 

0.3 1.0000 1.0000 0.0667 

0.4 1.0000 1.0000 0.2000 

0.5 1.0000 1.0000 0.3333 
 

Given a target subrate 𝑆 and a set of level weights 𝑊𝑙 , one 

can easily solve (13) for 𝑆 ′ and then we get the set of level 

subrates 𝑆𝑙  via (12). However this process will produce 

one or more  𝑆𝑙 > 1 . Thus, we modify the solution to 

enforce 𝑆𝑙 ≤ 1 for all 𝑙.  Specifically, after finding 𝑆 ′ and 

𝑆1 via (13) and (12), we check if 𝑆1 > 1.  
 

If so, we set  𝑆1 = 1, remove its corresponding term from 

the sum in (13), and then we solve 
 

𝑆 =
1

4𝐿
𝑆0 +

3

4𝐿
𝑆1  

3

4𝐿−𝑙+1
𝑊𝑙𝑆

′

𝐿

𝑙=2

  →  14  

 

for 𝑆 ′, again using (12) to recalculate 𝑆𝑙  for 𝑙 = 1,2,… . , 𝐿. 
We repeat this process as needed to ensure that all 𝑆𝑙 ≤ 1. 

Here, we use level weights as, 
 

𝑊𝑙 = 16𝐿−𝑙+1   →  15  
 

The resulting level subrates 𝑆𝑙  for varous target subrates 𝑆 

for 𝐿 = 3 levels are shown in Table I. 

B. Wavelet-Domain Multi-scale reconstruction 
 

The block based CS reconstruction algorithm couples a 

full-image Wiener-filter smoothing process with a sparsity 

enhancing thresholding process in the domain of sparsity 

transform Ψ  . Interleaved between the smoothing and 

thresholding operations lie Landweber steps in the form of 
 

𝑥 ← 𝑥 + Φ𝑇 𝑦 − Φ𝑥 , →  16  
 

where Φ is measurement matrix. Here we modified BCS 

reconstruction to accommodate the situation in which CS 

sampling take place within in multi-scale transform Ω as 

in (9). In essence, the resulting proposed multi-scale 

reconstruction applies a Landweber step on each block of 

each subband in each decomposition level separately using 

the appropriate block based Φ𝑙  for the current level 𝑙.   

V. RESULTS 

We now evaluate the performance of the BCS-SPL and the 

proposed Multi-Scale reconstructions described above on 

a number of grayscale images of size 512 × 512 (see Fig. 

1). Here, we use dual tree DWT [9] for multi-scale 

whereas original BCS-SPL uses DWT as the sparsity 

transform  Ψ  with bivariate shrinkage [8] applied within 

the wavelet domain to enforce sparsity.  Multi-scale BCS 

uses a 3-level DWT with the popular 9/7 biorthogonal 

wavelets as the sampling domain transform  Ω  . At 

decomposition level 𝑙  of  Ω , blocks of size 𝐵𝑙 × 𝐵𝑙  are 

individually sampled in the DWT domain using the 

scrambled block discrete cosine transform(DCT) sampling 

operator of [10]; we use block of sizes 𝐵𝑙=16,32 and 64 

for decomposition level 𝑙=1,2, and 3, respectively (𝑙=3 is 

the highest resolution level). On the other hand BCS uses 

𝐵 × 𝐵  block based sampling applied directly on the image 

data in its ambient domain; here 𝐵 = 32. 
 

 
Fig. 1. The 512 × 512  grayscale still images used in the 

experiments. First row (left to right): Leena, Barbara; 

second row (left to right): cameraman, peppers. 
 

The reconstruction performance of the two algorithms 

under consideration is presented in Table II. In most cases, 

the wavelet-domain measurement and multi-scale 

reconstructions provides a significant gain in 

reconstruction quality over the spatial domain 

measurement of BCS-SPL generally on the order of a 1- to 

3-dB increase in PSNR metric. The proposed multi scale 

reconstruction in wavelet domain Provides significantly 
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superior reconstruction over original BCS-SPL presented 

in Fig. 2. A visual comparison of BCS-SPL and proposed 

method for S=0.1 (10%) for “peppers” image is shown in 

Fig. 3.  
 

TABLE II: Image reconstruction PSNR (dB) 
 

Subrate 

 0.1 0.2 0.3 0.4 0.5 

Leena 
BCS- 

SPL 
Original 27.4852 30.8597 33.0795 34.8265 36.3958 

MS 31.5803 34.7452 36.7059 37.8948 39.0376 

Barbara 

BCS- 

SPL 
Original 22.1681 23.4436 24.8224 26.2487 27.864 

MS 23.9127 25.1443 26.0663 27.2872 28.8578 

Cameraman 

BCS- 

SPL 
Original 25.4501 29.928 33.1538 35.8589 38.1891 

MS 31.2834 36.8677 40.1676 43.1069 45.137 

Peppers 

BCS- 

SPL 
Original 28.45 31.8011 33.5358 34.8438 36.0099 

MS 31.0956 34.081 35.76 36.8127 37.7086 
 

 
2(a) 

 
2(b) 

 
2(c) 

 
2(d) 

 

Fig. 2. Comparison of BCS-SPL and MS-BCS-SPL based 

on reconstruction performance (PSNR). (a) Leena (b) 

Barbara (c) Cameraman (d) Peppers 
 

 
3(a)                                   3(b) 

 

Fig. 3. Reconstructed peppers image for subrate= 0.1. (a) 

BCS-SPL (28.45), (b) MS-BCS-SPL (31.0956). 

VI. CONCLUSION 

In this paper, we formed multi-scale variant 

reconstructions by deploying block based CS sampling 

within the domain of a wavelet transform. The 

corresponding reconstructions applies the Landweber step 

to each block in each decomposition level independently. 

The resulting method achieves a significant reconstruction 

performance over the original BCS-SPL. Overall, the 

multi-scale reconstruction algorithm effectively retains the 

fast execution speed associated with block based 

measurement while rivaling the quality of CS 

reconstructions which employ full image sampling. 
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