
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41126 112

Types of SQL Injection attacks

Vineet Nayak
1
, Nupur Kalra

2
, Ankit Gera

3

Nitte Mahalinga Adhyantaya Memorial Institute of Technology, Nitte, India
 1, 2, 3

Abstract: This SQL injection is a software vulnerability that occurs when data entered by users is sent to the sql

interpreter as a part of SQL query. Attackers provide specially crafted input data to the SQL interpreter and trick the

interpreter to execute unintended commands. Attackers utilize this vulnerability by providing specially crafted input

data to the SQL interpreter in such a manner that the interpreter is not able to distinguish between the intended

commands and the attacker‟s specially crafted data. The interpreter is tricked into executing unintended commands. A

SQL injection attack exploits security vulnerabilities at the database layer. By exploiting the SQL injection flaw,

attackers can read, modify or delete sensitive data.

Keywords: Attacker, database, query, injection.

I. INTRODUCTION

SQL Injection is one of the web attack methods used by

intruders to steal data from different organizations. Hence,

it is the most common application layer attack method

used in today's world. It is the type of attack that takes

advantage of frivolous coding of your web applications

that allows intruder to inject SQL commands into say a

login form that allows them to gain access to the data

which is present within the database.

SQL Injection is the hacking technique. An attempt is

made to pass sql commands through a web application for

execution by the backend database. If not checked

properly, a sql injection attacks can come into existence by

web applications that allow intruders to view data from the

database and/or even remove it.

In essence, SQL Injection comes into picture because the

areas available for user input allow SQL statements to pass

through the database and query it directly.

SQL injection attacks are successful based on two

important factors: the nature and size of your business and

the age, modification on your applications, efficiency and

count of your technical staff

II. TYPES OF SQL ATTACKS

In this section, we present and discuss the different kinds

of SQL Injection Attacks. The different types of attacks

are generally not performed in isolation; many of them are

used together or sequentially, depending on the specific

goals of the attacker.

Tautologies
Attack Intent: Bypassing authentication; identifying

injectable parameters; extracting data.

Description: The general goal of a tautology-based attack

is to inject code in one or more conditional statements so

that they always evaluate to true. The most common

usages are to bypass authentication pages and extract data.

In this type of injection, an attacker exploits an injectable

field that is used in a query‟s WHERE conditional.

Transforming the conditional into a tautology causes all of

the rows in the database table targeted by the query to be

returned. In general, for a tautology-based attack to work,

an attacker must consider not only the injectable/

vulnerable parameters, but also the coding constructs that

evaluate the query results. (Halfond, Viegas, &

Alessandro, 2006)

Example 1: Bypassing login script.

Query: SELECT name from authors where username =

'$_POST[username]‟ANDpassword=‟$_POST[password]‟

;

This query take input from the system user; suppose the

user enters:

Username: a‟ OR „1=1‟

Password: a‟ OR „1=1‟

Constructed query: SELECT name from authors where

username = „a‟ OR „1=1‟ AND password=‟a‟ OR „1=1‟

The code injected in the conditional (OR 1=1) transforms

the entire WHERE clause into a tautology. The database

uses the conditional as the basis for evaluating each row

and deciding which to return. Because the condition, the

query evaluates to true for each row and returns all of

them. This would cause this user to be authenticated as the

user whose data is in the first row in the returned result set.

Solution:

 $username = $_POST[username];

 $username = mysqli_real_escape_string ($username);

 mysql_query (SELECT first_name, last_name from

authors where username = '$username‟);

Illegal/Logically Incorrect Queries
Attack Intent: Identifying injectable parameters;

performing database finger printing; Extracting data.

Description: This attack lets the attacker gather important

information about the type and structure of the back-end

database of an application. The attack is considered a

preliminary, information gathering step for other attacks.

The vulnerability leveraged by this attack is that the

default error page returned by application servers is often

overly descriptive; originally intended to help

programmers debug their applications, further helps

attackers gain information about the schema of the back-

end database. When performing this attack, an attacker

tries to inject statements that cause a syntax, type

conversion, or logical error into the database. Syntax

errors can be used to identify injectable parameters. Type

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41126 113

errors can be used to deduce the data types of certain

columns or to extract data. Logical errors often reveal the

names of the tables and columns that caused the error.

Example 2: Cause a type conversion error that can reveal

relevant data.

Password: AND „pin: “convert (int, (select top 1 name

from sysobjects where xtype=‟u‟))

Query: SELECT name from authors where username = „‟

AND password=‟‟ AND „pin = convert (int,(select top 1

name from sysobjects where xtype=‟u‟))

The query attempts to extract the first user table

(xtype=‟u‟) from the database‟s metadata table (assume

the application is using Microsoft SQL Server, for which

the metadata table is called sysobjects). The query then

tries to convert this table name into an integer. Because

this is not a legal type conversion, the database throws an

error. For Microsoft SQL Server, the default error would

be ”Microsoft OLE DB Provider for SQL Server

(0x80040E07) Error converting nvarchar value

‟CreditCards‟ to a column of data type int.”

Two useful pieces of information in this message aids an

attacker. First, the attacker can see that the database is an

SQL Server database. Second, the error message reveals

the value of the string that caused the type conversion to

occur. In this case, this value is also the name of the first

user-defined table in the database: “CreditCards.” A

similar strategy can be used to systematically extract the

name and type of each column in the database. Using this

information about the schema of the database, an attacker

can then create further attacks that target specific pieces of

information.

Union Query
Attack Intent: Bypassing Authentication; extracting data.

Description: In union-query attacks, an attacker exploits a

vulnerable parameter to change the data set returned for a

given query. With this technique, an attacker can trick the

application into returning data from a table different than

the one that was intended by the developer. Attackers do

this by injecting a statement of the form: UNION SELECT

<rest of injected query>. Because the attackers completely

control the second/injected query, they can use that query

to retrieve information from a specified table. The

database returns a dataset that is the union of the results of

the original first query and the results of the injected

second query. One example usage of this multiple attacks

is where the attacker uses the logically incorrect query

attack to data about a table‟s structure then use the union

query to get data from this table.

Example 3: Referring to example 2, an attacker could

inject the text

Username: ‟ UNION SELECT cardNo from CreditCards

where acctNo=10032 - -”

Query: SELECT name from authors where username = „‟

UNION SELECT cardNo from CreditCards where

acctNo=10032 -- AND password=‟‟

Note: It is common technique to force the SQL parser to

ignore the rest of the query written by the developer with -

- which is the comment sign in SQL.

Assuming that there is no login equal to “”, the original

first query returns the null set, whereas the second query

returns data from the “CreditCards” table. The database

takes the results of these two queries, unions them, and

returns them to the application.

Piggy Backed Queries
Attack Intent: Extracting data; Adding or modifying data;

Performing DOS; executing remote commands.

Description: In this attack, an attacker tries to inject

additional queries into the original query. We distinguish

this type from others because, in this case, attackers are

not trying to modify the original intended query; instead,

they are trying to include new and distinct queries that

“piggy-back” on the original query. As a result, the

database receives multiple SQL queries which are all

executed. This type of attack can be extremely harmful. If

successful, attackers can insert virtually any type of SQL

command, including stored procedures into the additional

queries and have them executed along with the original

query. Vulnerability to this type of attack is often

dependent on having a database configuration that allows

multiple statements to be contained in a single string.

Example 4: The attacker inputs:

Password: “‟; drop table users - -”

Query: SELECT name from authors where username = „‟

AND password=‟‟ drop table users -- AND pin=123

After completing the first query, the database would

recognize the query delimiter (“;”) and execute the

injected second query. Dropping the users table would

likely destroy valuable information. Other types of queries

could insert new users into the database or execute stored

procedures. Note that many databases do not require a

special character to separate distinct queries, so simply

scanning for a query separator is not an effective way to

prevent this type of attack.

Solution: Configure the database to block executing

multiple statements within a single string.

Stored Procedures
Attack Intent: Performing privilege escalation;

performing DOS; Executing remote commands.

Description: SQL Injection Attacks of this type try to

execute stored procedures present in the database. Most

vendors ship databases with a standard set of stored

procedures that extend the functionality of the database

and allow for interaction with the operating system.

Therefore, once an attacker determines which backend

database is in use, SQL Injection Attacks can be crafted to

execute stored procedures provided by that specific

database. Additionally, because stored procedures are

often written in special scripting languages, they can

contain other types of vulnerabilities, such as buffer

overflows; these vulnerabilities allow attackers to run

arbitrary code on the server or escalate their privileges.

Here is a stored procedure that checks credentials:

CREATE PROCEDURE DBO.isAuthenticated

@userName varchar2, @pass varchar2, @pin int

AS EXEC ("SELECT accounts FROM users

WHERE login=‟" +@userName+ "‟ and pass=‟"

+@password+ "‟ and pin=" +@pin);

GO

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41126 114

Example 5: Demonstrates how a parameterized stored

procedure can be exploited via an SQL Injection Attack.

In the example, we assume that the query string

constructed at lines 5, 6 and 7 of our example has been

replaced by a call to the stored procedure defined in Figure

2. The stored procedure returns a true/false value to

indicate whether the user‟s credentials authenticated

correctly. To launch an SQL Injection Attack, the attacker

simply enters:

Password: ‟ ; SHUTDOWN; --

Query: SELECT name from authors where username =

„Jay‟ AND password=‟ ‟; SHUTDOWN; --

At this point, this attack works like a piggy-back attack.

The first query is executed normally, and then the second,

malicious query is executed, which results in a database

shut down. This example shows that stored procedures can

be vulnerable to the same range of attacks as traditional

application code.

Inference
Attack Intent: Identifying injectable parameters;

Extracting data; Determining database schema.

Description: In this attack, the query is modified to recast

it in the form of an action that is executed based on the

answer to a true/-false question about data values in the

database. In this type of injection, attackers are generally

trying to attack a site that has been secured enough so that

when an injection has succeeded, there is no usable

feedback via database error messages. In this situation, the

attacker injects commands into the application and then

observes how the application responds. From careful

observation, the attacker can deduce not only whether

certain parameters are vulnerable, but also additional

information about the values in the database. There are

two well-known attack techniques that are based on

inference:

Blind Injection: Information is inferred from the behavior

of the page by asking the server true/-false questions. If

the injected statement evaluates to true, the site continues

to function normally. If the statement evaluates to false,

although there is no descriptive error message, the page

differs significantly from the normally-functioning page.

Timing Attacks: A timing attack allows an attacker to

gain information from a database by observing timing

delays in the response of the database. Attackers structure

their injected query in the form of an if/then statement,

whose branch predicate corresponds to an unknown about

the contents of the database. Along one of the branches,

the attacker uses a SQL construct that pause the execution

for a known amount of time (e.g. the WAITFOR

keyword). By measuring the response time of the

database, the attacker can infer which branch was taken in

his injection and therefore the answer to the injected

question.

Example 6: Identifying injectable parameters using blind

injection. Consider two possible injections into the login

field.

 “legalUser‟ and 1=0 - -”

 “legalUser‟ and 1=1 - -”

Query 1: SELECT name from authors where username =

‟legalUser‟ and 1=0 -- ‟ AND password=‟ ‟ AND pin=0;

Query 2: SELECT name from authors where username =

‟legalUser‟ and 1=1 -- ‟ AND password=‟ ‟ AND pin=0;

Scenario 1: We have a secure application, and the input for

login is validated correctly. In this case, both injections

would return login error messages, and the attacker would

know that the login parameter is not vulnerable.

Scenario 2: We have an insecure application and the login

parameter is vulnerable to injection. The attacker submits

the first injection and, because it always evaluates to false,

the application returns a login error message. The attacker

then submits the second query, which always evaluates to

true. If in this case there is no login error message, then

the attacker knows that the attack went through and that

the login parameter is vulnerable to injection.

Example 7: Using Timing based inference attack to

extract a table name from the database.

Username: „„legalusr‟ and ASCII(SUBSTRING((select

top 1 name from sysobjects),1,1)) > X WAITFOR 5 --‟‟.

Query:

SELECT name from authors where username =

‟legalUser‟ ASCII(SUBSTRING((select top 1 name from

sysobjects),1,1)) > X WAITFOR 5 -- ‟AND password=‟ ‟

AND pin=0;

Here, the SUBSTRING function extracts the first

character of the first table‟s name. Using a binary search

strategy, the attacker can ask a series of questions about

this character. In this case, the attacker is asking if the

ASCII value of the character is greater-than or less-than-

or-equal-to the value of X. If the value is greater, the

attacker knows this by observing an additional 5 second

delay in the response of the database. The attacker can

then use a binary search by varying the value of X to

identify the value of the first character.

Alternate Encodings
Attack Intent: Evading detection.

Description: In this attack, the injected text is modified so

as to avoid detection by defensive coding practices and

also many automated prevention techniques. This attack

type is used in conjunction with other attacks. In other

words, alternate encodings do not provide any unique way

to attack an application; they are simply an enabling

technique that allows attackers to evade detection and

prevention techniques and exploit vulnerabilities that

might not otherwise be exploitable. These evasion

techniques are often necessary because a common

defensive coding practice is to scan for certain known

“bad characters,” such as single quotes and comment

operators.

To evade this defense, attackers have employed alternate

methods of encoding their attack strings (e.g., using

hexadecimal, ASCII, and Unicode character encoding).

Common scanning and detection techniques do not try to

evaluate all specially encoded strings, thus allowing these

attacks to go undetected. An effective code-based defense

against alternate encodings is difficult to implement in

practice because it requires developers to consider of all of

the possible encodings that could affect a given query

string as it passes through the different application layers.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41126 115

Therefore, attackers have been very successful in using

alternate encodings to conceal their attack strings.

Example 8: Every type of attack could be represented

using an alternate encoding; here we simply provide an

example of how mystic an alternatively-encoded attack

could appear.

Username: “legalUser‟; exec(0x73687574646f776e) - - ”

Query:

SELECT name from authors where username

=‟legalUser‟; exec(0x73687574646f776e) - - AND

password=‟ ‟;

The stream of numbers in the second part of the injection

is the ASCII hexadecimal encoding of the string

“SHUTDOWN.” Therefore, when the query is interpreted

by the database, it would result in the execution, by the

database, of the SHUTDOWN command.

Query: SELECT name from authors where username =

‟legalUser‟; exec(SHUTDOWN) - - AND password=‟ ‟;

III. CONCLUSION

In this paper, we have presented a survey of current

techniques of SQL injection as well as a solution

methodology for preventing the attacks. To perform this

evaluation, we first identified the various types of SQL

Injection attacks .We also studied the different

mechanisms through which SQL Injection Attacks can be

introduced into an application and identified the

techniques that are able to handle the mechanisms. Many

of the techniques have problems handling attacks that take

advantage of poorly coded stored procedures and SQL

queries cannot handle attacks. This difference could be

explained by the fact that focused techniques try to

incorporate defensive best practices into their attack

prevention mechanisms. Version of this template is V2.

Most of the formatting instructions in this document have

been compiled by Causal Productions from the IEEE

LaTeX style files. Causal Productions offers both A4

templates and US Letter templates for LaTeX and

Microsoft Word. The LaTeX templates depend on the

officialIEEEtran.cls and IEEEtran.bst files, whereas the

Microsoft Word templates are self-contained.

ACKNOWLEDGMENT

We would like to thank our teachers and friends for

continuous support and encouragement. The library staff

for providing us with the required material for the topic.

REFERENCES

[1] Wei, K., Muthuprasanna, M., & Suraj Kothari. (2006, April 18).

Preventing SQL injection attacks in stored procedures. Software

Engineering IEEE Conference. Retrieved November 2, 2007, from
http://ieeexplore.ieee.org

[2] Thomas, Stephen, Williams, & Laurie. (2007, May 20). Using

Automated Fix Generation to Secure SQL Statements. Software
Engineering for Secure Systems IEEE CNF. Retrieved November

6, 2007, from http://ieeexplore.ieee.org

[3] Merlo, Ettore, Letarte, Dominic, Antoniol & Giuliano. (2007 March

21). Automated Protection of PHP Applications Against SQL-

injection Attacks. Software Maintenance and Reengineering, 11th

European Conference IEEE CNF. Retrieved November 9, 2007,
from http://ieeexplore.ieee.org.

[4] Wassermann Gary, Zhendong Su. (2007, June). Sound and precise

analysis of web applications for injection vulnerabilities. ACM
SIGPLAN conference on Programming language design and

implementation PLDI, 42 (6). Retrieved November 7, 2007, from

http://portal.acm.org
[5] Friedl's Steve Unixwiz.net Tech Tips. (2007). SQL Injection

Attacks by Example. Retrieved November 1, 2007, from

http://www.unixwiz.net/techtips/sql-injection.html
[6] Massachusetts Institute of Technology. Web Application S ecurity

MIT Security Camp. Retrieved November 1, 2007, from

http://web.mit.edu/netsecurity/Camp/2003/clambert-slides.pdf

