
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41154 240

A Case Study on Markov Model for Double Fault

Tolerance, Comparing Cloud based

Storage System

Swaroop Tewari
1
, Mohana Kumar. S

2
, Dr. S N Jagadeesh

3

Abstract: Cloud storage has gained massive popularity in the IT industry. It has proven to be cost effective and

reliable. Research has shown that striping of data across multiple cloud vendors is a remedy for providing fault

tolerance. In case the cloud suffers from a permanent failure it leads to loss of data in the cloud. In this scenario the lost

data can be repaired or recovered using the other surviving clouds. This multiple cloud-storage system is called a

Network-Coding based cloud storage system. NC Cloud is a proxy based system which provides fault tolerance and

provides cost-effective repairs for systems which suffer from permanent single-cloud failure. The NC Cloud is built on

top of Functional Minimum Storage Regenerating (FMSR) codes which provide the same fault tolerance as traditional

erasure codes like RAID 5 and RAID 6 but use less data repair traffic. Therefore, the FMSR codes provide significant

cost savings in repair over RAID 6 codes but have similar performance during upload and download of data. The

concept of Network-Coding based cloud storage is gaining mass popularity due to its desirable properties like data

recovery, cost effectiveness and fault tolerance.

Keywords: FMSR codes; NC Cloud; Fault tolerance; data recovery; regenerating codes; Traditional erasure codes;

Mean-time-to-data-loss (MTTDL); MDS property.

I. INTRODUCTION

Cloud computing has been embraced by the IT industry

which has lead to the rise of network-centric computing.

The advancement of networking has made it possible to

concentrate resources in large data centres where the users

can pay as they consume and store data. One of the major

challenges of cloud storage is dealing with huge amount of

data and to securely maintain data in its data centres. It is

not a feasible solution to store data using a single cloud

storage provider as it raise a concern of a single point

failure. To eliminate the risk of single cloud failure the

data is stored in multiple clouds which improves fault

tolerance of the cloud storage system [2]. Another

challenge in the cloud storage is the vendor lock-in. It is

not possible to store the large amount of data with

different cloud service providers because it would be very

expensive as the providers charge the users for outbound

data. Moving these huge chunks of data can introduce

significant monetary costs. Therefore it is necessary to

reliably store data within single cloud service providers

which makes the service providers focus on data repair

and recovery.

In the existing systems used in the industry, conventional

erasure codes (RAID 5) is used to stripe data to improve

fault tolerance [2],[5]. This technique is suitable for short

term failures or a foreseeable permanent failure. Clouds

are susceptible to permanent failures. Our work focuses on

unexpected permanent cloud failure. It is necessary to

maintain data redundancy and fault tolerance properties on

a cloud storage system to activate repair when the cloud

unexpectedly fails. In the case of a permanent cloud

failure, a repair operation is launched in which the data is

retrieved from existing surviving clouds in the same

network and lost data is reconstructed into the new cloud.

It is absolutely essential to reduce data traffic during data

migration to have lower monetary costs [3].

The main goal to implement a NC cloud based storage

system is to reduce data traffic and monetary costs. To

achieve this, regenerating codes has been implemented for

the data to be stored in a distributed storage system

redundantly. The data is stored across different nodes in

which each node can be referred as a storage device or a

cloud storage provider. The NC cloud is built on top of the

Functional Minimum Storage Regenerating (FMSR)

codes. When the data repair operation begins, the encoded

chunks of data are retrieved from the surviving nodes and

sent to the new node. In the new node the lost data is

regenerated. The advantage of regenerating codes with the

same fault-tolerance level as that of the traditional erasure

codes is that it requires less repair traffic resulting in lesser

monetary costs.

NC cloud provides a fault tolerant storage system over

multiple cloud storage providers. NC cloud is a proxy

based storage system which can interconnect different

clouds and can also transparently stripe data across

different clouds. Functional Minimum Storage

Regenerating (FMSR) codes are implemented along with

NC Cloud which maintains double fault tolerance and use

less traffic during repair operations. One important benefit

is the elimination of performing encoding operations

within storage nodes during repair.

FMSR codes are stored as encoded data chunks formed by

the linear combinations of the original data. These codes

are non-systematic in nature. FMSR codes have been

implemented for archival applications in various

organizations. These codes serve the purpose of a long

term archive for data. FMSR codes design allows us to

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41154 241

restore the whole file rather than the parts of the file

during the recovery operation. This helps the lost file to be

obtained completely which maintains data integrity. They

can also provide an alternate solution for a system which

would help store data using multiple clouds storage, along

with the properties of fault tolerance and cost-

effectiveness [4].

In this paper, FMSR codes are discussed and compared

with the erasure codes like RAID-6 [15]. FMSR codes

tend to save the repair costs by 25 percent compared to

RAID-6 codes when four storage nodes are involved. It

can even save repair costs up to 50 percent as the number

of storage nodes further increases. On the other hand,

FMSR codes have the same amount of storage overhead as

RAID-6 codes and these codes can be deployed in a thin

cloud setting, very suitable for today‘s cloud storage

services. Regenerating codes are extensively studied in

theoretical context [6], [7],[10],[11].

II. REPAIR OPERATIONS IN A MULTIPLE-

CLOUD STORAGE

Cloud failure is a devastating event which may result in

the data being lost permanently. If the data is

unrecoverable then the cloud service providers would

struggle to maintain their clients. In the case of cloud

failures, we generally consider two types of failures:

Permanent failure and Transient failure.

Permanent failure:

Permanent failure is the type of failure which is long-term.

The data in the outsourced cloud will eventually be

unrecoverable permanently. This unavailable data can be

disastrous for the cloud service providers as well as the

users. These types of failures are very unlikely to happen,

but there are some instances which have lead to a

permanent failure.

Malicious attacks: It is absolutely crucial to encrypt the

data from the client application before the data can be

stored into the cloud. This is a necessary measure to

provide client confidentiality and security. It should also

be noted that when the outsourced data is corrupt, it would

not be useful at all [12].

Disasters in Data Centres: Data centres may suffer from

unexpected disasters once in a while. There are incidents

where data centres have been struck by lightning, hit by

earthquake and suffered from floods. These natural

disasters may lead to permanent loss of data [12].

Transient failure:

Transient failure is a short-term failure in which the cloud

which is unavailable temporarily would return to service

and function normally after a short period. In this type of

failure no outsourced data is lost. Some transient failure

may last a few minutes and some may last a few days.

These failures are common and occur regularly, but will

eventually be recovered [13].

III. IMPORTANCE OF FMSR CODES

In this paper, the storage system is based on a distributed

multi-cloud storage where the data to be stored is striped

over multiple cloud providers [1], [2], [14]. A proxy based

design is responsible for the interconnection of multiple

cloud repositories. The design of this storage system is

shown in Fig 1. The proxy based design is important

because it acts as an interface between the client and the

cloud. A repair operation is activated in case the cloud

experiences a permanent cloud failure.

Fig1. Normal operation

The repair operation mechanism can be shown in Fig 2. In

the repair operation, the proxy reads the data pieces that

are essential for the reconstruction of the new data pieces

from the other surviving clouds. These data pieces that are

retrieved from the remaining clouds are stored in the new

cloud. This repair operation does not involve any sort of

direct interaction between the clouds that are active.

Fig2. Repair operation

Level-3 Heading: A level-3 heading must be indented, in

Italic and numbered with an Arabic numeral followed by a

right parenthesis. The level-3 heading must end with a

colon.

To attain fault tolerance in the storage system, maximum

distance separable (MDS) codes have been implemented.

The file of size M is considered which is divided into

equal chunks of data. These data chunks are referred to as

native chunks. These native chunks are again linearly

combined to obtain code chunks. These native codes are

distributed over n nodes in the case where (n , k) MDS

code is implemented. The total size of the codes would be

M/k. With the use of FMSR codes, failures of n-k nodes

can be tolerated.

In Fig 3, a double fault tolerant implementation of FMSR

codes is considered. The file of size M is divided into four

native chunks. They are further divided onto eight distinct

code chunks P1,…,P8. These distinct code chunks are

formed by linear combinations of the native chunks where

the size of the code chunks is M/4. In case of a node

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41154 242

failure, any two different nodes can be used to recover the

original native code chunk. In Fig 3, node 1 is assumed to

have failed. The proxy collects a single code chunk from

the surviving node. The operation involves a download

procedure of three code chunks of the size M/4. Then the

proxy performs an operation where two code chunks P1‘

and P2‘ are regenerated from the different linear

combinations of the code chunks. The P1‗and P2‘

regenerated are stored in a new node by the proxy. In

FMSR the code size is considered as 2M, and the repair

traffic is 0.75M. The key feature of FMSR codes is that it

does not perform encoding during repair [1].

Fig3. FMSR codes

The file of size M is divided into 2(n-2) native chunks to

generalize double-fault-tolerant FMSR codes for n storage

nodes. These native chunks are used to generate 2n code

chunks. Each node stores two code chunks of size M/2(n-

2) each and the total storage size is Mn/(n-2). To perform

repair operation for a failed node a chunk is downloaded

from each of the other n-1 nodes, which results in the

repair traffic of M(n-1)/2(n-2). Considering n is large,

FMSR codes can save repair traffic by close to 50 percent

[1], [16].

IV. IMPLEMENTATION OF FMSR CODES

After describing the importance and the advantages of

FMSR codes in single cloud storage, the details of

implementing them in multiple cloud storage is specified

in this section. The nodes in the cloud repository are

viewed as a logical storage node. On the basis of the

property of FMSR codes, the lost chunks do not need to be

exactly reconstructed. Instead, in each repair operation

code chunks are regenerated that are not completely

identical to the originally stored on the node that failed as

long as the MDS property is satisfied. A two-phase

checking scheme is proposed here which ensures that code

chunks on all nodes always satisfy MDS property. There

are three operations performed on a file using FMSR

codes: 1. File upload, 2. File download, 3. Repair.

File upload: For a file to be uploaded, it is first divided

into k(n-k) equal size native chunks which are denoted by

(Fi)i=1,2,…,k(n–k). these k(n–k) native chunks are then

encoded into n(n-k) code chunks which are denoted by

(Pi)i=1,2,…,n(n-k). Each Pi is formed by a linear combination

of the k(n-k) native chunks. Specifically, we let EM=[αi,j]

be an [n(n-k) X k(n-k)] encoding matrix for some

coefficients αi,j (where i=1, . . . ,n(n-k) and j=1, . . . , k(n-

k)) in the Galois field GF(2
8
). The row vector of EM is

called an encoding coefficient vector (ECV) which

contains k(n-k) elements. The ECV is used to denote the i
th

row vector of EM. Every Pi is calculated by the product of

ECVi and all the native chunks F1, F2,…,Fk(n-k), where all

the arithmetic operations are performed over GF(2
8
). The

code chunks of the file are then evenly stored in the n

storage nodes, each having (n-k) chunks. The whole EM is

stored as a metadata object that is then replicated to all the

storage nodes. EM can be constructed in a number of ways

as long as it passes two-phase checking which is

mentioned below in iterative repairs. The implementation

details of arithmetic in Galois Field are briefly discussed

in [8].

File download: In the download operation, all the

corresponding metadata objects that contain the ECVs are

downloaded initially. Any k of the n storage nodes is

selected and k(n-k) code chunks from k nodes are

downloaded. The ECVs of the k(n-k) code chunks can

from a [k(n - k) X k(n – k)] square matrix. According to

the MDS property the inverse of the square matrix must

exist. The original k(n-k) native chunks are obtained

when the inverse square matrix is multiplied with the code

chunks. In the download operation, FMSR codes are

treated as standard Reed-Solomon codes and the technique

of creating an inverse matrix to decode the original data

has been described in [9].

Iterative Repairs: A File f is considered for repair of

FMSR codes in a permanent single-node failure in the

cloud storage system. A major challenge is to make sure

that the MDS property holds after iterative repairs given

that FMSR codes regenerate different chunks in each

repair. A two-phase checking heuristics is proposed as

follows:

It is assumed that the (r-1)
th

 repair is successful and r
th

repair (where r>1) is considered for the operation where a

single node failure has occurred. First, the new set of

chunks in all the storage nodes are checked if it satisfies

the MDS property after the r
th

 repair. All the other new set

of chunks in the storage nodes are checked if they satisfy

the MDS property after the (r+1)
 th

 repair, should another

single permanent node failure occur. This property is

referred to as the repair MDS (rMDS) property [18]. The

r
th

 repair is now briefly described in the following steps:

Step 1: Downloading the encoding matrix from an existing

node (Surviving node).

 The encoding matrix EM specifies the ECVs for

constructing all the code chunks by using the linear

combinations of native chunks. The EVCs are used later

for two-phase checking. The EM is embedded in a

metadata object which is replicated, the metadata object

can be simply be downloaded from one of the surviving

nodes.

Step 2: Selecting one ECV from each of the n-1 surviving

nodes.

 Each ECV in EM corresponds to a code chunk

where one ECV is picked from the n-1 surviving nodes.

These ECVs are referred as ECVi1, ECV i2,…, ECV i(n-1)

Step 3: Generating a repair matrix.

An (n-k) X (n-1) repair matrix RM= [ΥI,j] is constructed,

where each element

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41154 243

ΥI,j (where i=1,…,n-k and j=1,…,n-1) is randomly selected

in GF(2
8
).

Step 4: Computing the ECVs for the new code chunks

where a new encoding matrix is reproduced.

The RM is multiplied with the ECVs selected in Step 2 to

construct n-k new ECVs, denoted by

ECV‘ i= Σ
n-1

j=1Υi,j ECVi , for i=1,2,…,n-k.

A new encoding matrix EM‘ is reproduced which is

formed by the substitution of ECVs of EM of the failed

node with the corresponding new ECVs.

Step 5: Checking whether the newly reproduced EM‘ is

satisfying both the MDS and the rMDS properties.

The MDS property is verified intuitively by enumerating

all (
n
k) subsets of k nodes to check if each of their

corresponding encoding matrices forms a full rank. The

rMDS property, any possible node failure is checked

where one out of n-k chunks can be collected from each of

the other n-1 surviving nodes and reconstruct the chunk in

the new node to maintain the MDS property. The number

of checks performed for the rMDS property is at most n(n-

k)
n-1

 (
n

k). if n is small, then the enumeration complexities

for both MDS and rMDS properties are manageable. If

either of the two phases fails, then we return back to the

step 2 and repeat. Step 1 to Step 5 only deals with ECVs,

so their overhead does not depend on the chunk size.

Step 6: Downloading the actual chunk data and

regenerating the new chunk data.

If the two-phase checking performed in Step5 is

successful, the n-1 chunks are downloaded that correspond

to the selected ECVs in Step 2 from n-1 surviving storage

nodes to NC Cloud. By using new ECVs computed in the

step 4 new chunks are regenerated and uploaded from the

NC Cloud to a new node.

V. ANALYSIS

A It is absolutely essential for checking rMDS property in

each repair to maintain MDS property after iterative

repairs. Counter-example is used to demonstrate that

without rMDS property check, the MDS property would

be lost in the next repair. A simulation is also used to

demonstrate that the two-phase checking can sustain much

iteration of repairs in more general cases.

A Counter-example

A counter-example is shown in Fig 4, which is used to

illustrate the necessity of rMDS property. The notations

used are the same as Fig 3 with n=4 and k=2. It is assumed

that the code chunks P1,.…,P8 are linearly combined from

native chunks A,B,C and D. It is not difficult to verify that

the code chunks P1,.…,P8 satisfy the MDS property, which

can be further stated that the four chunks from any two

nodes can be used to reconstruct the native chunks A,B,C

and D. there is no operation performed to check whether

the rMDS property is also being satisfied or not.

It is now considered that node 4 has failed. The repair

operation selects one chunk from each of the Nodes 1, 2

and 3 according to FMSR codes. These chunks are used to

regenerate the new code chunks P‘7 which is represented

in (eq1) and P‘8 is represented in (eq2) which are stored in

the new node.

Fig4. Counter-example, code chunks that satisfy the MDS

property but not the rMDS property

There are 2
3
=8 possible selections of{X , Y , Z}. One

possible selection is considered here where the new code

chunks become

P‘7= Υ1,1 P1+ Υ1,2 P3 +Υ1,3 P5,…(eq1)

P‘8= Υ2,2 P1+ Υ2,2 P3 +Υ2,3 P5….(eq2)

Where Υi,j (i=1,…,n-k and j=1,…,n-1) are some random

coefficients used for generating new code chunks. Then

we have

P‘7= (Υ1,1 + Υ1,3)A + (Υ1,2 + Υ1,3)C,

P‘8= (Υ2,1 + Υ2,3)A + (Υ2,2 + Υ2,3)C,

According to figure 4, P1=A and P2=C due to which it is

not possible to reconstruct a native chunk D from P1, P2,

P‘7 ,P‘8.The MDS property would not be satisfied as nodes

1 and 4 cannot be used to reconstruct the native chunks

which would result in a failure of the repair operation.

Simulation

Simulations are performed to evaluate the overhead of the

two-phase checking and to justify that checking the rMDS

property can make sustainable iterative repairs. Initially,

multiple rounds of node repairs are considered for

different values of n. In each round of the simulation, a

random node is picked to fail and then repair operation is

performed on the failed node. A repair is considered to be

bad if the Step 2 to Step 5 of the Two-phase checking is

repeated over a threshold number of times, but no suitable

encoding matrix has been obtained. A number of rounds of

repair are carried out and the repair is stopped when a bad

repair is encountered [1].

In Figure 5, an example of the simulation is described

where there is a comparison between repairs where rMDS

property is checked and repairs where only MDS property

is checked.

.

Fig5. Comparison between repairs with MDS and rMDS.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41154 244

From this example it is clear that checking rMDS

properties enables more round of repairs to be sustained

before a bad repair is encountered. Suppose the threshold

is set to be 20 loops. Then, we can sustain 500 rounds of

repair for different values of n by checking rMDS

property. When we check only MDS property we quickly

encounter a bad repair in three rounds of repair for n=10.

Reliability analysis

Reliability is a very desirable property for a storage

system. We compare the reliability of FMSR codes and

the traditional RAID-6 codes with respect to different

failure rates using the mean-time-to-data-loss (MTTDL)

metric [17]. Mean-time-to-data-loss (MTTDL) is defined

as the expected time elapsed until the original data become

unrecoverable. MTTDL is widely adopted reliability

metric which is only used for comparative study of

different coding schemes with different repair

performances.

The Markov model for double-fault-tolerant codes where

k= (n-2) is used to solve the MTTDL which is shown in

Fig 6 . In the Markov model the state i (where i=0,1,2,3)

denotes the number of failed nodes in the storage system.

State 3 signifies that there are more than two failed nodes

where data is permanently lost. MTTDL is computed as

the expected time to move from state 0 (where all nodes

are normal) to state 3.

Fig 6. Markov model for double fault tolerant codes.

The node failures and repairs are assumed to be

independent events that follow an exponential distribution

[19], [21]. Let λ be the node failure rate where 1/λ is the

expected time to failure of a node. The transition rate from

state i to state i+1 is (n-i) λ, where i=0, 1, 2. The repair

rates for single-node and double-node failure is μ1 and μ2

respectively. S is considered to be the size of the data

stored in each node where amount of original data stored

is (n-2) S and B is considered the network capacity

between the surviving nodes and the proxy.

Initially, repair for a single-node failure is considered. The

repair traffic for FMSR codes is (n-1)S/2, therefore

μ1=2B/(n-1)S. The repair traffic for RAID-6 codes is (n-

2)S, hence μ1=B/(n-1)S. Finally, in case of double node

failure the FMSR codes and the RAID-6 codes reconstruct

lost data by downloading the amount of original data ((n-

2)S) from remaining k=n-2 surviving nodes where

μ2=B/(n-2)S. MTTDL is evaluated for specific parameters

where n=10, k=8 and S=1. The MTTDL for different

values of λ from 0.1 to 1 (in units per year) is shown in

FIG7.a when B=1Gbps while FIG 7.b shows the MTTDL

for different values of B from 0.1 to 1 (in units of Gbps)

when λ-0.5 per year. Under these circumstances, the

MTTDL of FMSR codes is 50 to 80 percent longer than

traditional RAID-6 codes. [1], [15]

Fig 7.a. MTTDL vs node failure rate

Fig 7.b. MTTDL vs node transfer rate

Response Time Analysis

The response time is calculated for file upload, file

download and repair. These operations are performed on

the local cloud storage. The experiment is performed to

test the response time for File Upload, File download and

Repair where the value of n=4 and k=2 with varying file

sizes. There are eight files randomly selected from 1MB to

500MB as the data set. The response times of all the three

operations are plotted versus the file size in Fig 8 [20].

Fig8. Response time analysis for File downloads

The path of the chosen repository is set to a non-existent

location in order to stimulate a node failure in repair. The

Experiment is performed for each operation where the

different file sizes are considered and the time taken for

response is noted. After performing these experiments and

comparing the response time with RAID-6, it is

abundantly clear that the .RAID-6 codes have less

response time than FMSR codes during File upload and

File download regardless of n and k. On the other hand,

FMSR codes have slightly less response time than RAID-6

during repair operations [1]. This is mainly due to the fact

that FMSR codes download lesser data in file repair which

0
5

10
15
20
25
30
35
40
45
50

1 10 50 100 200 300 400 500

R
es

p
o

n
se

 T
im

e
(S

ec
o

n
d

s)

File Size (MB)

File Upload

File Download2

File Repair

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41154 245

is explained briefly below.

For example, a file of size 500 MB is considered where

n=4 and k=2. While uploading the file of size 500 MB

RAID-6 codes takes 1.53 seconds to encode while FMSR

codes takes 5.48 seconds. When downloading a 500 MB

size file, FMSR codes takes 2.71 seconds to decode while

RAID-6 does not take any time to decode as the native

chunks are available. These differences increase with n

and k. The main advantage of FMSR codes is observed

during repair operations. The FMSR codes have slightly

less response time compared to RAID-6. This is attained

because FMSR codes download less data during repair.For

repairing a 500-MB file with n=4 and k=2, FMSR codes

spend 4.02 seconds in download, while the native chunk

repair of RAID-6 codes spends 5.04 s.

FMSR codes generally have slightly longer response time

compared to RAID-6 which may raise the argument that

RAID-6 is a more feasible solution for achieving repair in

Cloud storages. In the case of a local cloud, this difference

in response time might favor RAID-6, but in a commercial

cloud the FMSR codes have a clear advantage.[1],[2],[6].

The encoding/decoding overhead which occurs in FMSR

codes can be easily masked with network fluctuations in

the internet. This advantage of FMSR codes in a

commercial cloud is achieved by lesser repair traffic

during the repair operations. FMSR codes implementation

eliminates the encoding requirement of nodes, while

maintaining the recovery performance of Minimum

Storage Regenerating codes. Since, the NC-Cloud storage

system‘s main aim is to provide a fault tolerant system

which performs repairs during permanent node failures,

FMSR codes are implemented to achieve a reliable and

efficient storage system.

VI. CONCLUSION AND FUTURE WORK

The NC Cloud is a proxy-based, multiple-cloud storage

system that practically addresses the reliability of today‘s

cloud backup storage. NC Cloud not only provides fault

tolerance in storage, but also allows cost-effective repair

when a cloud permanently fails. NC Cloud implements a

practical version of the FMSR codes, which regenerates

new parity chunks during repair subject to the required

degree of data redundancy. FMSR code implementation

eliminates the encoding requirement of storage nodes (or

cloud) during repair, while ensuring that the new set of

stored chunks after each round of repair preserves the

required fault tolerance. Our NC Cloud prototype shows

the effectiveness of FMSR codes in the cloud backup

usage, in terms of monetary costs and response times. This

provides a very good scope for future because of the

system‘s efficiency, reliability and its ability to recover

from permanent single cloud failures.

REFERENCES

1. NCCloud: A Network-Coding-Based Storage System in a Cloud-

of-Clouds Henry C.H. Chen, Yuchong Hu, Patrick P.C. Lee, and

Yang Tang

2. A H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon, ―RACS:

A Case for Cloud Storage Diversity,‖ Proc. ACM First ACM Symp

3. M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A.

Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M.

Zaharia, ―A View of Cloud Computing,‖ Comm. the ACM, vol. 53,

no. 4, pp. 50-58, 2010.
4. R. Ahlswede, N. Cai, S.-Y.R. Li, and R.W. Yeung, ―Network

Information Flow,‖ IEEE Trans. Information Theory, vol. 46, no. 4,

pp. 1204-1216, July 2000.

5. A. Bessani, M. Correia, B. Quaresma, F. Andre´, and P. Sousa,

―DEPSKY: Dependable and Secure Storage in a Cloud-of-Clouds,‖
Proc. ACM European Conf. Computer Systems (EuroSys ‘11),

2011.

6. B. Chen, R. Curtmola, G. Ateniese, and R. Burns, ―Remote Data

Checking for Network Coding-Based Distributed Storage Systems,‖
Proc. ACM Workshop Cloud Computing Security Workshop

(CCSW ‘10), 2010.

7. A.G. Dimakis, P.B. Godfrey, Y. Wu, M. Wainwright, and K.

Ramchandran, ―Network Coding for Distributed Storage Systems,‖
IEEE Trans. Information Theory, vol. 56, no. 9, pp. 4539-4551,

Sept. 2010.

8. K.M. Greenan, E.L. Miller, and T.J.E. Schwarz, ―Optimizing
Galois Field Arithmetic for Diverse Processor Architectures and

Applications,‖ Proc. IEEE Int‘l Symp. Modeling, Analysis and

Simulation of Computers and Telelcomm. Systems (MASCOTS
‘08), 2008.

9. J.S. Plank, ―A Tutorial on Reed-Solomon Coding for Fault-

Tolerance in RAID-Like Systems,‖ Software—Practice &

Experience vol. 27, no. 9, pp. 995-1012, Sept. 1997.
10. K. Rashmi, N. Shah, and P. Kumar, ―Optimal Exact-Regenerating

Codes for Distributed Storage at the MSR and MBR Points via a

Product-Matrix Construction,‖ IEEE Trans. Information Theory,

vol. 57, no. 8, pp. 5227-5239, Aug. 2011.
11. K.V. Rashmi, N.B. Shah, P.V. Kumar, and K. Ramchandran,

―Explicit Construction of Optimal Exact Regenerating Codes for

Distributed Storage,‖ Proc. Allerton Conf., 2009.

12. C. Preimesberger, ―Many Data Centers Unprepared for Disasters:

Industry Group,‖ http://www.eweek.com/c/a/ITManagement/
Many-Data-Centers-Unprepared-for-Disasters- Industry-Group-

772367/, Mar. 2011.

13. H. Blodget, ―Amazon‘s Cloud Crash Disaster Permanently
Destroyed Many Customers‘ Data,‖ http://www.businessinsider.

com/amazon-lost-data-2011-4/, Apr. 2011.

14. Y. Hu, C.-M. Yu, Y.-K. Li, P.P.C. Lee, and J.C.S. Lui, ―NCFS: On

the Practicality and Extensibility of a Network-Coding-Based
Distributed File System,‖ Proc. Int‘l Symp. Network Coding

(NetCod ‘11), 2011.

15. I. Reed and G. Solomon, ―Polynomial Codes over Certain Finite

Fields,‖ J. the Soc. Industrial and Applied Math., vol. 8, no. 2, pp.
300- 304, 1960.

16. L. Xiang, Y. Xu, J. Lui, Q. Chang, Y. Pan, and R. Li, ―A Hybrid

Approach to Failed Disk Recovery Using RAID-6 Codes:

Algorithms and Performance Evaluation,‖ ACM Trans. Storage,
vol. 7, no. 3, article 11, 2011

17. K.M. Greenan, J.S. Plank, and J.J. Wylie, ―Mean Time to

Meaningless: MTTDL Markov Models and Storage System

Reliability,‖ Proc. USENIX Second Workshop Hot Topics in

Storage and File Systems (HotStorage ‘10), 2010.

18. Y. Hu, P.P.C. Lee, and K.W. Shum, ―Analysis and Construction of

Functional Regenerating Codes with Uncoded Repair for
Distributed Storage Systems,‖ Proc. IEEE INFOCOM, Apr. 2013.

19. B. Schroeder and G.A. Gibson, ―Disk Failures in the Real World:

What Does an MTTF of 1,000,000 Hours Mean to You?‖ Proc.

Fifth USENIX Conf. File and Storage Technologies (FAST ‘07),
Feb. 2007. OpenStack Cloud Software, ―OpenStack Object

Storage,‖ http:// www.openstack.org/projects/storage/, 2013.

