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Abstract: The goal of this project is to measure electric activity in the brain due to firing of the neurons, parse wave to 

obtain attention and meditation level of brain and using it to move a Wheel Chair. The interactions between neurons 

create an electric discharge which cannot be measured using current technology. There are different techniques 

available to detect electric activity in brain. One technique is Electroencephalography (EEG). EEG measures voltage 

fluctuation along the scalp that results from the interaction between the neurons in the brain. These voltage fluctuations 

are processed and output to a microcontroller by the EEG sensor. The data packets obtained from the EEG sensor are 

stored in microcontroller. The attention and meditation levels are obtained from the processed data. These levels are 

used to control the direction and motion of the Wheel Chair.  
 

Keywords: Electro Encephalo Gram, Brain Computer Interface, Canonical Variate Analysis. 
 

I. INTRODUCTION 
 

Millions of people around the world suffer from mobility 

impairments and hundreds of thousands of them rely upon 

powered wheelchairs to get on with their activities of daily 

living. However, many patients are not prescribed 

powered wheelchairs at all, either because they are 

physically unable to control the chair using a conventional 

interface, or because they are deemed incapable of driving 

safely.  

In our work with brain–actuated wheelchairs, we target a 

population who are—or will become—unable to use 

conventional interfaces, due to severe motor–disabilities. 

Non-invasive brain–computer interfaces (BCIs) offer a 

promising new interaction modality, that does not rely 

upon a fully– functional peripheral nervous system to 

mechanically interact with the world and instead uses the 

brain activity directly. However, mastering the use of a 

BCI, like with all new skills, does not come without a few 

challenges. Spontaneously performing mental tasks to 

convey one’s intentions to a BCI can require a high level 

of concentration, so it would result in a fantastic mental 

workload, if one had to precisely control every movement 

of the wheelchair. Furthermore, due to the noisy nature of 

brain signals, we are currently unable to achieve the same 

information rates that you might get from a joystick, 

which would make it difficult to wield such levels of 

control even if one wanted to.  
 

In this paper, we describe the overall robotic architecture 

of our brain–actuated wheelchair. We begin by discussing 

the brain computer interface, since the human is central to 

our design philosophy. Then, the wheelchair hardware and 

modifications are described, before we explain how the 

shared control system fuses the multiple information 

sources in order to decide how to execute appropriate 

manoeuvres in cooperation with the human operator. 

Finally, we present the results of an experiment involving 

four healthy subjects and compare them with those 

reported on other brain–actuated wheelchairs. We find that 

our continuous control approach offers a very good level 

of performance, with experienced BCI wheelchair  

 

 
 

operators achieving a comparable performance to that of a 

manual benchmark condition. 
 

II. BRAIN COMPUTER INTERFACES (BCI) 

IMPLEMENTATION 
 

A Brain Computer Interface (BCI) is any system which 

can derive meaningful information directly from the user’s 

brain activity in real time. The most important applications 

of the technology are mainly meant for the paralyzed 

people who are suffering from severe neuromuscular 

disorders. Most BCIs use information obtained from the 

user’s encephalogram (EEG), though BCIs based on other 

brain imaging methods are possible. This section briefly 

describes several EEG-based BCIs. The P300 BCI is 

described in detail in next section. 

Brain-Computer Interfaces are generally developed as a 

rehabilitation tool for locked-in people. Yet research is 

often conducted with healthy subjects, mostly forpractical 

reasons. In this section we will review the few papers that 

cover tests with severely disabled people. One of the 

earliest study is by Birbaumer in year 2000, which showed 

that five patients suffering from end-stage ALS could use 

the TTD (introduced in Section 2.2.1). In 2003 six other 

patients confirmed those results [29]. Motor imagery 

based BCIs were also shown to work with severely 

disabled patients. Pfurtscheller and Neuper showed in 

2001 that a C4/C5 tetraplegic patient could control the 

opening and closing of a hand orthosis [49]. In 2003, a 

patient with Severe Cerebral Palsy (SCP) could spell 

letters at a rate of one letter per minute [50]. And in 2005, 

four people severely disabled by ALS learned to operate 

such a BCI [51]. Recently, Sellers and colleagues 

evaluated a P300 BCI with ALS patients. In [52, 53] six 

ALS patients were trained and tested. They obtained 

similar classification results as non-ALS patients. 

Moreover, the study shows that those performances can 

sustain over several months without degradation 

Since we are interested in detecting motor imagery, we 

acquire monopole EEG at a rate of 512Hz from the motor 
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cortex using 16 electrodes (see Fig. 1). The electrical 

activity of the brain is diffused as it passes through the 

skull, which results in a spatial blur of the signals, so we 

apply a Laplacian filter, which attenuates the common 

activity between neighbouring electrodes and 

consequently improves our signal to noise ratio. 
 

 
 

Fig. 1: The active electrode placement over the motor 

cortex for the acquisition of EEG data based on the 

International 10-20 system (nose at top). 
 

After the filtering, we estimate the power spectral density 

(PSD) over the last second, in the band 4–48Hz with a 

2Hz resolution [8]. It is well know that when one performs 

motor imagery tasks, corresponding parts of the motor 

cortex are activated, which, as a result of event related 

desynchronisation, yields a reduction in the mu band 

power (∼8–13Hz) over these locations (e.g. the right hand 

corresponds to approximately C1 and the left hand to 

approximately C2 in Fig. 1). In order to detect these 

changes, we estimate the PSD features every 62.5 ms (i.e. 

16 times per second) using the Welch method with 5 

overlapped (25%) Hanning windows of 500 ms.  

Every person is different, so we have to select the features 

that best reflect the motor–imagery task for each subject. 

Therefore, canonical variate analysis (CVA) is used to 

select subject–specific features that maximize the 

separability between the different tasks and that are most 

stable (according to cross validation on the training data) 

[9]. These features are then used to train a Gaussian 

classifier [10]. Decisions with a confidence on the 

probability distribution that are below a given rejection 

threshold are filtered out. Finally, evidence about the 

executed task is accumulated using an exponential 

smoothing probability integration framework [11]. This 

helps to prevent commands from being delivered 

accidentally. 
 

III. NEUROSKY SENSOR 
 

The MindWave Mobile headset turns your computer into a 

brain activity monitor. The headset safely measures 

brainwave signals and monitors the attention levels of 

individuals as they interact with a variety of different apps. 

This headset is useful for OEMs and developers building 

apps for health and wellness, education and entertainment. 

The MindWave family consists of MindWave and 

MindWave Mobile headsets. The MindWave is designed 

for PCs and Mac, while the MindWave Mobile is 

compatible with PCs, Mac and mobile devices like the 

iPhone, iPad, and Android. If you want a mobile 

compatible device, check out the MindWave Mobile. Both 

headsets share the following characteristics. 

The NeuroSky ThinkGear ASIC chip is priced to power 

mass adoption in health and wellness, educational and 

entertainment devices, popular EEG technology. 
 

III.WHEELCHAIR HARDWARE 
 

Our brain–controlled wheelchair is based upon a 

commercially available mid–wheel drive model by 

Invacare that we have modified. First, we have developed 

a remote joystick module that acts as an interface between 

a laptop computer and the wheelchair’s CANBUS–based 

control network. This allows us to control the wheelchair 

directly from a laptop computer. Second, we have added a 

pair of wheel–encoders to the central driving wheels in 

order to provide the wheelchair with feedback about its 

own motion. Third, an array of ten sonar sensors and two 

webcams have been added to the wheelchair to provide 

environmental feedback to the controller.  

Fourth, we have mounted an adjustable 8‖ display to 

provide visual feedback to the user. Fifth, we have built a 

power distribution unit, to hook up all the sensors, the 

laptop and the display to the wheelchair’s batteries. The 

complete BCI wheelchair platform is shown in Fig. 2. The 

positions of the sonars are indicated by the white dots in 

the centre of the occupancy grid, whereas the two 

webcams are positioned forward–facing, directly above 

each of the front castor wheels.  
 

A. Wheel–encoders 

The encoders return 128 ticks per revolution and are 

geared up to the rim of the drive wheels, resulting in a 

resolution of 2.75×10−3 metres translation of the inflated 

drive wheel per encoder tick. We use this information to 

calculate the average velocities of the left and right wheels 

for each time–step. Not only is this important feedback to 

regulate the wheelchair control signals, but we also use it 

as the basis for dead reckoning (or estimating the 

trajectory that has been driven).  
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We apply the simple differential drive model derived in 

[12]. To ensure that the model is always analytically 

solvable, we neglect the acceleration component. In 

practice, since in this application we are only using the 

odometry to update a 6m×6m map, this does not prove to 

be a problem. However, if large degrees of acceleration or 

slippage occur and the odometry does not receive any 

external correcting factors, the model will begin to 

accumulate significant errors.  
 

IV. SHARED CONTROL ARCHITECTURE 
 

The job of the shared controller is to determine the 

meaning of the vague, high–level user input (e.g. turn left, 

turn right, keep going straight), given the context of the 

surrounding environment . 

We do not want to restrict ourselves to a known, mapped 

environment—since it may change at any time (e.g. due to 

human activities)—so the wheelchair must be capable of 

perceiving its surroundings. Then, the shared controller 

can determine what actions should be taken, based upon 

the user’s input, given the context of the surroundings.  

The overall robotic shared control architecture is depicted 

in Fig. 3 and we discuss the perception and planning 

blocks of the controller over the next few subsections. 
 

 
 

Fig. 3: The user’s input is interpreted by the shared 

controller given the context of the surroundings. The 

environment is sensed using a fusion of complementary 

sensors, then the shared controller generates appropriate 

control signals to navigate safely, based upon the user 

input and the occupancy grid. 
 

A. PERCEPTION 

Unlike for humans, perception in robotics is difficult. To 

begin with, choosing appropriate sensors is a not a trivial 

task and tends to result in a trade–off between many 

issues, such as: cost, precision, range, robustness, 

sensitivity, complexity of post-processing and so on. 

Furthermore, no single sensor by itself seems to be 

sufficient. For example, a planar laser scanner may have 

excellent precision and range, but will only detect a table’s 

legs, reporting navigable free space between them. Other 

popular approaches, like relying solely upon cheap and 

readily available sonar sensors have also been shown to be 

unreliable for such safety–critical applications [14]. To 

overcome these problems, we propose to use the synergy 

of two low–cost sensing devices to compensate for each 

other’s drawbacks and complement each other’s strengths. 

Therefore, we use an array of ten close–range sonars, with 

a wide detection beam, coupled with two standard off–

the–shelf USB webcams, for which we developed an 

effective obstacle detection algorithm. We then fuse the 

information from each sensor modality into a probabilistic 

occupancy grid, as will be discussed in Section IV-C. 
 

B. COMPUTER VISION–BASED OBSTACLE 

DETECTION 

The obstacle detection algorithm is based on monocular 

image processing from the webcams, which ran at 10Hz. 

The concept of the algorithm is to detect the floor region 

and label everything that does not fall into this region as 

an obstacle; we follow an approach similar to that 

proposed in [13], albeit with monocular vision, rather than 

using a stereo head.  

The first step is to segment the image into constituent 

regions. For this, we use the watershed algorithm, since it 

is fast enough to work in real–time [15]. We take the 

original image (Fig 4a) and begin by applying the well–

known Canny edge–detection, as shown in Fig. 4b. A 

distance transform is then applied, such that each pixel is 

given a value that represents the minimum Euclidean 

distance to the nearest edge. This results in the relief map 

shown in Fig. 4c, with a set of peaks (the farthest points 

from the edges) and troughs (the edges themselves). The 

watershed segmentation algorithm itself is applied to this 

relief map, using the peaks as markers, which results in an 

image with a (large) number of segments (see Fig. 4d). To 

reduce the number of segments, adjacent regions with 

similar average colours are merged. Finally, the average 

colour of the region that has the largest number of pixels 

along the base of the image is considered to be the floor. 

All the remaining regions in the image are classified either 

as obstacles or as navigable floor, depending on how 

closely they match the newly–defined floor colour. The 

result is shown in Fig. 4e, where the detected obstacles are 

highlighted in red.  

Since we know the relative position of the camera and its 

lens distortion parameters, we are able to build a local 

occupancy grid that can be used by the shared controller, 

as is described in the following section. 
 

 
 

(a) Original Image 



IJARCCE 
ISSN (Online) 2278-1021 

ISSN (Print) 2319 5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 11, November 2015 
 

Copyright to IJARCCE                                              DOI 10.17148/IJARCCE.2015.41180                                                    364 

 
(b) Edge Detection 

 

 
(c) Distance Transform 

 

 
(d) Watershed Segmentation 

 

 
 

(e) Detected Obstacles 
 

C. UPDATING THE OCCUPANCY GRID 

At each time–step, the occupancy grid is updated to 

include the latest sample of sensory data from each sonar 

and the output of the computer vision obstacle detection 

algorithm. We extend the histogram grid construction 

method described in [16], by fusing information from 

multiple sensor types into the same occupancy grid. For 

the sonars, we consider a ray to be emitted from each 

device along its sensing axis. The likelihood value of each 

occupancy grid cell that the ray passes through is 

decremented, whilst the final grid cell (at the distance 

value returned by the sonar) is incremented. A similar 

process is applied for each column of pixels from the 

computer vision algorithm, as shown in Fig. 5. The weight 

of each increment and decrement is determined by the 

confidence we have for each sensor at that specific 

distance. For example, the confidence of the sonar 

readings being correct in the range 3cm to 50cm is high, 

whereas outside that range it is zero (note that the sonars 

are capable of sensing up to 6m, but given that they are 

mounted low on the wheelchair, the reflections from the 

ground yield a practical limit of 0.5m). Similarly, the 

computer vision algorithm only returns valid readings for 

distances between 0.5m and 3m. Using this method, 

multiple sensors and sensor modalities can be integrated 

into the planning grid.  

As the wheelchair moves around the environment, the 

information from the wheel–encoder based dead–

reckoning system is used to translate and rotate the 

occupancy grid cells, such that the wheelchair remains at 

the centre of the map. In this way, the cells accumulate 

evidence over time from multiple sensors and sensor 

modalities. As new cells enter the map at the boundaries, 

they are set to ―unknown‖, or 50% probability of being 

occupied, until new occupancy evidence (from sensor 

readings) becomes available.  
 

D. MOTION PLANNING 

All the motion planning is done at the level of the 

occupancy grid, which integrates the data from multiple 

sensors. We base our controller on a dynamical system 

approach to navigation, since this easily allows us to 

incorporate the notion of obstacles (repellers) and targets 

(attractors), and results in naturally smooth trajectories 

[17]. Previously, we have implemented. 
 

 

 

 

 

 

 

 
 

 

Fig. 5: Each column of pixels is scanned from bottom to 

top, in order to detect the nearest obstacle (assuming it 

intersects with the ground). 
 

V. EVALUATION 
 

We demonstrate that both naıve and experienced BCI 

wheelchair operators are able to complete a navigation 

task successfully. Furthermore, unlike in P300–based 

systems, not only was the user in continuous spontaneous 

control of the wheelchair, but the resultant trajectories 

were smooth and intuitive (i.e. no stopping, unless there 

was an obstacle, and users could voluntarily control the 

motion at all times).  
 

A. PARTICIPANTS 

Mastering a motor imagery BCI requires extensive 

training, over a period of weeks or months to generate 

stable volitional control; it is not simply a case of putting a 

cap on and starting to drive. Therefore, we have performed 

an initial evaluation with four healthy male subjects, aged 

23–28. All subjects were experienced BCI users, who had 

participated in at least 12 hours of online motor imagery 

BCI training and other BCI experiments over the previous 

few months. They all had some previous experience of 

driving a BCI– based tele–presence mobile robot, which 

requires a better level of performance, compared to simply 

moving a cursor on a screen [18]. Subjects’ s1 and s2 had 
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no previous experience of driving a BCI–controlled 

wheelchair, whereas subjects’ s3 and s4 had each clocked–

up several hours of driving the BCI wheelchair. Subject s1 

used motor imagery of both feet to indicate turn left and of 

the right hand to mean turn right; all the other subjects 

used left hand motor imagery to turn left and right hand 

motor imagery to turn right. 
 

B. EXPERIMENT PROTOCOL 

As a benchmark, the subject was seated in the wheelchair 

and was instructed to perform an online BCI session, 

before actually driving. In this online session, the 

wheelchair remained stationary and the participant simply 

had to perform the appropriate motor imagery task to 

move a cursor on the wheelchair screen in the direction 

indicated by a cue arrow. There was a randomized 

balanced set of 30 trials, separated by short resting 

intervals, which lasted around 4– 5mins, depending on the 

performance of the subject. 

After the online session, participants were given 15–30 

minutes to familiarise themselves with driving the 

wheelchair using each of the control conditions: a two 

button manual input, which served as a benchmark, and 

the BCI system. Both input paradigms allowed the users to 

issue left and right commands at an inter–trial interval of 

one second.  

The actual task was to enter a large open–plan room 

through a doorway from a corridor, navigate to two 

different tables, whilst avoiding obstacles and passing 

through narrow openings (including other non–target 

tables, chairs, ornamental trees and a piano), before 

finishing by reaching a second doorway exit of the room 

(as shown in Fig 7). When approaching the target tables, 

the participants were instructed to wait for the wheelchair 

to finish docking to the table, then once it had stopped 

they should issue a turning command to continue on their 

journey. The trials were counter–balanced, such that users 

began with a manual trial, then performed two BCI trials 

and finished with another manual trial. 
 

 
 

C. RESULTS AND DISCUSSION 

All subjects were able to achieve a remarkably good level 

of control in the stationary online BCI session, as can be 

seen in Table I. Furthermore, the actual driving task was 

completed successfully by every subject, for every run and 

no collisions occurred. A comparison between the typical 

trajectories followed under the two conditions is shown in 

Fig 7. The statistical tests reported in this section are 

paired Student’s t-tests.  

A great advantage that our asynchronous BCI wheelchair 

brings, compared with alternative approaches like the 

P300– based chairs, is that the driver is in continuous 

control of the wheelchair. This means that not only does 

the wheelchair follow natural trajectories, which are 

determined in real–time by the user (rather than following 

predefined ones, like in [5]), but also that the chair spends 

a large portion of the navigation time actually moving (see 

Fig. 8). This is not the case with some state–of–the–art 

P300–controlled wheelchairs, where the wheelchair has to 

spend between 60% and 80% of the manoeuvre time 

stationary, waiting for input from the user (c.f. Fig. 8 of 

this article with Fig. 8 of [6]).  

In terms of path efficiency, there was no significant 

difference (p = 0.6107) across subjects between the 

distance travelled in the manual benchmark condition 

(43.1±8.9m) and that in the BCI condition (44.9±4.1m). 

Although the actual environments were different, the 

complexity of the navigation was comparable to that of the 

tasks investigated on a P300– based wheelchair in [6]. In 

fact, the average distance travelled for our BCI condition 

(44.9±4.1m), was greater than that in the longest task of 

[6] (39.3±1.3m), yet on average our participants were able 

to complete the task in 417.6±108.1s, which was 37% 

faster than the 659±130s reported in [6]. This increase in 

speed might (at least partly) be attributed to the fact that 

our wheelchair was not stationary for such a large 

proportion of the trial time.  
 

VI. CONCLUSION 
 

In this article, we have seen how a viable brain–actuated 

wheelchair can be constructed by combining a brain 

computer interface with a commercial wheelchair, via a 

shared control layer. The shared controller couples the 

intelligence and desires of the user with the precision of 

the machine. We have found that this enabled both 

experienced and inexperienced users alike to safely 

complete a driving task that involved docking to two 

separate tables along the way.  

Furthermore, we have compared our results with those 

published on other state–of–the–art brain–controlled 

wheelchairs that are based on an alternative synchronous 

stimulus–driven protocol (P300). Our asynchronous 

motor–imagery approach gives users greater flexibility 

and authority over the actual trajectories driven, since it 

allowed users to interact with the wheelchair 

spontaneously, rather than having to wait for external cues 

as was the case with [5], [6].  

Moreover, combining our BCI with a shared control 

architecture allowed users to dynamically produce 

intuitive and smooth trajectories, rather than relying on 

predefined routes [5] or having to remain stationary for the 

majority of the navigation time [6].  

Although there was a cost in terms of time for 

inexperienced users to complete the task using the BCI 

input compared with a manual benchmark, experienced 

users were able to complete the task in comparable times 

under both conditions. This is probably as a result of them 

developing good mental models of how the coupled BCI–

shared control system behaves.  
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In summary, the training procedure for spontaneous motor 

imagery–based BCIs might take a little longer than that for 

stimulus–driven P300 systems, but ultimately it is very 

rewarding. After learning to modulate their brain signals 

appropriately, we have demonstrated that both experienced 

and inexperienced users were able to master a degree of 

continuous control that was sufficient to safely operate a 

wheelchair in a real world environment.  

They were always successful in completing a complex 

navigation task using mental control over long periods of 

time. One participant remarked that the motor–imagery 

BCI learning process is similar to that of athletes or 

musicians training to perfect their skills: when they 

eventually succeed they are rewarded with a great sense of 

self–achievement. 
 

VII. FUTURE ENHANCEMENT 
 

In future, it is improved by sensing the movement eyeballs 

through “Blue Brain Technology”. The destination can 

be reached by seeing the location once where the user 

wants to move. 
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