
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41190 403

A Survey of Context-Aware Framework for

Pervasive Environment

K. H. Walse
1
, Dr. R.V. Dharaskar

2
, Dr. V. M. Thakare

3

Asst. Professor, Dept. of CSE, Anuradha Engineering College, Chikhli, India
 1

Former Director, DMAT- Disha Technical Campus, Raipur, CG, India
 2

Professor& Head, P.G. Dept. of Computer Sci., S.G.B. Amravati University, Amravati, India
 3

Abstract: The context aware framework is the backbone of context aware application the framework. It is because the

context has continuously been in the process of evolution. It is implemented depending on the requirements of

situation. Many architectures or framework were proposed in order to support the development and to ease the

implementation of context-aware systems. Special thrust has been put on characteristics related to the application

domain and techniques used. Therefore, a survey of such architectures makes comparison between them. Their

evaluation is strongly recommended. Earlier surveys are either restricted to a limited number of architectures or they do

not offer a good comparison or their evaluation is not based on appropriate criteria which keep them as mere

descriptions. The present survey/research is made with the aim finding out the relevant architectures which mark the

evolution of context-aware systems based on criteria related to pervasive computing. The present study would serve as

a guide to developers of context-aware systems and help them to make architectural choices.

Keywords: Context-aware, Pervasive Computing, Context-Aware Computing, Framework.

I. INTRODUCTION

Information Technology has rapidly brought

transformation not only in scientific field but also

commercial and personal spheres of individual and social

life. Advanced technology is used in smart phone to make

the conversation more apt, instant and superb; which is

known as Pervasive computing (or ubiquitous). It aims to

provide proactively adapted services to both user and

applications according to the universal context. The main

characteristic of devices in such system is their context

awareness. Since its inception, pervasive computing has

required tools, methods and concepts to support the

context awareness system. It brings ease in their design

and implementation. Its tools include architectures,

frameworks and middleware. The system architecture is

created early in the development process. It permits the

creation of a high level design of the system to ensure

smooth fulfilment of requirement. The architecture design

is an important step in the development of context-aware

systems. In view to add in-depth and pervasive utility to

the context-aware systems, many researchers have

proposed several architectures, frameworks and

middleware. The main emphasis of these researchers is

undoubtedly on application domain and techniques used.

Many surveys and researches are done to evaluate these

proposed architectures; but they could not cover all

architectures that mark the evolution of pervasive

computing especially in regard of application domain.

These surveys did not offer concrete comparison or

evaluation. Instead they are simple descriptions. Even if

comments about pervasive computing exist in a limited

number of surveys, it appears in cursorily. These surveys

were not based on criteria related to particularities of the

pervasive computing. Thus, the aim of the present research

is to make a survey of relevant architectures that mark the

evolution of context-aware systems. The present research

takes in its ambit the localization-aware systems up to

present context- aware systems. It attempts to present a

comparison and evaluation of architectures on various

criteria which are considered important for pervasive

computing. These include context abstraction level,

communication model, reasoning system, extensibility and

reusability. One of the main objectives of the present

research is to come up with a survey that will serve as a

guide to developers and architecture designers of context-

aware programmes.

The rest of this paper is organized as follows, in section II

we include the concept of context aware computing and in

section 3, basic need of framework and section 4 contains

surveys done until now on context-aware architectures and

show their feature and weaknesses. In section 5, we

present the comparison of the framework depending on

various parameter and criteria used, and argue their use in

pervasive computing and show their strengths and

weaknesses. At last we conclude this paper.

II. CONTEXT-AWARE

According to Researchers Schilit and Theimer (1994) the

context is referred to context as location, identities of

nearby people and objects, and changes to those objects.

Ryan, Pascoe(1998) defined context as the user‟s location,

environment, identity and time. Dey and Abowd‟s

definition (2001) also defined that Context is any

information that can be used to characterize the situation

of an entity. Again another researcher Brown, Bovey

(1997) defined context as location, identities of the

people around the user, the time of day, season,

temperature, etc. An entity is a person, place or object that

is considered relevant to the interaction between the users

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41190 404

and corollary interaction between human and computers in

socio-technical systems, which takes place in a certain

context referring to the physical and social situation in

which computational devices and environments are

embedded. The context is of paramount importance. It is

often determined by the people involved with their

background knowledge and their intentions. It also

encompasses the objective of the interaction and the time

and place where the interactions occur. An important

aspect of context-aware systems is how the information

representing the context is obtained. Many activities which

people are engaged in take place inside a computational

environment of today‟s advanced world of simultaneous

and pervasive computing. It can be tracked and analyzed

by software components if the information about

activities, time, and location are provided. It is emerging

and is unbounded field. Some context parameters may be

inferred from partial designs but the intent of the designer

may need to be articulated explicitly via specification

components. The objectives and purposes of the context

information depend upon the important aspect of context-

aware systems. Rather than creating problem by

overloading excessive information, the context should be

used to say„right‟ information, at the „right‟ time, in the

„right‟ place, in the „right‟ way to the „right‟ person.

Context information is almost any information available at

the time of an interaction. It can be termed as context

information. Some examples of the context information

are: identity and spatial information which includes

location, orientation and speed. Secondly acceleration-

temporal information includes time of the day, date and

season of the year etc. Environmental information includes

temperature, air quality, light or noise level etc while

availability of resources include battery, display, network

and bandwidth.

III. DEFINITION OF FRAMEWORK

The next one of the most important aspects is the

framework. It is the part of building; or an object which

supports its weight and gives it shape. The structure of a

particular system include a set of beliefs, ideas or rules

that is used as a basis for making judgments, decisions,

etc.

A structure for supporting or enclosing something else,

especially a skeletal support used as the basis for

something being constructed working definition of

framework as follows, “A software framework, in

computer programming, is an abstraction in which

common code providing generic functionality can be

selectively overridden or specialized by user code

providing specific functionality”

IV. CONTEXT-AWARE COMPUTING

Context aware computing refers to a general class of

mobile systems that can sense their physical environment,

i.e., their context of use and adapt their behavior

accordingly. Such systems are a component of a

ubiquitous computing or pervasive computing

environment. Three important aspects of context include

where you are, who you are with, and what resources are

nearby. Although location is a primary capability,

location-aware does not necessarily capture things of

interest that are mobile or changing. Context-aware is used

more often to include nearby people, devices, lighting,

noise level, network availability and even the social

situation; which include whether you are with your family

or a friend from school. The context-aware computing

cycle consists of discovery; which is covered as dynamic

data, selection which is often location-based information

and the use which covers application and adaption.

Context-aware computing is the ability of a mobile user‟s

application to discover and react to changes in the context

in which they are situated. To exemplify a few concrete

examples could be illustrated. To provide time-of-use

assignment of engineering trade-offs such as protocol

constants and layers are used. Providing a display of

interesting located objects, both nearby and far away, it

helps to navigate the computerized world. It also used to

keep a record of located-objects and persons one has

encountered, for use by applications such as „activity-

based information retrieval‟ which include the context at

the time the data was stored to assist in retrieval. It also

helps to detect nearby people, located-objects, or services

that are relevant to reminders or actions set to be triggered

by their presence. It could easily track a particular located-

object as it moves around a region. Examples include

tracking a co-worker mobile user wish to talk to and

tracking the office coffee cart in order to be made aware

when either is nearby.

V. DESIGN OF CONTEXT-AWARE SYSTEM

Three main factors characterize the context-aware system

which includes a distinction between context sensing and

usage, a set of physical components to capture context

information and a set software components to handle and

manage context information. It, off course, includes its

aptness to contextual changes in the environment. In

Baldauf et al.‟s survey of context-aware systems they

identified some common architectural principles. The

architecture of context-aware systems depends on factors

such as whether sensors are local or remote, whether the

system has many or few users, the available resources of

the used devices (mobile devices vs. high-end PCs).

Another main architectural driver in context aware

systems is the method of context-data acquisition. Three

commonly used approaches are direct sensor access,

middleware infrastructure and context server. In the direct

sensor access approach, the system gathers the desired

data directly from its sensors without preprocessing or

using some other layer. Sensors acquisition is hard-coded

in the clients, which gives a tight coupling between the

clients and sensors. This approach is often used in devices

where sensors are locally built in and not suitable for

distributed systems. In the middleware infrastructure

approach the sensor data acquisition is done through a

middleware component. This approach hides low-level

sensing details and avoids hard-coding in the clients. It

improves reusability of sensors among different clients

and simplifies extensibility of clients. The context server

approach allows clients to remotely access data sources.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41190 405

This approach introduces an access managing remote

component, which facilitates concurrent client access of

sources. The advantage of this approach is reusability of

sensors by remote clients, which also relieves clients from

resources intensive operations involved with acquisition.

Thus, this approach allows clients to be thin.

VI. CONTEXT PROVIDER

Context Provider is a framework that collects, analyzes,

and archives the daily context extracted from on-device

sensors, web services and social media. As shown in the

Figure No 1, Context Provider layers between underlying

sensors and various applications. It consists of an online

supervised context learning component, an adaptive

frequency polling module, a long-term data repository, the

capability to offload analyses for non-time-sensitive data

trends, a graphical user interface for user feedback and

configurations and context aware medical applications [1].

A. Supervised Context Monitoring

Context Provider can prompt users for feedback

confirmations to categorize events as following the current

state and data patterns from biological and environmental

sensors. For example, if the heart-rate monitor encounters

an increase in pulse rate with unfamiliar data patterns from

other sensors, Context Provider will prompt the user to

verify whether the user needs medical attention. If medical

attention is not required, the user is prompted to identify

the current activity, so that various sensor readings and

user feedback can be correlated to build a new context.

Thus, the next time the heart-rate monitor detects an

increase in pulse rate with similar data patterns from other

sensors it will infer the user-supplied context. Threshold

parameters are adjusted automatically to reduce the rate of

user confirmations.

Fig.1.Context Provider System Architecture

B. Self-Adaptive Sensor Polling

Frequent readings from sensors may shorten the battery

life significantly in sensor-rich smartphones; therefore,

one objective for Context Provider is to poll data

infrequently, while yielding accurate contexts. This

frequency varies by sensor and the context to be analyzed.

For example, accurate analysis requires polling rates in

excess of 50 Hz, while footstep detection requires only 20

Hz polling.

VII. CONTEXT-AWARENESS IN ANDROID

Smartphones are ideal for context-aware applications

because they are relatively powerful and contain various

sensors. Before we decided to go for Android for our

context-aware framework, we evaluated other smartphone

platforms: iPhone, Symbian, RIM, Windows phone and

Linux. iPhone and Android are the two most promising

platforms. It is because of their popularity, high usability,

powerful CPUs and available sensors. The Android

platform is preferred to iPhone because it uses Java as the

main programming language. Again there were several

machine learning frameworks available for Java. It

provides access to more core OS functionality. Also it

does not require any certification or developer registration

to deploy the software to hardware and fourth mostly the

Android SDK is available on multiple platforms. The

context support in Android application framework consists

of two main parts: Raw context data sources and Context

processing. The support for raw context data sources

contains a lot of packages and classes such as for the

camera, Bluetooth scanning of nearby devices, sensor

manager for controlling interaction with physical sensors

on the Android device, geographical location, time, and

sound recording. The sensor manager enables Android

applications to access a wide range of sensors:

accelerometer, light, magnetic field, orientation, pressure,

proximity, and temperature. The Android application

framework provides a very good starting-point for

development of contextaware applications, but it lacks a

generalized interface for context management and a

discovery component for adaption. Further, if proactive

context-aware applications are to be developed, machine

learning is necessary to recognize previous context

patterns. Separation between context acquisition and usage

is very important for context-aware system architectures.

Such separation of concern is well supported in the

Android application framework through the broker

architecture that provides an intent-based communication

between components. The Android application framework

uses a middleware infrastructure for context acquisition

providing interfaces for various sensors in such a way that

no data is accessed directly from the hardware. Further,

access to remote context servers are supported in Android

through various network APIs as well as specific APIs

such as for Google Map. [2]

VIII. SERVICE-ORIENTED CONTEXT AWARE

FRAMEWORK

Following the paradigm of service-orientation, the

functions of the system are separated into distinct units

that are accessible as services over the network. Contexts

can be found in the lowest tier in the framework that

contains the hardware and software components for

context perception. The collected context values are

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41190 406

forwarded to the Framework core. Intelligent contexts

(e.g. location) can perform the framework‟s commands or

reply its requests, e.g. to send context information

continuously, on demand or in bursts. In the context-aware

system we encounter several types of contexts, either

simple or complex ones. The contexts in this tier may be

inhomogeneous, requiring different interpretation and

handling. The following list shows examples of possible

contexts:

 Presence: is the user available at the given moment? Is

a certain context of the user available at the moment?

 Time: it can be local time (hours and minutes) or the

current season, decade, etc.

 Means of transportation: on foot, by car, using public

transport

 Social issues or status: is the user a child, a pensioner,

a worker

 Operating system: the contexts of the device used are

also contexts of the user

Fig.2.The components of the framework

The location context is a complex subsystem managed by

the Location Middleware. It contains all the different, non-

compatible positioning technologies and masks the

differences so the framework can integrate any kind of

positioning system via the Location Middleware. This

module enables users to profit from the simultaneous or

alternating usage of their different positioning devices. In

an area covered with RFID readers and GSMsignal, high

precision global positioning is impossible with the existing

tools. However, by using a simple mobile phone and an

RFID tag our system is able to determine the global

position with high accuracy although neither the GSM nor

the RFID technology is capable of doing this by itself.

Using this module it is possible to achieve an increased

precision in localization by automatically combining the

sources of different positioning devices. Another benefit

of this module is the possibility to detect the users‟

location in changing conditions, for users switching from

one positioning device to another (e.g. caused by signal

loss). This is useful in scenarios where both indoor and

outdoor positioning is needed. Outside the user can be

positioned by his GPS while getting indoors (and losing

the GPS signal) the positioning continues as the GSM or

with other indoor positioning systems that become

accessible.

Our system was designed in a way that is able to represent

location information acquired from various positioning

sources. This ensures the compatibility with existing and

future positioning solutions. Within our project two

scientific groups are researching alternative positioning

technologies and building prototype systems. One group

for RFID and the other one for WLAN based positioning.

We cooperated with these teams to inspect their solutions

and to integrate the positioning solutions into the

framework. For the position data input we provide a Web

Service that accepts location data input using a fixed

parameter set. Apart from raw coordinate data, location

data also includes the coordinate system, precision and

probability information. So as to accommodate to the

model of the framework, each team developed an

extension to their system (Ext RFID and Ext WLAN

according to the previous sections) that sends the position

information to the Web Service.

The goal of the Context Middleware tier between the

Framework core and the contexts is to mask the

differences between the different context types and allow

the unified context handling and querying for the

Framework core. This module transforms the

heterogeneous context data into a homogeneous, semantic

representation enabling the Framework core to operate

independently from the structure of the different contexts

and ensuring that the system can easily integrate future

contexts. It also forwards the framework‟s requests to the

intelligent, interactive contexts. The Context Middleware

contains a database that matches the context-devices with

their owner (a user in the system) and with the supported

contexts. This database also stores other device- and

context related information. As the Context Middleware

hides the low-level devices from the upper tiers, it enables

the Framework core to work with high-level user-assigned

context data so it does not have to deal with low-level

devices.[3].

IX. CLASSIFICATION OF ARCHITECTURE

 Direct sensor access: Tightly coupled, No extensibility

 Middleware : Hiding low-level sensing details,

Extensible

 Context server – Permit multiple clients access to

remote data sources. They relieve clients of resource

intensive operations; again it has to consider appropriate

protocols, network performance, quality of service

parameters.

X. CONTEXT AWARE ARCHITECTURES

C. A. Sensay,

SenSay introduces the following four states:

Uninterruptible, Idle, Active and the default state which

could be termed as Normal. A number of phone actions

are associated with each state. For example, in the

Uninterruptible state, the ringer is turned off. A closed

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41190 407

architecture was adopted with five functional modules

which include the sensor box, sensor module, decision

module, action module and phone module. The figure 3

shows the following components. The sensor box collects

physical sensor data from left to right; the software based

sensor module queries that data the decision module

determines the phone‟s state; the action module sets that

state and the phone module provides access to the mobile

phone operating system and user interface[4].

The primary purpose of the action module is to support

some basic operations on the phone.

 Ringer control:off/low/medium/high

 Vibrate control: on/off

 Send SMS to a caller

 Make call suggestions

 Provide access to the electronic calendar

Fig.3. SenSay architecture depicting the 5 modules.

Fig.4.The Sentient Object Model

D. B. Cortex

The Central to the CORTEX architecture is the notion of a

sentient object which is defined as an entity that is able to

both consume and produce events as shown in figure 5.

That is, sentient objects could be defined as the objects

that receive events as input, process them and generate

further events as output. Input events are received either

from sensors or from other sentient objects.

Fig.5.CORTEX Architecture

Similarly, output events are sent either to actuators or

other sentient objects. Context-aware middleware

approach ,Architecture is based on the Sentient Object

Model Supports a graphical development tool for building

sentient objects specify relevant information about sensor

acutuator, Specify context hierarchy and production rules

,no need to write any code[5].

E. C. Muffin

Muffin is the prototype of mobile device for studying

context awareness. It was developed in the collaboration

work with Nokia Research Center. The significant

characteristic of Muffin is its sensing capability. It has

thirteen kinds of built-in sensors in the PDA sized box. It

also has two kinds of externally attached sensors; which

can be roughly divided into four groups. The first group is

environmental sensors. It works as a relative humidity

sensor and a barometer. The second group is physiological

sensors; which include an alcohol sensor, a pulse sensor, a

skin temperature sensor and a skin resistance sensor. The

third group is motion and location sensors. It is a compass

or tilt sensor. It has a 3D linear accelerometer, a grip

sensor, an ultrasonic range finder and a GPS receiver. The

ultrasonic range finder and the GPS receiver are externally

attached as optional sensors. The last group includes

remaining sensors which are an RFID reader, front/rear

cameras and a microphone. Linux operating system runs

on Muffin. Therefore each sensor can be accessed as a

device file (e.g., /dev/AccelX). Also Muffin equips

ordinary user interfaces (e.g., touch screen, micro joy

stick, microphone, vibration motor) and connection

interfaces (e.g., IrDA, Bluetooth, wireless LAN, USB

port) [6]

Fig.6.Muffin terminal and available sensors

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41190 408

F. Citron

In the implementation of citron architecture, the

blackboard architecture is employed to coordinate context

analysis modules. Further, each context analysis module is

defined as a worker for exclusive context extraction. The

blackboard architecture is a data centric processing

architecture. It has originally been developed for speech

understanding and artificial intelligence[12]. There are one

shared message board and multiple worker modules for

collaborative data analysis. Each module reads

information from the message board as a resource. After

processing the data it writes the result to the board. Thus,

module communication is established without the

knowledge of other modules. Further, extracted data is

analyzed and complimented in the communication process

[6].

Fig.7. Citron architecture overview

G. Gaia

Middleware infrastructure: –Gaia extends typical OS

concepts to include context-awareness.

Middleware is used for context awareness and semantic

interoperability. It has been integrated into Gaia. Gaia is

the infrastructure for smart spaces, which are ubiquitous

computing environment. It encompasses physical spaces.

The main aim of Gaia is to make physical spaces like

rooms, homes, building and airports intelligent, aid

humans in these spaces. Gaia is an agent based ubiquitous

software platform project which is aiming for providing

user-centric, resource-aware, multi-device, context-

sensitive mobile services in active spaces, extending

context-awareness to traditional operating system concept.

Gaia coordinates heterogeneous software entities and

networked devices. Gaia represents context data using 4-

ary predicates in the format of Context (<Context Type>,

<Subject>, <Relater>, <Object>).

Synthesizer infers high-level context data from low level

context data [15].

H. Hydrogen

Hydrogen [12] is another open and extensible framework

to support context-awareness on mobile devices.

Hydrogen is similar to Context Toolkit in that the aim of

Hydrogen is also providing reusability of software

components. It differentiates between a remote and a local

context and allows context sharing among devices so that

sensed context information can be provided for more than

the device connected to the sensors. Hydrogen does not

support resource discovery and persistent storage

functionalities. Hydrogen has a there layered architecture

– Adaptor Layer, Management Layer, Application Layer.

All layers are located on one device, and there is no

central server. Adaptor Layer is responsible for separating

context storing, sensing from other layers and provides the

same context information to multiple applications. The

management layer performs context sharing with other

devices using peer to peer communication via WLAN,

Bluetooth. Hydrogen adapted object-oriented context

model as its context model. Since the context model can

take advantage of inheritance, various context objects (e.g.

Location Object, Device Object) can be supported by

inheriting the super-class Context Object. The context

server stores all contextual information about the current

environment of the device. Further, the context server has

the possibility to share its information with other devices

in range. [8][14].

Fig.8.Architecture of hydrogen project

I. Cass

The CASS tool (Context-awareness sub-structure) is a

middleware for supporting the development of context-

aware applications. It provides a good abstraction of

contextual information. It also uses an object oriented

model for context description. The architecture (figure 10)

is based on a server containing a database of contextual

information and a knowledge base with an inference

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41190 409

Fig.9.Architecture of hydrogen project

engine to infer other contextual information using a back

chaining mechanism. The mobile devices are equipped

with various sensors to perceive context variation. These

work to send them to the server without local processing.

Mobile devices and the server communicate via wireless

mode. The server also contains a module for context

interpretation that provides it with a higher level of

abstraction. The architecture provides a good modularity.

It allows easy modification of server components in

particular the inference engine. The mobile devices do not

make any processing, in fact all processing job is done by

the server. It limits the autonomy needed for pervasive

systems. However, it enhances the extensibility of the

system. It again adds or removes devices which require

only the configuration of the server. Due to its

interpretation module and a reasoning mechanism, CASS

also provides a good abstraction of context. It makes work

more proactive way; however, the centralized architecture

has its weakness too. If the server is down, all the system

relied on it would be affected and becomes non

operational.

Fig.10.The CASS architecture

 H. Context Management Framework

The CMF (context management framework) [11] allows

semantic reasoning on context in actual time. It also works

even in the presence of noise, incertitude and rapid

variation of context. It delivers contextual information to

applications by using a communication model based on

events. The framework proposes client/server (figure 11)

architecture composed of the following basic components.

 Context Manager: It is responsible for the storage of

contextual information on server and the delivery of

context to clients using different kinds of mechanisms

(request/response, subscription/notification, etc.)

 Resource Server: It is responsible for the acquisition of

contextual information from physical sensors and their

interpretation according to a specific format before

sending them to the context manager.

 Context Recognition Service: It responsible for the

conversion of the data stream to a presentation defined

in the context ontology.

 Change Detection Service: It is responsible for the

detection of service change; and therefore the context

change.

 Security: It is responsible for the verification and control

of contextual information.

The CMF uses ontology for context representation.

However it does not offer a context reasoning module. It

contains a good mechanism for context interpretation. It

also provides a good abstraction of context and enhances

the reusability in addition to a module for context security.

It uses a server for context management (centralized

system). It is the main problem because when the server is

down all the system would be affected. Thus, it renders the

devices less autonomous. It is something not desirable in a

pervasive computing system. [9]

Fig.11.context management framework

J. I.The Wisdm Architecture

Data mining is generally done offline, but most sensor

mining applications require results to be generated in real-

time and poten-tially for a large number of users. For

example, our ActiTracker activity recognition system is

being designed to support thou-sands of users and provide

real-time results via a web interface. Similar real time and

scalability constraints exist for many other sensor mining

applications, including map navigation, traffic analysis,

and biometric authentication. Some applications, such as

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41190 410

navigation, even require large numbers of users to

generate useful results, since traffic information is inferred

directly from the users. Finally, applications must also run

on mobile devices with inhe-rently limited resources.

These were our primary architectural concerns when

designing the WISDM sensor mining architecture. The

sensor mining process involves several steps. First the raw

time-series data from the phone‟s sensors must be

collected and stored locally. Since traditional predictive

data mining algorithms (e.g., decision trees) do not operate

directly on time-series data, the next step for traditional

methods involves transforming the time-series data into

examples that summarize the data over a fixed time

period. For our current activity recognition and biome-tric

applications we generate one example, with 43 fea-tures,

from each 10 seconds of accelerometer data. Next, pre-

built classifiers are used to generate predictions (our

architecture also supports the dynamic creation of

classifiers). The final step in-volves reporting the results

back to the user, by sending them to the phone and/or

making them available via the Web[7] .

Fig.12. The WISDM Sensor Mining Architecture

K. Context Toolkit

The Context Toolkit [13] has a distributed architecture, but

there still needs to be a central discoverer that is used for

for discovering available widgets, aggregators,

interpreters. It uses attribute-value tuple as its context data

model, and stores context data and its history. The Context

Toolkit provides a basic access control for privacy

protection of users by providing context ownership

concept.

The Context Toolkit consists of context widgets,

interpreters, and aggregators. Context Widgets are

distributed sensor units encapsulating the complexity of

actual sensors from applications. They can be used as

reusable building blocks for context sensing. Context

Interpreters interpret context information to abstract low-

level sensed information into highlevel information to suit

the expected needs. Context Aggregators are responsible

for composing context information by subscribing to

context information provided by Context Widgets and

Context Interpreter so that it can hide even more

complexity about the context.

Service: executes actions for applications framework is

easy to implement, offers a distributed communication

among system devices and reusable widgets but the

discovery mechanism is centralized which does not make

it a perfect peer-to- peer communication model. It has a

limited extensibility when the number of devices

increases. The architecture takes into account events (to

notify context variation) by using a thread for each event

which overloads the system and affects its performance.

The architecture does not contain a layer or a module for

context reasoning because the model used for context

representation (key/value) does not permit a good

reasoning [8].

Fig.13.context toolkit architecture

XI. COMPARISON OF CONTEXT-AWARE

FRAMEWORKS

TABLE 1: COMPARISON OF FRAMEWORKS

Tools

Parameter

Resourc

e disco

very

Contex

t proce

ssing

Context

model

Historica

l context

data

Sensay √ √ √ √

Cortex √ √ √ ≠

Muffin √ √ √ ≠

Citron √ √ √ ≠

Gaia √ ≠ √ √

Hydrog

en
√ √ √ √

CASS √ √ √ √

CMF √ √ √ ≠

Context

toolkit
√

√ √ √

√=present. ≠ =absent.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41190 411

XII. CONCLUSION

Context awareness is a vital feature of applications in

computing. In this paper, we presented relevant context-

aware framework that were proposed to support and ease

the development of such system. For each architecture, we

discuss its criteria and feature that are related to pervasive

computing. This study shows that most of the proposed

architectures are layered which allows the separation of

context acquisition and context use in order to increase the

level of context abstraction and hide the physical sensing

complexity. This enhances reusability of the system. In

order to offer proactive systems, architectures embed a

reasoning system to ease adaptation task which is not

present in all architectures but it becomes a important

requirement for future systems. This study aim is useful

for recommendation to developers and designers of

context-aware computing systems and helps them decide

on available framework choice.

REFERENCES

[1] Michael Mitchell, Christopher Meyers, An-I Andy Wang, Gary

Tyson” ContextProvider: Context Awareness for Medical

Monitoring Applications”
[2] Alf Inge Wang, Qadeer Khan Ahmad” camf – context-aware

machine learning framework for android”

[3] L´aszl´oKov´acs P´eter M´at´etelki Bal´azs Pataki, Computer
andAutomation ResearchInstitute of the Hungarian Academy of

Sciences Department of DistributedSystems 1111 Budapest, Kende

u. 13-17, Hungary” Service-oriented Context aware Framework.

[4] Daniel Siewiorek, Asim Smailagic, Junichi Furukawa, Neema

Moraveji, Kathryn Reiger, and Jeremy Shaffer” SenSay: A

Context-Aware Mobile Phone” Human Computer Interaction
Institute and Institute for Complex Engineered Systems Carnegie

Mellon University Pittsburgh, PA 15213, USA

[5] hector a. duran-limon, gordon s. blair, adrian friday, paul grace2,
george samartzidis,” context-aware middleware for pervasive and

ad hoc environments” Computing Department, Lancaster

University, Bailrigg, Lancaster LA1 4YR, UK.
[6] Tetsuo Yamabe and Tatsuo Nakajima” Possibilities and Limitations

of Context Extraction in Mobile Devices: Experiments with a
Multi-sensory Personal Device” International Journal of

Multimedia and Ubiquitous Engineering Vol. 4, No. 4, October,

2009.
[7] Shaun T.Gallagher, Andrew B. Grosner, Tony T. Pulickal” Design

Considerations for the WISDM Smart Phone-based Sensor Mining

Architecture”Department of Computer and Information Science
Fordham University 441 East Fordham Road Bronx NY 10458

[8] Sangkeun Lee, Juno Chang and Sang-goo Lee” Survey and Trend

Analysis of Context-Aware Systems” School of Computer Science
and Engineering, Seoul National University, Seoul 151-742,

Republic of Korea

[9] Moeiz Miraoui1, Chakib Tadj, Chokri ben Amar” architectural
survey of context-aware systems in pervasive computing

environment‟, Ubiquitous Computing and Communication Journal.

[10] P. Fahy, S. Clarke, "CASS – a middleware for mobile context-
aware applications", Workshop on Context-Awareness,MobiSys

2004.

[11] P.Korpipaa, J. Mantyjarvi, J. Kela, H. Keranen, E-J. Malm,
Managing context information in mobile devices", IEEE Pervasive

Computing, Vol. 2, No. 3, July–September, pp.42–51, 2003

[12] T. Hofer, W. Schwinger, M. Pichler, G. Leonhartsberger, J.
Altmann, "Context-awareness on mobile devices – the hydrogen

approach", Proceedings of the 36th Annual Hawaii International

Conference on System Sciences, 2002 pp.292–302.
[13] A. Dey, G. D. Abowd, and D. Salber, "A conceptual framework and

a toolkit for supporting the rapid prototyping of context-aware

applications", Human- Computer Interaction, 16:97–166, 2001.
[14] Thomas Hofer, Wieland Schwinger, Mario Pichler, Gerhard

Leonhartsberger, Josef Altmann” Context-Awareness on Mobile

Devices- the Hydrogen Approach” Software Competence Center

Hagenberg Hauptstraße 99, A-4232 Hagenberg.
[15] Anand Ranganathan and Roy H.Campbell”A Middleware for

context aware agents in ubiquitous Computing Environments”

University of IIIinois-Champaign,USA

