
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5134 140

A New Partitioning Algorithm to Enhance

Performance of SOAP Message

Security Processing

Nidhi Arora
1
, Savita Kolhe

2
, Sanjay Tanwani

3

Assistant Professor, Department of Computer Science, M.B. Khalsa College, Indore, India
1

Senior Scientist (Computer Applications), ICAR-Directorate of Soybean Research, Indore, India
2

Professor and Head, School of Computer Science and IT, Devi Ahilya University, Indore, India
3

Abstract: Web Service Security (WS-Security) processing suffers from performance bottleneck. With large data

centric web services and hardened schema it becomes even worst. A new partitioning algorithm with parallel stream

based security processing model is developed for large Simple Object Access Protocol (SOAP) messages. The aim is to

partition SOAP message and to distribute the processing load on multiple cores in order to enhance the performance of

SOAP message security processing. There are several steps involved in this approach but SOAP message partitioning is

mainly focused in this paper. Since the efficiency of SOAP security processing depends on both Extensible Markup

Language (XML) data size and its structure, these factors are considered while developing partitioning algorithm. Each

partitioned SOAP message data is uniformly distributed to parallel running instances of stream based security processor

so that the load among cores can be balanced. It is observed from the results that the implementation of new

partitioning algorithm with parallel stream based WS-Security processing model has significantly improved the

performance of SOAP message security processing. The fundamental approach presented in this paper is useful for

efficient security processing of large SOAP messages.

Keywords: Web Services, WS-Security, SOAP message processing, XML security, XML data partitioning.

I. INTRODUCTION

Web services use Simple Object Access Protocol (SOAP)

to exchange messages between two endpoints over Hyper

Text Markup Language (HTTP). It is vital to secure these

SOAP messages when services are sharing critical data

like money or company’s confidential data. Web Services

Security (WS-Security) with its underlying standards

XML- Encryption and XML- Signature is widely adopted

to provide security of SOAP based web services [1].

Size and complexity of the SOAP message affects the

performance of WS-Security [2], [3]. If the web service

itself is sharing large amount of data, the memory and

CPU requirements become high. WS-Security processing

increases the size of message after processing [3], [4], as it

adds several tags like <xenc:EncryptedData>,

<ds:SignatureValue> and other supporting tags in the

original SOAP message after security processing. Also, it

involves complex processing like cipher calculations.

Therefore it requires more CPUs cycles, memory and

bandwidth as compared to non-secured SOAP message

processing [2-4]. This makes the web service slow,

unresponsive and even vulnerable to several attacks like

DoS, DDoS [5], [6] etc. Security attacks eventually fill the

server’s buffer space by continuously sending multiple

requests or extremely long messages to it. Once the buffer

memory is full, no further connections can be made to the

server. Also, it can crash the targeted server making the

service unavailable [5-7]. Security techniques like schema

validation and use of hardened schema are sufficient

counter measures [6-11] to prevent web services from

several attacks specially XML signature wrapping attack.

SOAP messages are validated against strict schema

definition and strictly prohibit any other content that is not

contained in the hardened XML Schema. But these

techniques suffer from performance bottleneck [10], [11].

This paper presents a new SOAP message partitioning

algorithm with schema analyzer algorithm in order to

distribute processing load of WS-Security processor to

parallel instances running on multiple cores. Data parallel

model for stream based processing of secured web

services is also developed [12].

The model has various processing components like Parser,

Schema Validator, Encryption/Decryption and

Signature/Verification component. Schema validation and

Hardened schema is used in order to prevent web services

from aforesaid attacks. Before security processing, SOAP

message is divided into parts using the new partition

algorithm with an aim to enhance the performance of WS-

Security processing and schema validation with hardened

schema. Since the efficiency of SOAP message containing

XML data depends on both XML data size and its

structure [13], [14], these factors have been considered

when XML data is partitioned. The development of

algorithms is discussed in detail in the paper. Experiments

are conducted on different sizes of SOAP messages to

evaluate the performance of parallel stream based model

on various hardware platforms using the new partitioning

algorithm.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5134 141

II. METHODOLOGY

Data centric SOAP messages generally have repetitive

structure of elements. Example of SOAP message

containing repetitive <dept> elements containing official

information of different departments is shown in Fig. 1.

Fig.1. Sample SOAP message

These repetitive elements are distributed in different

partitions of SOAP message. SOAP message partitions are

constructed at client side according to the schema

definition of SOAP message. Schema information i.e.

structure of SOAP message is usually available with

SOAP message; otherwise it can be derived from WSDL

[15]. Partitioning divides the large SOAP message into

nearly equal size small partitions. Size of SOAP message

is obtained from header information [16]. This information

is used to equally distribute workload among different

cores using new partitioning algorithm.

The main objective of this algorithm is to optimize

partition size which balances the load of parallel parser

instances, running on different cores. This is done with

few heuristic rules derived from schema definition.

Another objective is to ensure zero or limited

communication between partitions. For this load balancing

is done statically i.e. partitions are made before the parsing

process begins.

III. PARTITIONING ALGORITHM

Partitioning algorithm consist of several modules as shown

in Fig.2. These are

 SOAP message Pre-Partitioning

 Schema Analyzer

 XPath Resolver

 Partition wise XPath Creator

 SOAP message Preprocessing

 Dummy Creator

A. SOAP Message Pre Partitioning

SOAP message contains several tags starting with “<” and

ending with “>” and having elements according to the

schema definition. First SOAP message is partitioned

randomly into equal size parts.

Fig.2. Different modules used in partitioning algorithm

Size of partition is calculated using the following formula:

Size of partition = Size of SOAP message

 Number of partitions

Parts are then rearranged taking care that every part start

with “<” or “</xxx>”.

B. Schema Analyzer

The output of partitioning algorithm should be well-

structured schema valid partitions; otherwise parser will

reject those partitions. Therefore, information derived

from schema analyzer is used in our partitioning algorithm

to divide SOAP message into well-structured and

approximately equal parts.

The Schema Analyzer Algorithm (Fig. 3) is developed to

analyze basic structure and list of elements in SOAP

message from schema definition. Hardened schema

definition [6][10] is used which is devoid of unbounded

and xs:any elements. It eliminates all extension points and

weak definitions in the SOAP Schema [6] in order to

protect web services from XML signature wrapping

attacks.

Information like hierarchy of elements, optional and must

elements etc. are obtained from schema analyzer algorithm

and schema table is generated as output. An example of

SOAP message schema definition is described in Fig. 4.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5134 142

Fig.3. Schema Analyzer for partitioning SOAP message

into schema valid parts

Fig.4. Part of official schema definition of SOAP message

C. XPath Resolver

XPath or ID is used commonly to refer to the elements that

are to be signed or encrypt. But it makes web services

vulnerable to XML Signature wrapping attack [10].

FastXPath is a faster and secure way to refer to signed

elements [10], therefore it is used in current work.

XpathResolver module is developed and used to resolve

FastXPath expressions prior to partitioning. XPath table is

created as output which is used by Partitionwise XPath

Creator module.

D. SOAP Message Preprocessing

Algorithm finds start and end elements of each partition as

per the Schema definition. These partitions are distributed

to parallel running Deterministic Finite Automaton (DFA)

for preprocessing. DFA as shown in Fig. 5 has been used

for performing this task. These partitions cannot be passed

directly to the parser as it is not known from which state to

begin parsing each part. The DFA finds the start and end

state of each part.

Results of this module are used by Dummy Creator in

order to find out incomplete elements and tag pairs.

This module also creates list of namespace used in the

SOAP message which is further utilized by Exclusive

SAX Canonicalization [17]. Canonicalization is a process

performed during signature processing by security

processing module of parser.

CH= Any unicode character except <, >, /, !, ", '

SP=Blank Space

Fig.5. DFA used for partitioning SOAP message in well-

formed parts

E. Partitionwise XPath Creator

New XPath expressions are created for each partition, as

XML elements that are to be signed, are distributed among

partitions. Their positions are changed from the position

obtained from original XPath expression. Partitionwise

XPath contains relative position of these elements in

partitions.

F. Dummy Creator

SOAP message partitions may have incomplete elements

or schema invalid parts because some of sequence

elements may be distributed among parts. In order to make

these parts schema valid, some dummy XML tags need to

be appended at start and end of each part. Schema table

obtained from Schema Analyzer Algorithm is used to

create dummy tags for getting well-formed SOAP message

partitions. This is done using Dummy Creator module that

creates dummy tags for each part according to schema

definition and appends them accordingly.

These partitions are processed further using parallel

instances of parser on different cores in parallel manner.

Parser has security processing as one of its component.

Parallel Stream based Model for WS-Security [12] is used

to process these parts and apply security to SOAP

messages. After processing these partitions are merged

and sent to server along with information on partition

count and size of each partition.

IV. RESULTS AND DISCUSSION

The performance evaluation of partitioning algorithm with

parallel stream based SOAP message security processing

model is done on single core, dual core, core i5 and i7

systems. Experiments are conducted for SOAP message of

varying sizes viz. 4MB, 8MB, 16MB, 32MB and 64 MB.

The observation on processing time for parallel security

processing is noted for each size on each platform

Algorithm 1 (XML Schema Analyzer)

Input: XML Schema of SOAP message/document.

XML Schema file. //Schema file derived from WSDL for SOAP can be set as default.

Output: List SchemaTable containing nodes entries about attributes of each element i) ElementName ii) ParentID iv) DefaultValue

iii) Size iv) MaxOccurs v) MinOccurs

Temporary: CurrentParentID= -1 //CurrentParentID variable contains the information about CurrentParent

CSize=0 //Size info of current processed element

I. Initiate the list SchemaTable with an empty list.

II. Read schema definition one node / element at a time. //This can be using DOM or SAX parser.

III. For each element in schema definition

a. If start element tag

i. If start of complex element tag, Set

 SchemaTable→ElementName= value of attribute name specified in tag

 If CurrentParentID==-1

 SchemaTable→MinOccurs=1 else

 SchemaTable→ MinOccurs = value of attribute minOccurs specified in tag

 CurrentParentId= IndexofElement

 SchemaTable→ParentID=-1

 SchemaTable→Size=0

ii. If start of simple element tag, Set

 SchemaTable→ElementName= value of attribute name specified in tag

 SchemaTable→maxOccurs = value of attribute maxOccurs specified in tag

 SchemaTable→DefaultValue= value as per attribute type specified in tag*

 SchemaTable→Size=value of attribute type specified in tag

 Update size information of all its roots by adding size of current with size information of roots recursively.

b. If end of element

i. If end of complex tag

ii. Set CurrentParentID=SchemaTable→ParentID at location CurrentParentID

IV. Repeat step II to III for every element till end of schema file

*// information according to attributes values specified in element tag.

//Default Values are created as per type and constraints on it.

If type==“string”, set DefaultValue=”dummy”

If type==”decimal”, set DefaultValue=0

If type=”Positive Integer”, set DefaultValue=1

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5134 143

separately. Each test case is run 50 times to skip worst

case observations, the average of all observations are

taken. Results are observed to know the advantage of

partitioning on SOAP message security processing.

The processing time required by secured SOAP message

(64 MB) on different hardware platforms after partitioning

is depicted in Fig. 6.

Fig.6. Processing Time for Secured SOAP Message (64

MB) after Partitioning

Running 64 MB SOAP message (without partitioning) on

dual core requires 172131 ms processing time. When

message is divided in 32 parts, performance is improved

up to 44%. Similarly on i5, running the same SOAP

message as a whole takes 106158 ms. Performance

improvement is observed as 48% after dividing it into 32

parts. On i7, after dividing 64 MB SOAP message into 32

parts, performance is significantly increased up to 68%.

It is observed from the results that increasing number of

parts enhances the performance but as number of parts

becomes higher than number of cores available, there is

negligible gain in performance and it reaches to constant

value. Therefore, the performance improvement of parallel

security processing depends on the number of partitions as

well as the number of cores available.

The results of the approach used in the present work

shows nearly linear scalability at least up to 64MB of

SOAP message when the data size changes. Therefore, the

fundamental approach presented in this paper can be

widely accepted for efficient security processing of large

SOAP messages.

V. CONCLUSION

A new partitioning algorithm is developed for partitioning

large SOAP messages containing XML datasets in order to

distribute the security processing load on parser among

different cores. Number of partitions used in parallel

processing improves the performance of security

processing. Performance of WS-Security processing can

be enhanced by using good partitioning techniques with a

reasonable number of partitions. The partition algorithm is

applied prior to parsing and security processing. Therefore

it can also be used for any other parser model or

configuration.

REFERENCES

[1] N. Gruschka, M. Jensen, and L. Iacono, “A Design Pattern for
Event-Based Processing of Security-Enriched SOAP Messages,” In

Proceedings of Second International Workshop on Security Aspects

in Grid and Cloud Computing, pp. 410- 415, 2010.
[2] S. Makino, K. Tamura, T. Imamura, and Y. Nakamura.

“Implementation and performance of WS-Security”, IBM Research

Report, Tokyo Research Laboratory, 2007.
[3] Robert, E.van and Z. Wei, “An Overview and Evaluation of Web

Services Security Performance Optimizations,” In IEEE

International Conference on Web Services, 2008.
[4] T. Imamura, A. Clark, and H. Maruyama, “A stream-based

implementation of XML Encryption,” In Proceedings of ACM

workshop on XML security, New York, NY, USA, pages 11–17,
2002.

[5] M. Jensen, N. Gruschka, R. Herkenh¨oner and N. Luttenberger,

“SOA and Web Services:New Technologies, New Standards – New
Attacks,” In Proceedings of the 5th IEEE European Conference on

Web Services, 2007.

[6] M. Jensen, C. Meyer, J. Somorovsky, and J¨orgSchwenk, “On the
Effectiveness of XML Schema Validation for Countering XML

Signature Wrapping Attacks” in the International Workshop on

Secured Services in the Cloud Chair for Network and Data
Security, IWSSC, pp. 7 -13, 2011.

[7] M. Ibrahim B and M. Shanavas A R, “Constructing Solutions to

SOA Attacks on SOAP Web Services-A literature Review”, In
International Journal of Scientific Engineering and Technology,

Vol. 3 no 3, pp 564-569, 2014.

[8] Thomas, “DDoS defense system for web services in a cloud
environment”, http://dx.doi.org/10.1016/j.future.2014.03.003,

Future Generation Computer Systems 37–45, Elsevier, 31-39, 2014.

[9] M. Ibrahim AK, L. George, K. Govind and S. Selvakumar,
“Threshold Based Kernel Level HTTP Filter (TBHF) for DDoS

Mitigation, Computer Network and Information Security,”
Published Online in MECS (http://www.mecs-press.org/) DOI:

10.5815/ijcnis, 2012.

[10] C. Mainka, “Automatic Penetration Test Tool for Detection of
XML Signature Wrapping Attacks in Web Services”, Ph.D.

dissertation, Ruhr-Universität Bochum, 2012.

[11] C. Mainka, M. Jensen, L. Lo Iacono, and J. Schwenk, “XSpRES:
Robust and Effective XML Signatures for Web Services,” In 2nd

International Conference on Cloud Computing and Services

Science, 2012.
[12] N. Arora, S.Kolhe, S. Tanwani, “Parallel Stream Based Processing

Model for WS-Security”(Communicated)

[13] H. Kurita, K. Hatano, J. Miyazaki, and S. Uemura, “Efficient Query
Processing for Large XML Data in Distributed Environments,” In

Proceeding of 21st International Conference on Advanced

Networking and Applications (AINA), 2007.
[14] R. Bordawekar, L. Lim, and O. Shmueli, “Parallelization of xpath

queries using multicore processors: challenges and experiences,” In

Proceedings of the 12th International Conference on Extending
Database Technology: Advances in Database Technology, pages

180–191, 2009.

[15] N. Gruschka, M. Jensen, T. Dziuk, “Event-based Application of
WS-SecurityPolicy on SOAP Messages”, ACM, USA, 2007.

[16] A. Nasridinova , “A Study on Detection Techniques of XML

Rewriting Attacks in Web Services,” In International Journal of
Control and Automation, Vol.7, No.1, pp.391-400, 2014.

[17] J. Somorovský, “Streaming-based Processing of Secured XML

Documents,” Ph.D. dissertation, University Bochum, 2009.

