
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5140 161

Optimizing Whole Test Suite Generation

Dr.V.Sangeetha
1
, T.Ramasundaram

2

Assistant Professor, Department of Computer Science, PRUCAS, Pappireddipatti, Dharmapuri, Tamilnadu, India1

Assistant Professor, Department of computer Science, Sri Vijay Vidyalaya College of Arts & Science,

Nallampalli, Dharmapuri, Tamilnadu, India2

Abstract: Software testing is as old as the hills in the history of digital computers. The testing of software is an

important means of assessing the software to determine its quality. Since testing typically consumes 40 - 50% of

development efforts, and consumes more effort for systems that require higher levels of reliability, it is a significant

part of the software engineering. Testing is the process of evaluating a system or its component(s) with the intent to

find whether it satisfies the specified requirements or not. Testing is executing a system in order to identify any gaps,

errors, or missing requirements in contrary to the actual requirements. A common scenario in software testing is

therefore that test data is generated, and a tester manually adds test oracles. As this is a difficult task, it is important to
produce small yet representative test sets, and this representativeness is typically measured using code coverage. There

is, however, a fundamental problem with the common approach of targeting one coverage goal at a time: Coverage

goals are not independent, not equally difficult, and sometimes infeasible – the result of test generation is therefore

dependent on the order of coverage goals and how many of them are feasible. To overcome this problem, whole test

suites are evolved with the aim of covering all coverage goals at the same time, while keeping the total size as small as

possible. However, the new paradigm works well; the test suites were not optimal. So, we propose a new tool with a

novel paradigm to give optimality. This tool will have several advantages, as for example its effectiveness is not

affected by the number of infeasible targets in the code. We are also described about the implementation of the tool

using Eclipse IDE, java, Java Swing.

Keywords: Software Engineering, Software Testing, Infeasible goal, Testing Techniques, Automated Testing Tools.

I. INTRODUCTION

The quality of a software product can be checked or

evaluated based on the testing procedures that the product

or software undergone. Basically testing [15] is an

ongoing activity that is related with any process to produce

a quality or working product.

According to IEEE, Testing is the process of evaluating a

system of system component by manual or automated
means to verify that it satisfies required requirements [15].

So it is used to check the status of the working product

after and during the software build. Software testing is

also used to detect and identify the defects that the

software may have. It is one of the vital parts of software

development life cycle (SDLC).

Software testing can be done either by using automated or

manual testing. By testing software through automated
means is the best way to test the software. This testing of

software is useful when repeated test scripts [15] are

required or where the test scripts subroutine are generated.

The one of the most important advantage of automation

testing is its execution speed. On the other hand, manual

testing requires testing manually which needs more time,

more chances of error and is no more useful.

Hence all issues of manual testing can be fixed using

automation testing. This paper demonstrates the taxonomy

of different types of testing techniques and different

automated testing tools comprising of Functional,

Management and Loading testing.

II. CHARACTERISTICS OF SOFTWARE TESTING

A. Validity:
A test is considered as valid when it measures what it is

supposed to measure.

B. Reliability:

A test is considered reliable if it is taken again by the same

students under the same circumstances and the score

average is almost the constant, taking into consideration

that the time between the test and the retest is of

reasonable length.

C. Objectivity:

Objectivity means that if the test is marked by different

people, the score will be the same. In other words,

marking process should not be affected by the marking

person's personality.

D. Comprehensiveness:

A good test should include items from different areas of

material assigned for the test. e.g., (dialogue - composition
- comprehension - grammar - vocabulary - orthography -

dictation - handwriting)

E. Simplicity:

Simplicity means that the test should be written in a clear,

correct and simple language, it is important to keep the

method of testing as simple as possible while still testing

the skill you intend to test. (Avoid ambiguous questions

and ambiguous instructions).

F. Scorability:

Scorability means that each item in the test has its own

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5140 162

mark related to the distribution of marks.

III. OBJECTIVE OF TESTING

The objective of testing is to find problems and fix them to

improve quality (Fig.1). Software testing typically

represents 40% of a software development budget.

There are four main objectives of software testing:

Demonstration: It demonstrates functions under special

conditions and shows that products are ready for

integration or use.
Detection: It discovers defects, errors and deficiencies. It

determines system capabilities and limitations, quality of

components, work products and the system.

Prevention: It provides information to prevent or reduce

the number of errors clarify system specifications and

performance. Identify ways to avoid risk and problems in

the future.

Improving Quality: By doing effective testing, we can

minimize errors and hence improve the quality of

software. [2]

Fig.1 Test Information Flow

IV. DIFFERENT TESTING TECHNIQUES

A. Black Box Testing

Black Box Testing is based on the requirements

specifications and there is no need to examining the code

in black box testing. This is purely done based on

customers view point only tester knows the set of inputs

and predictable outputs. [6][3]

Advantages:

 Testers need not to have knowledge on specific

programming language.

 Testing is done from user’s point of view.

 It helps to expose any ambiguities or inconsistencies in

the requirement specifications.[4]

 Programmer and tester both are independent of each

other.

Disadvantages:

 Test cases are hard to design without clear

specifications.

 Some parts of back end are not tested at all.

 Chances of having repetition of tests that are already

done by programmer.

B. White Box Testing

White box testing mainly focuses on internal logic and

structure of the code. White-box is done when the

programmer has techniques full knowledge on the

program structure. With this technique it is possible to test

every branch and decision in the program.[2]

Advantages:

 It reveals error in hidden code by removing extra lines
of code.

 Maximum coverage is attained during test scenario

writing.[5]

 Developer carefully gives reasons about implementation.

Disadvantages:

 A skilled tester is needed to carry out this testing

because knowledge of internal structure is required.

 Many paths will remain untested as it is very difficult to
look into every nook and corner to find out hidden errors.

C. Grey Box Testing:

Gray-box testing attempts, and generally succeeds, to

combine the benefits of both black-box and white-box

testing. Gray-box testing takes the straight-forward

approach of black-box testing, but also employs some

limited knowledge of the inner workings of the
application.

White box + Black box = Grey box, it is a technique to test

the application with limited knowledge of the internal

working of an application and also has the knowledge of

fundamental aspects of the system. [5] Therefore, a tester

can verify both the output of the user interface and also the

process that leads to that user interface output. Gray-box

testing can be applied to most testing phases; however it is

mostly used in integration testing.

Advantages:

 It provides combined benefit of black box and white

box testing techniques.

 In grey box testing, tester can design excellent test

scenarios.

 Unbiased testing

 Create an intelligent test authoring.

Disadvantages:

 Test coverage is limited as the access to source code is

not available.

 Many program paths remain untested. 3. The test cases

can be redundant.[5]

TABLE I COMPARISON BETWEEN THREE FORMS

OF TESTING TECHNIQUES

S.

No

Black Box

Testing

White Box

Testing

Grey Box

Testing

1 Analyses

fundamental

aspects only

i.e.no

knowledge of

internal

working.

Full

knowledge of

internal

working.

Partial

knowledge

of internal

working.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5140 163

2 It is least

exhaustive and

time

consuming.

Potentially

most

exhaustive

and time

consuming

It is

somewhere

in between

the two.

3 Not suited for

algorithm

testing.

It is suited for

algorithm

testing

(suited for

all).

Not suited

for

algorithm

testing.

4 Granularity is

low.

Granularity is

high.

Granularity

is medium.

5 Performed by

end users and

also by tester

and developers

(user

acceptance

testing).

It is

performed by

developers

and testers.

Performed

by end users

and also by

tester and

developers

(user

acceptance
testing).

V. COVERAGE CRITERIA

A. Types of Coverage Criteria

Automatic unit testing is guided by a structural coverage

criterion. There exist many coverage criteria in literature,

each of them aims at covering different components of a

CUT. Below is a list of coverage criteria for structural

testing for Java programs.

1. Line Coverage: the goal is to execute all the lines (non-
comments line) of the CUT. It is perhaps the most used

criterion in practice.

 2. Branch Coverage: the goal is to cover all the branches

of the CUT. Covering a branch means executing the

branch at least twice by taking once the true branch and

twice the false branch.

 3. Modified Condition Decision Coverage: [16] the goal

is that every condition within a decision has taken on all

possible outcomes at least once, and every condition has

been shown to independently affect the decision’s

outcome (the condition of interest cannot be masked out

by the other conditions in the decision). This criterion is
stronger than branch coverage.

4. Mutation: the goal is to kill all the mutants. Killing a

mutant means that the output of a test case on the program

is different from the output of the test case on the mutant.

 5. Weak Mutation: the goal is to weakly kill all the

mutants. Weakly killing a mutant means that the internal

state of the program immediately after execution of the

mutated component must be incorrect [17]. This criterion

is weaker than Mutation.

 6. Method coverage: the goal is to call all the methods of

the CUT by executing the test suite.
 7. Top-level Method Coverage: the goal is to call all the

methods of the CUT directly which means that a call to the

method appears as a statement in a test case of the test

suite. This criterion is stronger than Method Coverage.

8. No-Exception Top Level Method Coverage: the goal is

to call all the methods from the test suite via direct

invocations, but with parameters that lead to a normal

execution of the methods (not generating exceptions). This

criterion is stronger than Top-level Method Coverage.

 9. Direct Branch Coverage: the goal is that each branch in

a public method of the CUT to be covered by a direct call

from a unit test, but makes no restriction on branches in

private methods.

 10. Output Coverage: the goal is to call all the methods

with parameters that cover all the different types of output

the method can return. E.g. if the method’s type is Boolean

the method should be called twice in order to return once a
true value and once a false value.

 11. Exception Coverage: the goal is to cover all the

feasible undeclared exceptions (if exceptions are

unintended or if thrown in the body of external methods

called by the CUT).

Exception Coverage, Method Coverage, Top-level Method

Coverage, No-exception Top-level Method Coverage have

a fitness function which provides no guidance during the

search [1]. Mutation criterion is considered the gold

criterion in research literature [19]. This criterion is

difficult to apply and computationally expensive and it is
practically only used for predicting suite quality by

researchers. The reasons why mutation testing cannot be

used for testing real software are:

1. The number of mutants for a given system can be huge

and it is very expensive to run the test against all the

mutants.
2. Equivalent mutants which are mutants that only change

the program’s syntax, but not its semantics and thus are

undetectable by any test

The criteria implemented in EvoSuite are [1]: Line

Coverage, Branch Coverage, Direct Branch Coverage,

Output Coverage, Weak Mutation, Exception Coverage,
Top-level Method Coverage, No-exception Top-level

Method Coverage. The most used criterion is branch

coverage [18] but even though it is an established default

criterion in the literature, it may produce weak test sets,

and software engineering research has considered many

other criteria. Another option is to combine different

coverage criteria.

B. Combination of Coverage Criteria

The search is guided by the coverage criteria the resulting

test suite should satisfy. The coverage criteria are

translated to a mathematical formula which is the fitness

function whose work is to evaluate the individuals during

the search. It is possible to use more than one criterion to

guide the search. In this case if the combined criteria are

non-conflicting than the resulting fitness function is a

linear combination of each fitness functions. The aim of

this work is to study how search-based testing scale to

combinations of multiple criteria does for unit testing in
Java programs.

VI. SOFTWARE TESTING TOOLS

The tools summarized in this section are a select few that

are used when performing automatic testing.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5140 164

A. Ranorex

This is a cost-effective and comprehensive tool used for

automatic testing. This is a better alternative to

conventional testing tools because it tests applications

from a user’s perspective, using standard programming

techniques and common languages such as C# and VB.net.

It does not require you to learn a scripting language,

because it is written in pure .net code. You can use any

one of the three languages, C#, VB.net and Iron Python. It

is used by hundreds of enterprise and commercial software

companies around the world [9].

Ranorex is based on XPath, which is a very good way to

find certain elements in a web based application. It is a

pure .net API, which is very different from other tools

which sit on an API [9].

Advantages [9]:

 Image-based recognition.

 Offers a flexible and standard test automation interface.

 Provides the ability to do test automation in your own

environment.

 Allows testers with less programming knowledge to

create professional test modules with Ranorex

Recorder.

 User interface allows for managing test cases and

configurations.

 Supports use of data variables

Disadvantage:

 Ranorex tool doesn’t provide an option to export

automation code to different environments like UFT

(VBScript), Java.

 To add mobile device via Wi-Fi, it’s necessary that the
application under test is started on mobile device or

simulator.

B. Rational Functional Tester (RFT)

This product was developed by IBM in 1999. It is an

object-oriented automated testing tool. It includes

functional and regression testing tools which capture the

results of black box tests in a script format. With this tool,

functional black box tests can be run as well as structural
white box tests for memory leaks, code bottlenecks, or

measuring code coverage.

The upgraded version of RFT “Baltic”, or IBM Rational

Release 7, was released in 2006. This platform automates
much of the software development and delivery process

and helps enterprises overcome geographic and

organizational silos that hamper development projects.

There are 12 products in this new software development

platform [10].

Advantages [11]:

 Enables regression testing

 Frees up Quality Assurance departments from

maintaining and executing basic tests, encouraging the

creation of additional, thorough tests

 Reduces human error that can occur during activities

such as test step execution and test result recording

Disadvantages:

 Requires a skilled tester.

 Cannot look into every bit of code to find out hidden

errors.

RFT works with Java, Web based, Microsoft Visual

Studio, .NET, terminal-based, SAP, Siebel and Web 2.0

applications [12]. This product uses a patented Object

Code Insertion (OCI) technology where no source code is

required. The technology looks at the application’s

executable files. The tools built into the software,

including Purify Quantify and Pure Coverage, perform

white box testing on third party code and controls.

Advantages:

 Provides run-time error and memory leak detection

 Records the exact amount of time the application

spends in any given block of code for the purpose of

finding inefficient code bottlenecks

 Pinpoints areas of application that have and have not

been executed

Disadvantages:

 The test can be redundant if the software designer has

already run a test case.

 Testing every possible input stream is unrealistic

because it would take an inordinate amount of time.

 Difficult to design without clear specifications.

C. Janova
This tool is similar to others because it enables the user to

automate software testing solutions but with this tool it is

done in the cloud.

Advantage:

 The tool does not require scripts to be written; only

English-based tools are used that streamlines the task

of software implementation with efficient, easy to use

tools.

 Low cost.

 There is no software to download and no infrastructural
investment required [13].

 Since it is in the cloud, it is a very quick and easy setup

which includes no install.

 The cloud based software has an easy to navigate home

page

Disadvantage [14]:

 It took too much time to navigate through each test

script and get past the failed tests.

 If the browser closed unexpectedly, the login session

was automatically on hold for 15 minutes. This

prevented the testing from progressing, due to this 15

minute timeout period in the tool.

D. QTP

QTP stands for Quick Test Professional, a product of

Hewlett Packard (HP). This tool helps testers to perform

an automated functional testing seamlessly without

monitoring once script development is complete.
HP QTP uses Visual Basic Scripting (VBScript) for

automating the applications. The Scripting Engine need

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5140 165

not be installed exclusively as it is available part of the

Windows OS. The Current version of VBScript is 5.8

which is available as part of Win 7. VBScript is NOT an

object oriented language but an object based language.

Advantages:

 It is easy even for a non-programmer to understand

QTP and start adding test cases.

 Support for record and playback and ability to edit

scripts after recording. Also different recording modes

are provided in QTP viz. Normal, Analog & Low level.

 Support for different addins like Java, Oracle, SAP,

.NET, Web Forms, Siebel, PeopleSoft, Web services,

Main frame (Terminal Emulator) etc.

 Supports all popular Automation frameworks -

Keyword driven testing approach, Data driven testing

approach, Modular testing approach, Hybrid

frameworks etc.

 QTP comes with an inbuilt IDE, which is simple and

easy to use.

 Easy to maintain different types of suites viz. Smoke,

Sanity, and Regression etc.

 Easy to maintain test iterations and data driving the

tests through configurations.

 Test reporting with all necessary details for analysis is

provided.

Disadvantages:

 Cost is high – License and maintenance.

 Cannot run multiple threads/instances – For example

the Grid support available in Selenium, where we can
run multiple instances of the application on different

browsers at the same time.

 Slow in execution when compared to even open source

tools like Selenium.

 You need to buy different addins – Java, Oracle, SAP,

.Net, Seibel, Peoplesoft etc.

E. Squish GUI Tester

The Squish IDE, built on Eclipse, provides a feature-rich

integrated development environment for GUI testing.

Complete with test management, script debugging and an

interactive application object spy.

Squish is the leading cross-platform/cross-technology GUI

test automation tool for functional GUI regression tests.

Many companies in all kinds of industries all over the

world use Squish to drastically cut down the time spent on

GUI testing software releases while increasing the quality

of their applications.

Advantages:

 User has not to be logged in for testing on remote

computers

 Utilization of common script languages

 Web testing available (though as a separate edition

with additional cost)

Disadvantages:

 Developer-oriented solution

 Outdated appearing user interface, handling partially

laborious

 No simple support of obfuscating

 No easy provision of screenshots in case of errors

 Limited integration in test management

F. TestComplete

TestComplete Platform has an open flexible architecture
that makes creating, maintaining, and executing automated

tests across desktop, web, mobile easy, speedy, and cost

effective. Some of the powerful features of TestComplete

Platform that demonstrate it’s flexibly and ease of use.

Advantages:

 Support for multiple scripting languages

 Record robust automated tests without knowing

scripting

 Write regression tests that don’t fail when UI changes

 Perform Data Driven testing

 Create custom plugins and extensions

Disadvantages:

 Neither GridLookUpEdit nor XtraGrid are fully

supported by TestComplete.TC records any object by

coordinates. So when an object (ex: combo box) order

changes or width changes, related tests fail

 Cannot create Data Driven Tests with coordinate
points

 Some times TC was stuck in recognizing the cell

values in a grids

 We have redesigned the application to use Virtual

scrolling approach by keeping the same user interface.

We were not able to run any of the existing tests as the

positions of objects are slightly changed in new grids

G. eggPlant

The eggPlant range of test automation tools comprises a

variety of tools to satisfy every testing need – from

functional to performance, mobile to desktop, digital to

legacy. eggPlant tools can function on their own, with test

tools from other vendors, or together in a unified

environment. Pick and choose which tools fit your needs

and environment, and use them together to easily drive

automated UI tests with accurate results.

Advantages:

 Guided Record Mode

 Instead of a regular record mode, capturing images

generates script code and avoids extraneous mouse and

keyboard movements being recorded

 Code Completion

 Easy integration with quality management software

 Eggplant can be used to augment systems such as HP

Quality Center

 Execution-only mode

 eggPlant tests can be run unattended via command line.

Disadvantages:

 As EggPlant uses image matching technology, images

captured in one operating system cannot work on other

OS.
Ex: Tests with Images captured in windows XP cannot

be run on windows 2k8.We need to capture images

http://www.qtphelp.com/2011/03/recording-modes-in-qtp.html
http://www.qtphelp.com/2011/03/recording-modes-in-qtp.html
http://www.qtphelp.com/2011/03/what-is-key-word-driven-testing.html
http://www.qtphelp.com/2011/03/what-is-data-driven-testing.html
http://www.qtphelp.com/2011/03/what-is-data-driven-testing.html
http://www.qtphelp.com/2011/03/what-is-data-driven-testing.html
http://www.qtphelp.com/2011/03/qtp-reporter-related-tips-from-hp.html

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5140 166

again in other operating system for tests to run

successfully. Requires a dedicated resource to maintain

the test scripts whenever we update Operating system

or change the computers.

 Tests fail even if the resolution of system is changed

while running tests. Image has to match 100% for any

test to run.

 Expensive compared to other competitive tools in the

market

 EggPlant is not very popular in market. So it is very
difficult to find the resource having programing skills

to work on Eggplant automation when compared to

other competitive tools like Selenium Webdriver, QTP

etc.

Due to above drawbacks, we failed one more time to

continue our automation project with EggPlant tool.

VII. CONCLUSION

The testing of software is an important means of assessing
the software to determine its quality. Since testing

typically consumes 40 - 50% of development efforts, and

consumes more effort for systems that require higher

levels of reliability, it is a significant part of the software

engineering.

Software testing can endow excellent results if done

properly and effectively. Test cases are most important

elements of software testing. If we design test cases in

better manner and in proper way using test cases designing

algorithm then we can produce a better software product.

By doing this we will get the result as we want in the
requirement specified in the software requirement

specification (SRS). This paper mainly deals with testing

techniques available for designing of test cases and also

deals with some of existing testing tools. In the future, we

can implement these test cases design techniques for real-

time scenarios projects.

REFERENCES

[1]. “J. Miguel Rojas, J. Campos1, M. Vivanti, G. Fraser, A. Arcuri,

“Combining Multiple Coverage Criteria in Search-Based Unit Test

Generation” in Proceedings of the 26th IEEE/ACM International

Conference on Automated Software Engineering (ASE), pp. 436-

439, 2011

[2]. F. Saglietti, N. Oster, and F. Pinte, “White and grey-box

verification and validation approaches for safety-and security-

critical software systems,” Information Security Technical Report,

vol. 13, no. 1, pp. 10–16, 2008.

[3]. T. Murnane and K. Reed, “On the effectiveness of mutation

analysis as a black box testing technique,” in Software Engineering

Conference, 2001. Proceedings. 2001 Australian, 2001, pp. 12 –20.

[4]. Nidhra, Srinivas, and Jagruthi Dondeti. "Black box and white box

testing techniques- A Literature." International Journal of

Embedded Systems & Applications 2.2 (2012).

[5]. Khan, Mohd Ehmer, and Farmeena Khan. "A Comparative Study of

White Box, Black Box and Grey Box Testing Techniques."

International Journal of Advanced Computer Sciences and

Applications 3, no. 6 (2012): 12-15

[6]. P. Mitra, S. Chatterjee, and N. Ali, “Graphical analysis of MC/DC

using automated software testing,”in Electronics Computer

Technology (ICECT), 2011 3rd International Conference on, 2011,

vol. 3, pp. 145 – 149.

[7]. Sara Sprenkle, Holly Esquivel, Barbara Hazelwood, Lori Pollock,

WebVizor:A Visualization Tool for Applying Automated Oracles

and Analyzing Test Results of Web Applications, IEEE Computer

Society, August 2008.

[8]. David Crowther, Peter Clarke, Examining Software Testing Tools,

Dr. Dobb‟s Journal:Software Tools for the Professional

Programmer, ISSN# 1044789X, Academic Search Premier, June

2005, Vol. 30, Issue 6.

[9]. Ranorex website, 2012 Ranorex GmbH, URL: www.ranorex.com.

[10]. Darryl Taft, IBM Readies Rational Revamp, EBSCO host database,

ISSN# 15306283, Academic Search Complete, June 2006.

[11]. IBM.com, IBM Rational Functional Tester, IBM Corporation,

December 2008, URL:

http://public.dhe.ibm.com/common/ssi/ecm/en/rad14072usen/RAD

14072USEN.PDF.

[12]. IBM developerWorks, Bridging the Gap Between Black Box and

White Box Testing, URL: http://www. ibm.

com/developerworks/rational/library/1147. html.

[13]. Enhanced online News, Janova Launces Simple Yet Powerful

Automated Software Testing Solutions Leveraging the Power of the

Cloud, 2012 Business Wire, December 1, 2011URL:

http://eon.businesswire.com/news/eon/20110412005635/en/softwar

etesting/

software-development/software.

[14]. Nancy Bordelon, A Comparison of Automated Software Testing

Tools, A Capstone Project Submitted to the University of North

Carolina Wilmington in Partial Fulfillment of the Requirements for

the Degree of Master of Science.

[15]. Godbole, N. (2004). Software quality assurance. Pangbourne, U.K.:

Alpha Science International Ltd.

[16]. M. Whalen, G. Gay, D. You, M. P.E. Heimdahl, M. Staats

“Observable Modified Condition/Decision Coverage”, In

Proceedings In Proceedings of International Conference in Software

Engineering (ICSE), 2013.

[17]. P. Amann, J. Offut, “Introduction to Software Testing”, 2008

[18]. K. Lakhotia, P. McMinnb, M. Harman, “An empirical investigation

into branch coverage for C programs using CUTE and AUSTIN”.

Journal of Systems and Software, 2010

[19]. G. Fraser, A. Arcuri, “Achieving Scalable Mutationbased

Generation of Whole Test Suites”. Empirical Software Engineering

2014.

BIOGRAPHY

 T. Ramasundaram Received M.Sc.,

degree in Computer Science from

Govt.Arts College, Dharmapuri,

Periyar University, Salem in 2005 and
M.Phil., Degree in Computer Science

from Periyar University, Salem, in

2009. Now he is a research scholar in

Department of Computer Science,

Periyar University, Salem. He is working as Assistant

Professor in Department of Computer Science, Sri Vijay

Vidyalaya College of Arts & Science, Nallampalli,

Dharmapuri. His research interests are Software

Engineering, Data Mining.

http://www.ranorex.com/
http://public.dhe.ibm.com/common/ssi/ecm/en/rad14072usen/RAD14072USEN.PDF
http://public.dhe.ibm.com/common/ssi/ecm/en/rad14072usen/RAD14072USEN.PDF
http://eon.businesswire.com/news/eon/20110412005635/en/softwaretesting/software-development/software
http://eon.businesswire.com/news/eon/20110412005635/en/softwaretesting/software-development/software
http://eon.businesswire.com/news/eon/20110412005635/en/softwaretesting/software-development/software

