
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5144 178

Study and Comparative Analysis of Basic

Pessimistic and Optimistic Concurrency Control

Methods for Database Management System

Jaypalsinh A. Gohil
1
, Dr. Prashant M. Dolia

2

Research Scholar, Dept of Computer Science, MK Bhavnagar University, Bhavnagar, India1

Associate Professor& Research Guide, Dept of Computer Science, MK Bhavnagar University, Bhavnagar, India2

Abstract: The concurrency in database system is a common phenomenon in multiuser environment where more than

one transactions concurrently accessing the common data. Concurrency can lead to an adverse effect on database if it is

not efficiently controlled. In the past many people have addressed the problem of concurrency and also suggested and

proposed various concurrency control methods. The scope of this study involves study and comparative analysis of

basic concurrency control methods that can be classified as either pessimistic or optimistic. Different protocols exhibit

good performance on different situations, some methods prefers locking approach while others are based on time

stamp. In this work we have studied basic concurrency control methods of both pessimistic and optimistic approaches,

highlighting their pros and cons. At last study shows the comparative analysis of basic concurrency control methods.

Keywords: CC, PCC, OCC, 2PL, S2PL, TIMESTAMP, TO, BOCC.

I. INTRODUCTION

In the past many researchers have made valuable

contributions in development of efficient concurrency

control algorithm based locking approach, but in recent
years there is a need of efficient concurrency control

algorithm which is suitable for fast and high performance

database systems [1,2]. The classic Kung & Robinson

time-stamp based concurrency control algorithm proposed

initially [1]. The algorithm is based primarily on two

innovative techniques: query killing notes and weak

serializability of transactions. In particular, it prefers long

transactions over short queries and thus reduces

considerably the number of transaction rollbacks required.

Traditional concurrency control algorithms can be broadly

classified as either pessimistic or optimistic. Pessimistic

Concurrency Control (PCC) algorithms [4, 5] avoid any

concurrent execution of transactions as soon as potential

conflicts between these transact ions are detected.

Alternately, Optimistic Concurrency Control (OCC)

algorithms [1] allow such transactions to proceed at the
risk of having to restart them in case these suspected

conflicts materialize.

The main aim of concurrency control method is to

preserve the consistency of database without any
overhead. This can be achieved through serializabillity and

serial execution of transactions. An execution is

serializable if it is computationally equivalent to a serial

execution. A serial execution of two or more transactions

means that all operations of one transaction are executed

before any operation from another transaction can execute.

Since serial executions preserve consistency by definition

and every serializable execution is equivalent to a serial

one, every serializable execution also preserves

consistency [6]. The optimistic concurrency control

method differs since; detection of conflicts and their

resolution are deferred until committed. The underlying

assumption here is that such conflicts are rare.

II. CONCURRENCY AND CONCURRENCY

CONTROL

A. Concurrency

Concurrency is conflicting situation where more than one

user or transaction tires to access the same database

resource at the same time. In such an environment each

user must be given the equal priority to perform their

operation. We must avoid the situation in which one user

is updating an object in the database, while another user is

reading it [7].

Concurrency control is the problem of synchronizing

concurrent transactions such that the following two

properties are achieved:
 The consistency of the transaction and database is

maintained.

 The maximum degree of concurrency of operations is

achieved.

Obviously, the serial execution of a set of transaction

achieves consistency, if each single transaction is

consistent.

B. Concurrency Control

The efficient concurrency control mechanism should

ensure the consistency of the database when transactions

are executed concurrently. Concurrency Control is an
integral part of database system.

(i) Conflict detection:

Detecting the conflict: We can detect the conflict between

more than one transactions in the following two ways. In

pessimistic method the conflicts are detected before the

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5144 179

access of the data object. [8]. In pessimistic method

whenever a transaction tries to access some data item, the

concurrency control manager (CC Manager) determines

the request and will decide whether to grant the permission

or not. In contract the optimistic method identifies the

conflicting transactions after it accessed the conflicting

data items, when transactions are operating concurrently

[1].

However, two or more transactions can conflict in a

variety of ways: they can require common resources that

must be allocated exclusively, or they can access common

data items in incompatible modes. In such a case it will

generally be necessary to have some transactions wait, or

backup, or restart certain transactions, until the

transactions they conflict with have run to completion. If
the probability of „conflict is high, then only a few

transactions can run concurrently so that all run to

completion. In such a case a limit to increased transaction

rates will soon be encountered, and this limit is determined

by the nature of the transactions [9].

(ii) Conflicting operations:

Two operations Oi(x) and Oj(x) of transactions Ti and Tj

are in conflict if and only if at least one of the operations is

a write, i.e.,

 – Oi = read(x) and Oj = write(x).

 – Oi = write(x) and Oj = read(x)
 – Oi = write(x) and Oj = write(x)

The following table shows compatibility matrix of

conflicting transactions Ti and Tj.

TABLE I COMPATIBILITY MATRIX FOR TRANSACTIONS TI

AND TJ

Compatibility

Matrix for Ti and Tj

Ti

read(x) write(x)

Tj
read(x)

write(x)

Generally, a conflict between two operations indicates that

their order of execution is important. Read operations do

not conflict with each other, hence the ordering of read

operations does not matter.

Consider the following two transactions:

T1 T2
Read(x) Read(x)

x=x+1 x=x+1

Write(x) Write(x)

Commit Commit

If conflicts are detected then it can make the adverse effect

on the database and leave the database in inconsistent

state. To preserve transaction and database consistency, it

is important that the read(x) of one transaction is not

between read(x) and write(x) of the other transaction.

(iii) Deadlock:

The conflicts can result in dead lock and can be detected

through wait-for graph. A set of transactions is in a

deadlock situation if several transactions wait for each

other. A deadlock requires an outside intervention to take

place. Any locking-based concurrency control algorithm

may result in a deadlock, since there is mutual exclusive

access to data items and transactions may wait for a lock.

Some pessimistic algorithms that require the waiting of

transactions may also cause deadlocks [9]. Deadlocks are

not desirable in concurrent transaction execution

environment. The main idea behind developing optimistic

concurrency control method is to remove the overhead of

locking. By the name itself the method takes into account

the assumption that conflicts between the transactions are

rare events and very unlikely to happen frequently. They

are optimistic in a way by assuming that conflicts will not
occur between the concurrent transactions. Generally, in

optimistic method locks are not used so it is lock free,

which is one of the major disadvantages of pessimistic

concurrency control method. In optimistic scheme the

concurrency control is postponed the transaction reaches

its finish point after that the potential conflicts has to take

place and will be resolved. Hereby the conflict resolution

mechanism takes into the account the progress done by the

transaction and the nature of conflict for a transaction.

(iv)Conflict resolution between concurrent conflicting

transactions:

A conflict resolution mechanism is activated by

concurrency control manager when there is a conflict

between the concurrent transactions tires to access the

same data item or object. After identifying the conflicting

transactions the concurrency control manager decides a

victim from a set of conflicting transactions to penalize it
through appropriate action. The following two actions can

be imposed on the conflicting transaction which is

identified as an victim. (i) Blocking (Waiting) (ii) Abort

(Restart after termination). Both the actions can be taken

while ensuring the concurrency through pessimistic

method i.e. blocking or aborting of transaction [1]. It is not

the case with optimistic concurrency control method

because here aborting is suitable option since conflict has

been detected after the data object is being accessed by a

transaction and based on some performance computation.

[8]. If we take the timing of both the actions blocking is

done immediately after the conflict is being detected but
aborting a transaction is either immediate or delayed.

III. BASIC CONCURRENCY CONTROL METHODS

Fig1Basic taxonomy of concurrency control methods

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5144 180

As per the assumptions of pessimistic concurrency control

method more number of transaction will conflict in

concurrent transaction execution environment, so the

concurrent execution of transaction is synchronized and

decided early in the transaction execution cycle. The

following are the most common pessimistic concurrency

control schemes.

1. Two-Phase Locking (2PL)

2. Timestamp Ordering (TO)

2.1 Basic Timestamp Ordering
2.2 Multiversion Timestamp Ordering

Optimistic concurrency control method differ from the

pessimistic method in a way that here in contrast to

pessimistic concurrency control approach we have to

assume that very few transactions will conflict in normal

operation, so there is no prerequisite sequence,

synchronization and execution of transaction until

transaction terminates. Basically Backward Oriented

Optimistic Concurrency Control (BOCC) is popularly

used.

1. Backward Oriented Optimistic Concurrency Control
(BOCC)

A. Pessimistic Concurrency Control Methods

(i) Lock-based approach:

Lock based concurrency control protocol works on simple

lock mechanism to control the concurrent access to the

data item. If lock is acquired by the transaction then and

then only permission is given to access the data item.

In Lock Based Protocols the Lock mechanism is used for

concurrent access to a data item. Permission is given to

access a data item only if it is currently holding a lock on
that item. Data items can be locked in two modes; either

write lock (w) – also called exclusive lock which is

denoted by (X) or read lock (r) – also called shared lock

which is denoted by (S) [7]. The transaction which

performs both read and write from the data item X,

exclusive-mode lock is given. The transaction which is

only reading the data item, but cannot write on data item,

shared-mode lock is given to data item. Transaction can

continue its operation only after request is granted [10].

Locking-based concurrency algorithms ensure that data

items shared by conflicting operations are accessed in a
mutually exclusive way. This is accomplished by

associating a “lock” with each such data item.

TABLE II SHARED &EXCLUSIVE LOCK CONDITIONS

Write

Lock - X

Read

Lock -S
-

Write Lock –X N N Y

Read Lock - S N Y Y

- Y Y Y

 General locking algorithm:

1. Before using a data item x, transaction requests lock for

x from the lock manager.

2. If x is already locked and the existing lock is
incompatible with the requested lock, the

Transaction is delayed and waits for lock to be released.

3. Otherwise, the lock is granted.

Consider the following two transactions:

T1 T2

Read(x) Read(x)

x = x + 1 x = x ∗ 2

Write(x) Write(x)

Read(y) Read(y)

y = y − 1 y = y ∗ 2
Write(y) Write(y)

The following schedule S which is a valid locking-based
schedule (lock(x) indicates the acquisition of lock and

unlock(x) indicates the release of a lock on x):

Fig. 2 Schedule S1

However, S1 is not serializable because S cannot be

transformed into a serial schedule by using only non-

conflicting swaps. Ultimately the result is different from

the result of any serial execution.

- Two-phase locking protocol (2PL):

It can be possible for a transaction to always commit itself

by not violating the serializability property. If proper care

is not taken while acquiring and realizing the locks, it will

result in inconsistency and can translated into deadlock.

Transaction execution must always be serialized in

concurrent execution environment and result of
serialization must always be same as if transactions were

performed in serial manner to ensure the transaction and

database consistency. So it is up most important that the

conflicting operations of the multiple transactions are

executed in the same order, a restriction is imposed. It

ensures that any new transaction is not allowed to aquire a

new lock until the old transaction completes its execution

and releases the lock. This phenomenon is called Two

Phase Locking (2PL) [11].

In two phase locking protocol (2PL) each transaction is

executed in two phases namely,
 Growing phase: the transaction obtains the

necessary locks

 Shrinking phase: the transaction releases the

unwanted locks

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5144 181

The lock point is the moment when transitioning from the

growing phase to the shrinking phase.

Fig.3Two-phase locking protocol (2PL)

- Properties of the 2PL:

Generates conflict-serializable schedules, but schedules

may cause cascading aborts. If a transaction aborts after it
releases a lock, it may cause other transactions that have

accessed the unlocked data item to abort as well.

Sometimes this situation is not desirable which is shown in

represented in the below schedule so strict 2PL comes for

rescue. The following schedule S2 is not valid in the 2PL

protocol:

Fig.4Schedule S2 for Two-phase locking protocol (2PL)

- Strict 2PL locking
In strict 2PL the transaction holds the locks till the end of

the transaction. So, ultimately cascading aborts are

avoided [12].

Fig. 5 Strict Two-phase locking

In below schedule after Read(x) transaction T1 cannot

request the lock write(y). So following schedule S3 is

valid schedule in the strict 2PL protocol.

Fig. 6Schedule S3 for strict Two-phase locking protocol

(ii) Timestamp ordering method

- Basic timestamp-ordering protocol

Timestamp ordering eliminates the major bottleneck of

deadlock for transactions, as in this environment no
transaction is waiting for other. The problem of starvation

can surface for long transactions if a sequence of

conflicting short transactions causes repeated restarting of

the long transaction. In such situation rate of cascading

rollbacks are high [12]. This protocol provides edge over

locking protocol because transaction do not wait for each

other over a long period of time needlessly. It aborts the

conflicting transaction instead of putting it in a waiting

state.

- Timestamp-ordering rule (TO rules):

Timestamp-ordering based algorithms do not maintain
serializability by mutual exclusion, but select (a priori) a

serialization order and execute transactions accordingly.

Transaction Ti is assigned a globally unique timestamp

ts(Ti). Conflicting operations Oi and Oj are resolved by

timestamp order, i.e., Oi is executed before Oj if and only

if ts(Ti) < ts(Tj) [13]. To allow for the scheduler to check

whether operations arrive in correct order, each data item

is assigned a write timestamp (wts) and a read timestamp

(rts) in the following manner: rts(x): largest timestamp

of any read on x. wts(x): largest timestamp of any write on

x. Then the scheduler has to perform the following checks:

 Read operation, Ri(x):

∗ If ts(Ti) < wts(x): Ti attempts to read overwritten data;

abort Ti.

∗ If ts(Ti) ≥ wts(x): the operation is allowed and rts(x) is

updated.

 Write operations,Wi(x):

∗ If ts(Ti) < rts(x): x was needed before by other

transaction; abort Ti.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5144 182

∗ If ts(Ti) < wts(x): Ti writes an obsolete value; abort Ti.

∗ Otherwise, executeWi(x).

Consider the following schedule S4 with three transaction

T1, T2 and T3 respectively. The schedule shows their

execution order on data items x, y and z.

Fig. 7Schedule S4 with three transactions T1, T2 and T3

If we look closely at the execution order and sequence of

operations of transactions, the transaction T1 starts its

execution earlier to other two transactions and does two

read operations Read(x) and Read(z). It is also visible

from the sequence of operations represented in a schedule

that T1 also performs las read operations Read(z) after all

the operations of other two transactions have completed.

In the similar manner transaction T2 performs two write

operations Write(x) and Write(y) and transaction T2

performs one read and one write operations namely

Read(y) and Write(z).

If we go by the execution sequence and order of

transaction after applying rules of Basic Time Stamp

ordering protocol, then we can see from below represented

diagram that T1 and T2 will be aborted and T3 will

survive and executed in normal manner. If we go by an
execution sequence and rules of protocol, in the execution

order first of all transaction T1 performs Read(x)

operation then, there is turn of transaction T2 which

performs Write(x) operation. In next sequence transaction

T3 get the contention of resource and performs Read(y)

operation. At this point rules are checked for transaction

T2 and it is obvious that it violates the rules and according

to the first condition of write rule the transaction T2 is

aborted. Then there is a trun of transaction T3 which

performs Write(z) operation, here rules are checked and

since there is no violation of rules the transaction allowed

to perform Write(z) operation after that transaction T3
commit. At the last stage of sequence transaction T1

performs Read(z) operations and due to incompetency in

following the rules transaction T1 is aborted.

Fig. 8 Execution sequence of transactions T1, T2 and T3

under basic timestamp ordering protocol

So, in this example if we impose the basic time stamp

ordering rules and go by the execution sequence then

transactions T1 and T2 is aborted and only one transaction

T3 successfully commits.

The generation of timestamps (TS) in a distributed

environment executed in the following way: TS needs to

be locally and globally unique and monotonically

increasing. System clock, incremental event counter at
each site, or global counter are unsuitable (difficult to

maintain). Concatenate local timestamp/counter with a

unique site identifier: <local timestamp, site identifier>.

The site identifier is in the least significant position in

order to distinguish only if the local timestamps are

identical [13]. Schedules generated by the basic TO

protocol have the following properties:

 Serializable

 Since transactions never wait (but are rejected), the

schedules are deadlock-free

 The price to pay for deadlock-free schedules is the
potential restart of a transaction several times.

- Multiversion timestamp ordering:

In multiversion two phase locking, to detect deadlocks, the

algorithm can use a directed blocking graph whose nodes

are the transactions, and there is a deadlock if the graph

has a cycle. To resolve deadlocks caused by certify-locks,

the system should force one or more transactions to give

up enough of their certify-locks to break the deadlock;

these transactions can try later to get these locks back. To
break deadlocks the system must abort one or more

transactions, cascading aborts are also possible if the

algorithm allows transactions to read uncertified versions

[14].

This approach maintains a number of versions of a data

item and allocates the right version to a read operation of a

transaction. Thus unlike other mechanisms a read

operation in this mechanism is never rejected.

To understand the concept assume that x1, x2, …, xn are

the versions of a data item x created by a write operation

of transactions. With each xi a read_TS (read timestamp)
and a write_TS (write timestamp) are associated. The

operation read_TS(xi) reads timestamp of xi is the largest

of all the timestamps of transactions that have successfully

read version xi. On the other hand operation write_TS(xi)

writes timestamp of xi that wrote the value of version xi.

A new version of xi is created only by a write operation.

 Rules:

The following two rules governs the multiversion time

stamp ordering protocol [14].
Rule 1: If transaction T issues write_item(x) and version i

of x has the highest write_TS(xi) of all versions of x that is

also less than or equal to TS(T), and read _TS(xi) > TS(T),

then abort and roll-back T; otherwise create a new version

xi and read_TS(x) = write_TS(xj) = TS(T).

Rule 2: If transaction T issues read_item (x), find the

version i of x that has the highest write_TS(xi) of all

versions of x that is also less than or equal to TS(T), then
return the value of xi to T, and set the value of read

_TS(xi) to the largest of TS(T) and the current

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5144 183

read_TS(xi). Rule 2 guarantees that a read will never be

rejected.

The following steps are performed while checking the

rules of protocol.

1. x is the committed version of a data item.

2. T creates a second version x‟ after obtaining a write

lock on x.

3. Other transactions continue to read x.

4. T is ready to commit so it obtains a certify lock on x‟.

5. The committed version x becomes x‟.

6. T releases it‟s certify lock on x‟, which is X now.

Consider the following example where three transaction

T1….T3 running concurrently. The examples represents

the sequence and order of execution of these four

transactions and value of A. If we apply the rules of

multiversion timestamp ordering protocol T3 does not

have to abort, because it can read an earlier version of A as

visible from the below sequence of schedule.

Fig. 9 Schedule S5 with three transactions T1, T2 and T3.

If we go by the execution sequence and order of

transaction after applying rules of Multiversion Time

Stamp ordering protocol, then we can see from below

represented diagram that T1, T2 and T3 all will survive

and committed. If we go by an execution sequence and

rules of protocol, in the execution order first of all

transaction T1 performs Read(A) operation then, then

again transaction T1 performs Write(A) operation. After

this sequence a new version for data item A is created. In

next sequence transaction T2 get the contention of
resource and performs Read(A) and Write(A) operations

respectively. After Write(A) operation of transaction T2

again a new version of A is generated.

Fig.10 Execution Sequence of transactions T1, T2 and T3

under multiversion timestamp ordering protocol

Then there is a turn of transaction T3 which performs

Write(A) operation, here rules are checked and since there

is no violation of rules the transaction allowed to perform

Write(A) operation because it can read the earlier various

of A after that transaction T3 commit. So, in this example

if we impose the multiversion time stamp ordering rules

and go by the execution sequence then transactions all

three transactions T1, T2 and T3 successfully completes

its execution and commits successfully.

One of the major drawback of Multiversion Timestamp

Ordering protocol is that significantly more storage is

required to maintain multiple versions. To check

unlimited growth of versions, a garbage collection is run
when some criteria is satisfied, which results in extra

processing overhead.

(iii) The problems with pessimistic approach:

In pessimistic locking method data to be updated is locked

in advance. Once the data to be updated has been locked,

the application can make the required changes, and then

commit or rollback - during which the lock is

automatically dropped. If anyone else attempts to acquire a

lock of the same data during this process, they will be
forced to wait until the first transaction has completed

[15]. This approach is called pessimistic because it

assumes that another transaction might change the data

between the read and the update. In order to prevent that

change from happening and the data inconsistency that

would result the read statement locks the data to prevent

any other transaction from changing it. This can lead to the

following problems:

- The Lockout:

 A transaction invoked by an application user selects a

record for update, and executing the operations without

finishing or aborting the transaction. All other users with

their respectivetransaction that need to update that record

are forced to wait until the user completes its transaction.

So, on an average for other transactions consumes more

time in waiting for other transaction to complete its

execution rather than executing the operations of itself,

which is undesirable for real-time time critical system.

- The Deadlock:

Transaction A and B are both updating the database at the

same time. Transaction A locks a record and then attempt

to acquire a lock held by transaction B who is waiting to

obtain a lock held by transaction A. Both transactions go

into an infinite wait state the so-called deadly embrace or

deadlock [10].

B. Optimistic Concurrency Control Methods

(i) Overview of optimistic approach:
The main disadvantage of pessimistic approach is locking.

Locks have an overhead associated with maintaining and

checking them. They may be a situation in which deadlock

can arise in a system. As an solution of pessimistic

concurrency control approach an alternative proposed by

Kung and Robinson in 1981 is optimistic concurrency

control [9]. This approach let the transaction to execute

itself without worry of conflict with other transactions. As

the name implies the optimistic concurrency control

algorithms are based on the assumption that conflicts

between transactions are not frequent and regular. The

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5144 184

probability of a lock conflict is about 0.1 and the

probability of a deadlock is much lower (< 0.001) as per

study [16]. So there is no need of locking mechanism

which result in operation overhead. When a conflict does

arise, then the system will have to deal with it.

Optimistic concurrency control requires transactions to

operate in a private workspace, so their modifications are

not visible to other until they commit. When a transaction

is ready to commit, a validation is performed on all the

data items to see whether the data conflicts with operations
of other transactions. If the validation fails, then the

transaction will have to be aborted and restarted later.

Optimistic control is clearly overcomes the problem of

deadlock.

(ii) Benefits of optimistic approach:

This optimistic concurrency control provides the following

benefits over its counterpart pessimistic approach. It is

deadlock free and avoids any time consuming node-locked

scenarios. This approach is generic in the sense if the

transactions become query dominant, the concurrency

control overhead becomes almost negligible. In this
approach reading operations are completely unrestricted

whereas write operations of transactions are severely

restricted.

(iii) The three phases:

The optimistic concurrency control algorithm follows the

process in three different phases: READ phase, a

VALIDATION phase and optional WRITE phase which is

executed if the transaction is allowed to commit [17], the

process is highlighted in the below diagram.

If we generalize the three phases of optimistic approach in

the READ all write operations take place on local copies
of the object to be modified. During VALIDATION phase

it is determined that the transaction will not cause a loss of

integrity. Finally, in WRITE phase copies are made global.

Fig.11. Three phases of optimistic concurrency control

- Read and Write phases:

Read is also considered as a working phase. Each

transaction has a tentative version of each of the object
that it updates READ operations are performed

immediately WRITE operations record the new values of

the objects as tentative values. Two records are kept of the

objects accessed within a transaction: a read set and a

write set. If validation succeeds, then the transaction enters

the WRITE phase. After WRITE phase, all written values

become global. When a transaction completes, it will

request its validation and write phases via TtransactionEnd

call.

- Validation phase:

As the name suggest hereby strong validation checks are

performed on transactions which uses a particularly strong

form of validation. This is especially important with long-

running transactions method uses an overqualified update
scheme to test whether the underlying data source has

been updated by another transaction since the beginning of

the current transaction. Kung and Robinson employ Serial

Equivalence for verifying the correctness of concurrent

execution of transactions.

- Validation of serial equivalence:

During VALIDATION phase each transaction explicitly

assigns Transaction Number, T(i), at the end of the READ

phase transaction numbers are assigned in order. If the
transaction is validated and completes successfully, it

retains this number but if it fails the validation checks and

is aborted, or if the transaction is read-only, the number is

released for reassignment. Transaction numbers are

integers assigned in ascending sequence. The number of a

transaction defines its position in time Tid satisfies the

following property: T(i)<T(j) . Operations conform to the

following validation conditions:

 Ti must not read objects being written by Tj

 Tj must not read objects being written by Ti

 Ti must not write objects being written by Tj and Tj
must not write objects being written by Ti

(iv) Backward – Oriented Optimistic Concurrency Control

(BOCC) method:

The two schemes Backward – Oriented and Forward –

Oriented Optimistic Concurrency Control schemes were

proposed by Harder [18]. In BOCC the read set of a
validating transaction is compared to the write sets of all

transactions that have finished the read phase before the

validating transaction. Under backward-oriented optimistic

concurrency control (BOCC), a transaction under

validationexecutes a conflict test against all those

transactions that are already committed [19, 20].

- BOCC validation condition:

Compare Tj to all previously committed Ti. Accept Tj if

one of the following holds:

 Ti has ended before Tj has started, or

 RS(Tj) WS(Ti) = and Ti has validated
before Tj.

Consider the following example which shows the

sequence of execution of earlier committed transactions

and currently active transaction. It tests the condition of

BOCC protocol.

The earlier committed transactions are T1, T2 and T3. T1

committed before Tj started. The transactions T2 and T3

committed before Tj finished its working phase.
Validation consists of comparing the READ set of Tj with

the write set of T2 and T3.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5144 185

Fig, 12 Transaction execution sequence under BOCC

method

Conflicts are resolved by aborting the transaction
undergoing validation. If transaction being validated does

not have any read operations, it does not have to be

checked. Optimistic concurrency requires that the WRITE

sets of old committed versions of objects corresponding to

recently committed transactions are retained until there are

no unvalidated overlapping transactions which might

conflict. When a transaction is successfully validated, its

transaction number and write set are recorded in a list that

is maintained by the transaction service.

IV. COMPARATIVE ANALYSIS OF BASIC

CONCURRENCY CONTROL METHODS

The following table shows the comparative study and

performance evaluation of various pessimistic and

optimistic concurrency control methods.

TABLE III COMPARATIVE ANALYSIS OF BASIC

CONCURRENCY CONTROL METHODS

V. SUMMARY

Pessimistic locking based approach is suitable for update-

intensive applications while optimistic methods are more

suitable for read operation. As shown in the table Table no

unnecessary overheads of locking of read-only

transactions and will give good performance. The level of

performance is degraded with standard locking techniques,

if transactions are not compatible with each other, whereas
transaction restarts to resolve deadlocks have secondary

effect on performance [21]. Timestamp based protocol

somewhat overcomes the situation of blocking. They are

based on older-younger relationship. Timestamp can give

better results if some available information about the

transactions or the database can be used for increasing

concurrency [22].

In a locking approach, transactions have to wait at certain

points, while in an optimistic approach backing them up

controls the transactions. In this approach commit is done

only after validation phase because if conflicts occurs

between transactions and if not prevented in frequent-

update systems it may abort more transactions than either
previous method because checks timestamps later [23].

VI. CONCLUSION

In this study we have highlighted some of the basic

concurrency control methods which follows both

optimistic and pessimistic concurrency control techniques.

In most commercial systems, the most popular mechanism

for concurrency control is two-phase locking (2PL) and

strict two –phase locking (S2PL). The protocols based on

locking mechanism follows serializability without

considering the type of transaction. The lock based
methods are very efficient for update intensive application,

but it has the overhead of locking and can find themselves

in a deadlock. In timestamp ordering protocols

transactions do not conflict, it is better than phased locking

because transaction never block each other needlessly, but

this method suffers from large amount of transaction

rollback. Cascading rollbacks are the frequent in this

environment. The basic timestamp methods we have

highlighted in the paper are Basic Timestamp Ordering

(BTO) and Multiversion Timestamp Ordering (MTO).

Keeping the updated records of two timestamps for every
data object is an overhead. The optimistic approach works

on three different phases: Read, Write and Validate. In

optimistic approach the transaction is committed only after

the finish of validation phase. The optimistic methods

which is covered in this paper is Backward Oriented

Concurrency Control (BOCC) method. The conflicts can

occur between two concurrent running transactions and if

they are not prevented it may abort more transactions then

previous methods because checks are made at the later

stage. The optimistic protocol is best suited for read

intensive applications. If we compare the performance of

all basic methods of concurrency control the
optimumperformance will be provided by optimistic

concurrency control methods.

REFERENCES

[1] Kung H. T.. and Robinson J. T., "On Optimistic Methods for

Concurrency Control". ACM Trans. on Database Systems, V. 6.

No. 2,1981.

[2] Carey M. J.,"Improving the Performance of an Optimistic

Concurrency Control Algorithm Through Timestamps and

Versions", IEEE Trans. On Software Engineering. V. 13, No.

6,1987.

[3] Rishe N.. Tal D.. and Gudes E., "An optimistic Concurrency control

algorithms for distributed-storage semantic database machines".

Submitted for publication, 1989.

[4] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. \The

notions of consistency andpredicate locks in a database system."

Communications of the ACM, 19(11):624{633,November 1976.

[5] J. N. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger.

\Granularity of locks and degrees of consistensy in a shared data

base." In G. M. Nijssen, editor, Modeling in Data Base

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5144 186

Management Systems, pages 365{395. North-Holland, Amsterdam,

The Netherlands, 1976.

[6] P.A. Bernstein and N. Goodman, "Concurrency Control in

Distributed Database Systems," ACM Computing Surveys, Vol.

13(2), June 1981, pp. 186 - 221.

[7] Bernstein, P. and N. Goodman, 1981. Concurrency control in

distributed databasesystems. Comp. Sur., 13: 185-221.

[8] Franaszek, P. and J. Robinson, 1985. Limitation of concurrency in

transaction processing. ACM Trans. Database Syst., 10: 1-28.

[9] Amer Abu Ali, 2006, On Optimistic Concurrency Control for Real-

Time Database Systems, American Journal of Applied Sciences 3

(2): 1706-1710, 2006

[10] Joe Hellerstein : Concurrency Control, Locking, Optimistic,

Degrees of Consistency Advanced Topics in Computer Systems

,Spring 2008 UC Berkeley

[11] CHRISTOS H. PAPADIMITRIOU : A Theorem in Database

Concurrency Control, Journal of the .Association for Computing

Machinery, Vol. 29, No. 4, October 1982, Page 998-1006

[12] Databases, ACM Transactions on Database Systems, Vol. 15, No.

2, June 1990, Pages 281-307

[13] Pei-Jyun Leu,Bharat Bhargava: MULTIDIMENSIONAL

TIMESTAMP PROTOCOLS FOR CONCURRENCY CONTROL

l,CSD-TR-521,revised Oct. 1986

[14] MICHAEL J. CAREY and WALEED A. MUHANNA : The

Performance of Multiversion Concurrency Control Algorithms

ACM Transactions on Computer Systems, Vol. 4, No. 4, November

1986, Pages 338-378.

[15] J.A.Gohil, Dr.P.M.Dolia, “Comparative Study and Performance

Analysis of Optimistic and Pessimistic Approaches for

Concurrency Control Suitable for Temporal Database

Environment”, National Conference on Emerging Trends in

Information & Communication Technology (NCETICT), 2013

[16] J.N. Gray, P. Homan, H. Korth and R. Obermack, 'A Straw Man

Analysia of the Probability of Waiting and Deadlock in a Database

System,' Proc. 5th Berkeley Workshop on Distributed Data

Processing System, Febr. 1981.

[17] M.J. Carey and M.R. Stonebreaker, "The Performance of

Concurrency Control Algorithms for Database Management

Systems, Proc. 10th Intl. Conf. on Very Large Data Bases,

Singapore, Aug. 1984, pp. 107 – 118.

[18] Härder, T. :Observations on Optimistic Concurrency Control

Schemes. Information Systems. 9,111-120(1984)

[19] Lee, J.:Precise Serialization for Optimistic Concurrency Control,

Data & Knowledge Engineering. 29, 163-178 (1999)

[20] Lee, J., Son, S.H., Using Dynamic Adjustment of Serialization

Order for Real-Time Database Systems. In: proceedings of the

Real-Time Systems Symposium, pp. 66-75(1993)

[21] Kamal Solaiman, Matthew Brook, Gary Ushaw, Graham Morgan.

A Read-Write-Validate A Approach to Optimistic Concurrency

Control for Energy Efficiency of Resource-Constrained Systems

[22] ALEXANDER THOMASIAN : Concurrency Control : Methods,

Performance, and Analysis ACM Computing Surveys, Vol. 30, No.

1, March 1998

[23] Joe Hellerstein : Concurrency Control, Locking, Optimistic,

Degrees of Consistency Advanced Topics in Computer Systems

,Spring 2008 UC Berkeley.

