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Abstract: This paper presents the outcome of an investigation of the costs and benefits of thinning as part of pre-

processing for line detection including specification of end-points, from visual images of indoor rectilinear 

environments. This is done as part of a bigger process with the goal of detecting lines to enable a small mobile robot 

self-navigate within the environment based on navigationally important features such as doors and corridors 
reconstructed from the lines detected. The straight line Hough transform is used to determine parameters which specify 

gradients and positions of lines, and then the end-points of the lines are determined. To do this images can be pre-

processed to the point of edge-detection which typically yields edge lines several pixels thick, or edge-detection 

followed by thinning yielding edge lines about a single pixel in thickness. Since the Hough transform operates on all 

pixels in an input image, more work is needed to process the “unthinned” image. However, thinning itself takes time. 

This paper looks into whether the taking the time to do thinning is justified in terms of overall time taken, and quality 

of resulting lines found, and concludes that for the purpose described, thinning does appear to improve the quality of 

line detection, while taking less total time to do it. 
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I. INTRODUCTION 
 

This investigation presented in this paper was done as part 

of work to develop a system to enable a mobile robot self-

navigate within rectilinear environments on the basis of 

visual input, to achieve navigation an image is captured by 

a forward facing camera mounted on the robot, the image 

is processed, and then some navigation is effected based 

on the result of the processing. This cycle is repeated until 

a predefined navigation program is completely executed, 
or the navigation process is otherwise terminated. 
 

Processing an image essentially means recognition of 

high-level, navigationally important features such as 

corridors and doors within the image after necessary pre-
processing. Recognition of features, for the purpose of this 

work, involves a number of stages. The stages include 

establishing parameters that uniquely specify straight 

lines, finding valid sub-lines of the lines and their end-

points, and then looking into which sub-lines constitute 

navigationally important features. 
 

Determining parameters that specify straight lights in the 

image is referred to as line detection and is done in this 

work using a process called the Hough transform. It yields 

parameters that specify the equation of the lines of 

interest, but not information about the actual starting and 

ending points of the line, hence the need for a separate 

process to determine end-points. Before application of the 

Hough transform, the image needs to be pre-processed. 
 

Details of pre-processing, the Hough transform and 

determination of end-points have been presented in [1], [2] 

and [3] respectively. Important details relevant to this 

work are highlighted in the sub-sections “A. Pre-

Processing”, “B. Line detection using the Hough 

transform” and “C. End-points Determination” which 
follow. “D. Investigation Objective” then puts the 

investigation presented in this paper into perspective.  

 

 
Briefly though, “A. Pre-Processing” will show that 

thinning is an optional process in pre-processing since the 

specification of lines presented in” B. Line Detection 

using the Hough Transform” can happen with or without 

it. The investigation presented looks closer into the 

benefits and costs of thinning and not thinning, and 

whether the benefits ultimately justify the cost. Benefits 

could include quality of results of sub-lines detection, and 
potential saving of processing time in later stages of 

processing. Cost could be loss of quality of sub-lines 

detection, and additional processing time. A known fixed 

cost is the processing time to do the thinning. 
 

A. Pre-Processing 
 

Details of the preprocessing scheme used for this work 

have been presented in [1]. A summary of the scheme 

highlighting details relevant to this paper follows. 
 

In this work, after images are captured, in preparation for 

feature detection, they are resized to a 128 pixel by 96 

pixel size and converted to gray scale. The Sobel edge 

detection filters are then applied to determine edges or 

prominent regions within the image. This is called edge-

detection, and results in binary image with black pixels 

showing areas that are edges, i.e. boundary areas of 

prominent regions, and white pixels showing the body of 

those regions.  
 

Fig. 1(a) shows a typical image after it is resized, and Fig. 

1(b) shows the same image after edge-detection. 
 

For the purpose of using the Hough transform to find 

parameters that uniquely specify lines from the image, a 

binary image is needed. Edge-detection provides such an 

image, so it is possible to go straight into application of 

the Hough transform after edge-detection. Works such as 

[4] do so.  
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Edge-detection typically results in images that are several 

pixels thick. Because the Hough transform operates on 

individual pixels, images resulting from edge-detection 

give the Hough transform many more pixels to process 

than if edges were of unit thickness. The Hough transform 

is a processor (and memory) intensive activity. This could 

mean that much more computer time is taken than may be 

necessary, and for a real time system such as generating 

information necessary for robot self-navigation, this would 

be undesirable. Processing the extra pixels also “distracts” 

feature detection processes down the line from important 
but salient features of the image. Some works have gone 

ahead to first “thin” the edges.  
  

 
Figure 1a: Sample Image 

 

 
Figure 1b: Sample image after Edge-detection 

  

Thinning is the process of reducing the thickness of edges 

to as close to unit thickness as possible, while retaining 

information about all important edges. [1] discusses 

several thinning method and details of a particular method 

used for this work. Fig. 2 show the result of thinning for 

the image from Fig.1 
 

 
Figure 2 Sample image thinned with modification 

 

The process of thinning does use up processing time itself. 

This paper looks into whether doing thinning, and the cost 

associated with it, on the whole, helps or hurts feature 

detection for the robot self-navigation endeavor.  
 

B. Line Detection using the Hough transform 
 

Details of the Hough transform and how it is used to detect 

lines in the work discussed in this paper are available in 

[2]. Summarily, the Hough transform is an image 

processing technique invented to enable automatic 

recognition of lines [5]. The normal (or polar) form of the 

equation of a straight line  
 

 sincos yx   .   .   .   Equation 1 
 

has become more popular, and was used in this work. This 

approach was first proposed by [6]. It is based on the 

principle that for every point ),( yx  in the x-y plane, there 

is a curve defined by equation 1 in the   plane.  
 

Equation 1 is used to transform every edge pixel   in image 

space to a curve in parameter space. To determine the 

transform for each edge pixel, various values of    are 

taken at a regular interval.  
 

Closely associated with parameter space is the 

accumulator array. It is a two dimensional array 

superimposed over parameter space.  
 

The accumulator array is usually set up as a zero array 

initially. Individual entries are then increased in the course 

of application of the transform. The value of each entry is 

called the accumulation of that entry. How this increase is 

done varies. The most popular way is to increase the value 
of each entry by 1 whenever a curve resulting from a 

transform crosses it. This approach is used in this work. 

Other approaches exist and are discussed in [7] and [2]. 
 

With the chosen method of accumulation, when all edge 
pixels have been processed, accumulator array cells will 

have varying values. Those that have not been affected by 

the transform for any edge pixel will still have their initial 

value of 0. All others will have positive integer values 

equal to the number of times a transform curve has crossed 

them. Each transform curve is a result of transform of a 

point from image space, so each crossing added to a cell 

means one more pixel was found in image space from the 

line corresponding to the cell in the accumulator array. 

Some accumulator array entries will have higher values 

than their neighbors and are referred to as peaks. Peaks in 

accumulator array represent lines that have the highest 
evidence of actually existing in image space. Peak 

detection is the process of determining which cells are 

peaks.  
 

Peak detection can be achieved by application of a 
threshold. All accumulator array entries above a certain 

threshold automatically qualify as peaks and all others are 

not peaks. A method to automatically determine the right 

threshold to use for peak detection based on a target 

number of peaks was used. Choice of the target number of 

peaks is presented in [9]. Further discussion on selection 

of thresholds is available in [2]. 
 

In many situations, peaks are not easily distinguishable. 

This can be due to a number of possible situations. An 

example is a situation where several accumulator array 
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entries in a neighborhood have values higher than the edge 

detection threshold. Although one of them is higher than 

all others, several points above the threshold that are not 

actual peaks are returned by the application of the 

threshold. [2] refers to them as false peaks.  
 

Where they exist, elimination or at least minimization of 

false peaks is necessary. In [2], the reduced butterfly filter 

proposed by [8] is used to minimize false peaks. It is a 3 x 

3 convolution filter which when applied to an accumulator 

array will emphasis actual peaks while suppressing false 

peaks.  
 

To minimise the detection of multiple peaks in parameter 

space due to a single line from image space, peaks are 

eliminated if their butterfly filtered value is not higher than 

that of all other entries within a 5 x 5 pixel neighbourhood 

surrounding them. Peaks which are local maxima within 

the 5 x 5 neighbourhood surrounding them are the target 

significant lines from the original image and they are 

processed further. 
 

When peaks have been correctly determined, the 

parameters   and   associated with them uniquely specify 

lines in the original image that can be interpreted to be the 

most important lines from the image. [3] details the 

mathematics involved. The result is that the gradient of the 
line m is given by 
 

)cot( m  ,     .   .   .   Equation 2 
 

and intercept on the y axis is given by 
 

ecc cos ,   .   .   .       Equation 3 
  

As part of efforts to minimise the detection of multiple 
peaks in parameter space due to a single line from image 

space, peaks are eliminated if their butterfly filtered value 

is not higher than that of all other entries within a 5 x 5 

pixel neighbourhood surrounding them. Peaks which are 

local maxima within the 5 x 5 neighbourhood surrounding 

them are the target significant lines from the original 

image and they are processed further. 
 

C.  End-Points Determination 
 

When lines are found using the Hough transform, there is 

information about their gradient and intercept, but not 

about their lengths or end-points. [3] presents a method for 

determining end-points and lengths of lines when 

detecting the lines with the Hough transform. In summary, 
it works by keeps a record of all the points that contributed 

to the accumulation of each point in the accumulator array, 

so that for any point in the accumulator array returned as a 

peak, all the points on the line are known. They are then 

checked against certain criteria to determine if they make-

up valid sub-lines for the line. Sub-lines and valid sub-

lines are defined in more detail in [3]. Endpoints of a sub-

line are then determined as the points farthest away on 

both ends of a valid sub-line along the direction of the 

line, and its length is the distance between its endpoints. 
 

D. Investigation Objective 
 

Sub-sections” B. Line Detection using the Hough 

Transform” and “C. End-Points Determination” have 
summarized the key points of a line detection scheme 

presented in [2] and an end-points detection scheme 

presented in [3] respectively. Both schemes are part of a 

vision system for a self-navigation robot based on line 

detection.  
 

“A. Pre-Processing” already summarized a pre-processing 

scheme for images in preparation for the line detection 

scheme of [2], providing two possible types of binary 

images that can be take of points for line detection. One 

version stops at edge-detection, and the other version goes 

further to do thinning. The thinned version has much 

fewer black pixels than the version which stops at edge-

detection, even though it has all the important edge-

information there is. This means the thinned version gives 

the line detection scheme of [2] much fewer pixels to 

process.  
 

This paper presents an investigation into whether or not 

thinning should be done when trying to determine sub-

lines by finding lines and their end-points. The 

investigation looks into the costs and benefits of doing 
thinning, i.e. processing time involved, quality of lines and 

end-points detected, and savings in time for the subsequent 

line detection and end-points determination scheme. 

 

II. INVESTIGATION 
 

A simple experiment was done to investigate the effect of 

thinning on the processing time and quality of results of 

processes sub-sequent to the pre-processing stage of a 

mobile robot vision system based around line detection, to 

the point of detection of end-points of sub-lines.  
 

The processes involved were already summarized in 1 

Introduction, and detailed in [2] and [3]. 
 

To do this, a typical image was pre-processed to two 
points - to the point of edge detection, and to the point of 

thinning. The image is shown in Fig. 3 with navigationally 

critical lines circled in red. Those are the lines that should 

be detected found by the system ideally. 
  

 
Figure 3. Typical image with navigationally critical lines 

highlighted 
 

The version with pre-processing done to the point of edge 

detection was labeled EI and the version pre-processed to 
the point of thinning was labeled TI for reference purpose. 

Both EI and TI were then further processed to find lines 

with the Hough transform end-points of sub lines as 

presented in subsections B and C of “II Introduction”. 

Both runs were done twice so that random variations in 

timing can also be monitored.  
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III. RESULTS AND DISCUSSION 
 

Results for the first and second runs for edge-image EI are 

labeled EI1 and EI2 respectively. The same labeling 

scheme was used for thinned image TI. Outcomes of these 
are discussed in “A. Effects of Thinning on Quality of 

Results of Subsequent Processes” and “B. Effects of 

Thinning on Processing Times of Subsequent Processes”. 
 

A. Effects of Thinning on Quality of Results of Subsequent 

Processes 
 

Table 1 summarises results from the experiment to 

illustrate the effects of thinning. Row 1 of the results 

shows the takeoff number of pixels after Sobel edge 

detection, 2491. The next row shows the number of pixels 

after thinning. This is only applicable to TI as EI was not 

thinned. Row 3 following that illustrates the two versions 

of binary images that were used as input to the Hough 
transform. Lines in EI are noticeably thicker than lines in 

TI. 
 

Row 4 states the number of peaks found when the peak 

detection scheme used in this work was applied with a 

target number of peaks of 200. 236 peaks resulted from TI 
and 206 from EI. Row 5 shows that 38 and 22 lines 

respectively resulted when the butterfly filter is applied 

and local maxima are selected in 5 x 5 neighbourhoods in 

the way done by this work as discussed in “B. Line 

Detection using the Hough Transform”. 
 

A few interesting observations can be made. Firstly, as 

stated in row 2, thinning results in a significant reduction 

of edge points from 2491 to 1008. This represents 

approximately, a 59.53% reduction. This, as is seen in B. 

Effects of Thinning on Processing Times of Subsequent 

Processes which follows, has a significant effect on Hough 

transform time, and ultimately on the time taken for the 

entire process up to sub-line detection. 
 

Secondly, sub-lines found in TI appear to match lines in 

the image that actually represent high level features, to a 

higher extent than sub-lines in EI. In particular, more 

navigation critical sub-lines were found in TI than EI as 
state in row 8 and illustrated in rows 9 and 10 even though 

more sub-lines were found in EI as stated in row 7. 

Navigation critical sub-lines are those that would actually 

enable detection of doors, and corridors possible for the 

robot, and therefore possibly affect its navigation 

decisions as discussed in [9]. They are illustrated in Fig. 3. 
 

Tables 2 shows the timings recorded for a number of 

subsequent processes. An Intel Duo T5600 1.83GHz 

processor machine with 1GB of RAM was used for this 

experiment.  
 

Three issues were looked at in terms of processing time - 

(1) what is the cost of thinning, (2) what benefits can be 

derived from thinning, and (3) what is the overall effect of 

thinning. These are discussed in 2) Costs of Thinning, 3) 

Benefits of Thinning and 4) Sum Effect of Thinning on 

Time Taken respectively. 
 

 Before going there however, a look is taken at errors in 

the measurement of time in “1) Errors in Time 

Measurement below”. 

1) Errors in Time Measurement: 
 

Before discussing the results in relation to the purpose of 

the experiment, two unexpected observations need to be 

made regarding the accuracy of the time recording 
mechanism used to set up table 2. First for some processes 

0 milliseconds was recorded as time taken. These include 

thinning time and time taken to find sub-lines for TI 1, and 

time taken to find sub-lines for EI 2.  
 

This suggests that the time recording mechanism is limited 

in its sensitivity. The extent of this insensitivity is not 

certain but is probably hinted by other times recorded for 

exactly the same events.  
 

Thinning time for TI 2 was 160 milliseconds, time taken 

for determining sub-lines for TI 2 was 160 milliseconds, 

and time taken to determine sub-lines for EI 1 was 150 

milliseconds. These suggests that events that have up to 

160 milliseconds as time recorded for them to complete 

may at other times have as low as 0 milliseconds recorded 

as the time to complete them. 
 

The second related unexpected issue is that exactly the 

same processes with the same data take different amounts 

of time to complete at different times. The first two rows 

of results in table 2 show the time taken to convert the 
image to grey scale and the time taken to perform Sobel 

edge detection. The same amount of time was expected for 

all four runs of the two processes. However, there were 

variations of up to 10 milliseconds.   
 

Further down the table, other unexpected variations were 

also observed. The time recorded for peak detection for 

TI1 was 160 and for TI2 it was 310 milliseconds meaning 

there was a 150 milliseconds difference. Other unexpected 

variations were those between butterfly filter application 

times for TI1 and TI2 (10 milliseconds), between Hough 

transform times for EI1 and EI2 (150 milliseconds), and 

between peak detection times for EI1 and EI2 (10 

milliseconds). These are in addition to the variations 
involving 0 times already mentioned. These differences 

are likely to be due to differences in work load on the 

processor due to background processes, and related issues 

at the times that the process times being studied were 

recorded. 
 

These two observations suggest that errors of up to 160 

milliseconds can be expected, and so differences in time of 

up to that figure should not be taken as significant. 
 

2) Costs of Thinning: 
 

The most obvious cost of thinning would be the time taken 

for thinning in TI. From row 3 of table 2, the average time 

taken for thinning is 80 milliseconds although it can be up 

to 160 milliseconds. Factoring in the error margin adapted 

in “1) Errors in Time Measurement” above, this time can 

be ruled as insignificant.  
 

Another way to see it is: Time taken for edge detection on 

the average is 1090 milliseconds. Time taken for thinning 
is 160 milliseconds.  
 

Therefore thinning increases binary image derivation by a 
factor of 160/1090, which is approximately 14.68%. 
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TABLE I  RESULTS OF PROCESSING TO THE POINT OF SUB-LINES DETECTION FROM THINNED AND 

“UNTHINNED” EDGE IMAGE 
 

Process Pre-processing type 

With thinning (TI) No thinning (EI) 
1 Number of edge pixels 2491 2491 

2 Number of edge pixels 

after thinning 
1008 - 

3 Input Image for Hough 

transform 

  
4 Number of peaks found 239 206 

5 Number of local 

maxima within 5x5 

neighbourhood 

38 

 
22 

6 Lines corresponding to 

local maxima in 5x5 

neighbourhood 

superimposed on HT 

input image 

  
7 Number of sub-lines 

found 
40 57 

8 Number of critical sub-

lines found 

6 

 
5 

9 Sub-lines found 

superimposed on HT 

input image 

  
10  
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TABLE 2 COMPARISON OF PROCESS TIMES FOR AN IMAGE WHEN IT IS THINNED AND WHEN IT IS NOT 
 

Process Times 

(milliseconds) 

Pre-processing type 

TI1 TI2 

Difference 

between TI1 

and TI2 

Average of 

TI1 and TI2 
EI1 EI2 

Difference 

between EI1 

and EI2 

Average of 

EI1 and 

EI2 

1 Conversion to grey 

scale time  
1100 1090 10 1095 1090 1100 10 1095 

2 Edge detection time  1090 1090 0 1090 1080 1090 10 1085 

3 Thinning time  0 160 160 80 - - - - 

4 HT time  1090 1090 0 1090 2190 2340 150 2265 

5 Peak detection time  160 310 150 235 310 320 10 315 

6 Butterfly filter 

application time  
150 160 10 155 160 160 0 160 

7 Time to find sub-lines  0 160 160 80 150 0 150 75 

8 Total time taken 3590 4060 470 3825 4980 5010 30 4995 
 

B. Effects of Thinning on Processing Times of Subsequent 

Processes 

Other than thinning itself, there are only two other 
processes for which TI records higher time than EI. One is 

edge detection (row 2) where there is a difference of 5 

milliseconds. This is insignificant as well as irrelevant 

because edge detection happens before thinning. The other 

is the time taken to find sub-lines (row 7), again higher by 

an insignificant 5 milliseconds. Although the difference is 

insignificant, it is not unexpected that TI records higher 

time here than EI as the number of input lines for that 

process 38, is higher than 22 for EI as row 5 of table 1 

shows.  
 

1) Benefits of Thinning: 
 

In table 2, the most significant saving of time due to 

thinning happened with the application of the Hough 

transform where EI required on the average 1175 

milliseconds more than TI. Put another way, a saving of 

1175 milliseconds represents a saving of about 52% of the 

2252 milliseconds taken by the Hough transform for EI on 

the average. This is expected as the number of times the 

core of the Hough transform algorithm runs is directly 

proportional to the number of edge pixels in its input 
image. TI had 2495 – 1008, i.e. 1487 fewer edge points 

than EI (row 3 of table 1). This represents a 60% reduction 

and correlates quite well with the 52% savings on time.  
 

The process whose average EI time is higher with the next 

highest value is peak detection. It is higher by 80 

milliseconds, which by the error margin established in 

subsection A.1) of section III, is not significant. Other 

processes for the thinned TI recorded lower times include 

conversion to grey scale – a 5 millisecond difference that 
is irrelevant as the process happens before thinning - and 

butterfly filter application also with an insignificant 5 

millisecond difference. 
 

2) Sum Effect of Thinning on Time Taken: 
 

Thinning had no significant effect on time taken for 

individual processes except for the Hough transform. This 

effect is so significant it reflects in the average total time 

row of table 2. There is a difference of 1170 milliseconds,  

which is very similar to the 1175 millisecond difference of 
the Hough transform. 1170 milliseconds represents 

(1170/3825)%, i.e, 30.59% of the total time taken by TI. 

Thinning makes a significant difference to the amount of 

time taken. 

 

IV. CONCLUSION 
 

Thinning does reduce the number of edge-points that the 

Hough transform has to act on. From the current 

investigation, the reduction is by about 60%. Errors in 

measurement of up to 160 milliseconds were observed 
from the time recording scheme used. Time taken for 

thinning is within the error of time measurement, and on 

average, is about 15% of the total time to derive binary 

image from gray scale image. Time taken to perform the 

Hough transform on the thinned binary image is 

significant, and 52% lower than time taken to perform the 

Hough transform on unthinned binary image. This 

correlates quite well with the 60% reduction in the number 

of black pixels from the unthinned image to the thinned 

image. The thinned image takes about 30% less time to 

process altogether, than the unthinned image. The 
difference in time is significant. In other words, thinning 

does reduce the overall time to detect lines and find sub-

lines, despite the time taken to do thinning itself. 
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