
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5158 238

An Investigation of the Costs and Benefits of

Thinning on the Straight Line Hough Transform

Gideon Damaryam
1
, Emeka Ogbuju

2
, Haruna Abdu

3

Department of Computer Science Federal University, Lokoja, Kogi State, Nigeria1,2,3

Abstract: This paper presents the outcome of an investigation of the costs and benefits of thinning as part of pre-

processing for line detection including specification of end-points, from visual images of indoor rectilinear

environments. This is done as part of a bigger process with the goal of detecting lines to enable a small mobile robot

self-navigate within the environment based on navigationally important features such as doors and corridors
reconstructed from the lines detected. The straight line Hough transform is used to determine parameters which specify

gradients and positions of lines, and then the end-points of the lines are determined. To do this images can be pre-

processed to the point of edge-detection which typically yields edge lines several pixels thick, or edge-detection

followed by thinning yielding edge lines about a single pixel in thickness. Since the Hough transform operates on all

pixels in an input image, more work is needed to process the “unthinned” image. However, thinning itself takes time.

This paper looks into whether the taking the time to do thinning is justified in terms of overall time taken, and quality

of resulting lines found, and concludes that for the purpose described, thinning does appear to improve the quality of

line detection, while taking less total time to do it.

Keywords: edge-detection, Hough transform, line detection, processing time, thinning.

I. INTRODUCTION

This investigation presented in this paper was done as part

of work to develop a system to enable a mobile robot self-

navigate within rectilinear environments on the basis of

visual input, to achieve navigation an image is captured by

a forward facing camera mounted on the robot, the image

is processed, and then some navigation is effected based

on the result of the processing. This cycle is repeated until

a predefined navigation program is completely executed,
or the navigation process is otherwise terminated.

Processing an image essentially means recognition of

high-level, navigationally important features such as

corridors and doors within the image after necessary pre-
processing. Recognition of features, for the purpose of this

work, involves a number of stages. The stages include

establishing parameters that uniquely specify straight

lines, finding valid sub-lines of the lines and their end-

points, and then looking into which sub-lines constitute

navigationally important features.

Determining parameters that specify straight lights in the

image is referred to as line detection and is done in this

work using a process called the Hough transform. It yields

parameters that specify the equation of the lines of

interest, but not information about the actual starting and

ending points of the line, hence the need for a separate

process to determine end-points. Before application of the

Hough transform, the image needs to be pre-processed.

Details of pre-processing, the Hough transform and

determination of end-points have been presented in [1], [2]

and [3] respectively. Important details relevant to this

work are highlighted in the sub-sections “A. Pre-

Processing”, “B. Line detection using the Hough

transform” and “C. End-points Determination” which
follow. “D. Investigation Objective” then puts the

investigation presented in this paper into perspective.

Briefly though, “A. Pre-Processing” will show that

thinning is an optional process in pre-processing since the

specification of lines presented in” B. Line Detection

using the Hough Transform” can happen with or without

it. The investigation presented looks closer into the

benefits and costs of thinning and not thinning, and

whether the benefits ultimately justify the cost. Benefits

could include quality of results of sub-lines detection, and
potential saving of processing time in later stages of

processing. Cost could be loss of quality of sub-lines

detection, and additional processing time. A known fixed

cost is the processing time to do the thinning.

A. Pre-Processing

Details of the preprocessing scheme used for this work

have been presented in [1]. A summary of the scheme

highlighting details relevant to this paper follows.

In this work, after images are captured, in preparation for

feature detection, they are resized to a 128 pixel by 96

pixel size and converted to gray scale. The Sobel edge

detection filters are then applied to determine edges or

prominent regions within the image. This is called edge-

detection, and results in binary image with black pixels

showing areas that are edges, i.e. boundary areas of

prominent regions, and white pixels showing the body of

those regions.

Fig. 1(a) shows a typical image after it is resized, and Fig.

1(b) shows the same image after edge-detection.

For the purpose of using the Hough transform to find

parameters that uniquely specify lines from the image, a

binary image is needed. Edge-detection provides such an

image, so it is possible to go straight into application of

the Hough transform after edge-detection. Works such as

[4] do so.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5158 239

Edge-detection typically results in images that are several

pixels thick. Because the Hough transform operates on

individual pixels, images resulting from edge-detection

give the Hough transform many more pixels to process

than if edges were of unit thickness. The Hough transform

is a processor (and memory) intensive activity. This could

mean that much more computer time is taken than may be

necessary, and for a real time system such as generating

information necessary for robot self-navigation, this would

be undesirable. Processing the extra pixels also “distracts”

feature detection processes down the line from important
but salient features of the image. Some works have gone

ahead to first “thin” the edges.

Figure 1a: Sample Image

Figure 1b: Sample image after Edge-detection

Thinning is the process of reducing the thickness of edges

to as close to unit thickness as possible, while retaining

information about all important edges. [1] discusses

several thinning method and details of a particular method

used for this work. Fig. 2 show the result of thinning for

the image from Fig.1

Figure 2 Sample image thinned with modification

The process of thinning does use up processing time itself.

This paper looks into whether doing thinning, and the cost

associated with it, on the whole, helps or hurts feature

detection for the robot self-navigation endeavor.

B. Line Detection using the Hough transform

Details of the Hough transform and how it is used to detect

lines in the work discussed in this paper are available in

[2]. Summarily, the Hough transform is an image

processing technique invented to enable automatic

recognition of lines [5]. The normal (or polar) form of the

equation of a straight line

 sincos yx  . . . Equation 1

has become more popular, and was used in this work. This

approach was first proposed by [6]. It is based on the

principle that for every point),(yx in the x-y plane, there

is a curve defined by equation 1 in the   plane.

Equation 1 is used to transform every edge pixel in image

space to a curve in parameter space. To determine the

transform for each edge pixel, various values of  are

taken at a regular interval.

Closely associated with parameter space is the

accumulator array. It is a two dimensional array

superimposed over parameter space.

The accumulator array is usually set up as a zero array

initially. Individual entries are then increased in the course

of application of the transform. The value of each entry is

called the accumulation of that entry. How this increase is

done varies. The most popular way is to increase the value
of each entry by 1 whenever a curve resulting from a

transform crosses it. This approach is used in this work.

Other approaches exist and are discussed in [7] and [2].

With the chosen method of accumulation, when all edge
pixels have been processed, accumulator array cells will

have varying values. Those that have not been affected by

the transform for any edge pixel will still have their initial

value of 0. All others will have positive integer values

equal to the number of times a transform curve has crossed

them. Each transform curve is a result of transform of a

point from image space, so each crossing added to a cell

means one more pixel was found in image space from the

line corresponding to the cell in the accumulator array.

Some accumulator array entries will have higher values

than their neighbors and are referred to as peaks. Peaks in

accumulator array represent lines that have the highest
evidence of actually existing in image space. Peak

detection is the process of determining which cells are

peaks.

Peak detection can be achieved by application of a
threshold. All accumulator array entries above a certain

threshold automatically qualify as peaks and all others are

not peaks. A method to automatically determine the right

threshold to use for peak detection based on a target

number of peaks was used. Choice of the target number of

peaks is presented in [9]. Further discussion on selection

of thresholds is available in [2].

In many situations, peaks are not easily distinguishable.

This can be due to a number of possible situations. An

example is a situation where several accumulator array

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5158 240

entries in a neighborhood have values higher than the edge

detection threshold. Although one of them is higher than

all others, several points above the threshold that are not

actual peaks are returned by the application of the

threshold. [2] refers to them as false peaks.

Where they exist, elimination or at least minimization of

false peaks is necessary. In [2], the reduced butterfly filter

proposed by [8] is used to minimize false peaks. It is a 3 x

3 convolution filter which when applied to an accumulator

array will emphasis actual peaks while suppressing false

peaks.

To minimise the detection of multiple peaks in parameter

space due to a single line from image space, peaks are

eliminated if their butterfly filtered value is not higher than

that of all other entries within a 5 x 5 pixel neighbourhood

surrounding them. Peaks which are local maxima within

the 5 x 5 neighbourhood surrounding them are the target

significant lines from the original image and they are

processed further.

When peaks have been correctly determined, the

parameters and associated with them uniquely specify

lines in the original image that can be interpreted to be the

most important lines from the image. [3] details the

mathematics involved. The result is that the gradient of the
line m is given by

)cot(m , . . . Equation 2

and intercept on the y axis is given by

ecc cos , . . . Equation 3

As part of efforts to minimise the detection of multiple
peaks in parameter space due to a single line from image

space, peaks are eliminated if their butterfly filtered value

is not higher than that of all other entries within a 5 x 5

pixel neighbourhood surrounding them. Peaks which are

local maxima within the 5 x 5 neighbourhood surrounding

them are the target significant lines from the original

image and they are processed further.

C. End-Points Determination

When lines are found using the Hough transform, there is

information about their gradient and intercept, but not

about their lengths or end-points. [3] presents a method for

determining end-points and lengths of lines when

detecting the lines with the Hough transform. In summary,
it works by keeps a record of all the points that contributed

to the accumulation of each point in the accumulator array,

so that for any point in the accumulator array returned as a

peak, all the points on the line are known. They are then

checked against certain criteria to determine if they make-

up valid sub-lines for the line. Sub-lines and valid sub-

lines are defined in more detail in [3]. Endpoints of a sub-

line are then determined as the points farthest away on

both ends of a valid sub-line along the direction of the

line, and its length is the distance between its endpoints.

D. Investigation Objective

Sub-sections” B. Line Detection using the Hough

Transform” and “C. End-Points Determination” have
summarized the key points of a line detection scheme

presented in [2] and an end-points detection scheme

presented in [3] respectively. Both schemes are part of a

vision system for a self-navigation robot based on line

detection.

“A. Pre-Processing” already summarized a pre-processing

scheme for images in preparation for the line detection

scheme of [2], providing two possible types of binary

images that can be take of points for line detection. One

version stops at edge-detection, and the other version goes

further to do thinning. The thinned version has much

fewer black pixels than the version which stops at edge-

detection, even though it has all the important edge-

information there is. This means the thinned version gives

the line detection scheme of [2] much fewer pixels to

process.

This paper presents an investigation into whether or not

thinning should be done when trying to determine sub-

lines by finding lines and their end-points. The

investigation looks into the costs and benefits of doing
thinning, i.e. processing time involved, quality of lines and

end-points detected, and savings in time for the subsequent

line detection and end-points determination scheme.

II. INVESTIGATION

A simple experiment was done to investigate the effect of

thinning on the processing time and quality of results of

processes sub-sequent to the pre-processing stage of a

mobile robot vision system based around line detection, to

the point of detection of end-points of sub-lines.

The processes involved were already summarized in 1

Introduction, and detailed in [2] and [3].

To do this, a typical image was pre-processed to two
points - to the point of edge detection, and to the point of

thinning. The image is shown in Fig. 3 with navigationally

critical lines circled in red. Those are the lines that should

be detected found by the system ideally.

Figure 3. Typical image with navigationally critical lines

highlighted

The version with pre-processing done to the point of edge

detection was labeled EI and the version pre-processed to
the point of thinning was labeled TI for reference purpose.

Both EI and TI were then further processed to find lines

with the Hough transform end-points of sub lines as

presented in subsections B and C of “II Introduction”.

Both runs were done twice so that random variations in

timing can also be monitored.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5158 241

III. RESULTS AND DISCUSSION

Results for the first and second runs for edge-image EI are

labeled EI1 and EI2 respectively. The same labeling

scheme was used for thinned image TI. Outcomes of these
are discussed in “A. Effects of Thinning on Quality of

Results of Subsequent Processes” and “B. Effects of

Thinning on Processing Times of Subsequent Processes”.

A. Effects of Thinning on Quality of Results of Subsequent

Processes

Table 1 summarises results from the experiment to

illustrate the effects of thinning. Row 1 of the results

shows the takeoff number of pixels after Sobel edge

detection, 2491. The next row shows the number of pixels

after thinning. This is only applicable to TI as EI was not

thinned. Row 3 following that illustrates the two versions

of binary images that were used as input to the Hough
transform. Lines in EI are noticeably thicker than lines in

TI.

Row 4 states the number of peaks found when the peak

detection scheme used in this work was applied with a

target number of peaks of 200. 236 peaks resulted from TI
and 206 from EI. Row 5 shows that 38 and 22 lines

respectively resulted when the butterfly filter is applied

and local maxima are selected in 5 x 5 neighbourhoods in

the way done by this work as discussed in “B. Line

Detection using the Hough Transform”.

A few interesting observations can be made. Firstly, as

stated in row 2, thinning results in a significant reduction

of edge points from 2491 to 1008. This represents

approximately, a 59.53% reduction. This, as is seen in B.

Effects of Thinning on Processing Times of Subsequent

Processes which follows, has a significant effect on Hough

transform time, and ultimately on the time taken for the

entire process up to sub-line detection.

Secondly, sub-lines found in TI appear to match lines in

the image that actually represent high level features, to a

higher extent than sub-lines in EI. In particular, more

navigation critical sub-lines were found in TI than EI as
state in row 8 and illustrated in rows 9 and 10 even though

more sub-lines were found in EI as stated in row 7.

Navigation critical sub-lines are those that would actually

enable detection of doors, and corridors possible for the

robot, and therefore possibly affect its navigation

decisions as discussed in [9]. They are illustrated in Fig. 3.

Tables 2 shows the timings recorded for a number of

subsequent processes. An Intel Duo T5600 1.83GHz

processor machine with 1GB of RAM was used for this

experiment.

Three issues were looked at in terms of processing time -

(1) what is the cost of thinning, (2) what benefits can be

derived from thinning, and (3) what is the overall effect of

thinning. These are discussed in 2) Costs of Thinning, 3)

Benefits of Thinning and 4) Sum Effect of Thinning on

Time Taken respectively.

 Before going there however, a look is taken at errors in

the measurement of time in “1) Errors in Time

Measurement below”.

1) Errors in Time Measurement:

Before discussing the results in relation to the purpose of

the experiment, two unexpected observations need to be

made regarding the accuracy of the time recording
mechanism used to set up table 2. First for some processes

0 milliseconds was recorded as time taken. These include

thinning time and time taken to find sub-lines for TI 1, and

time taken to find sub-lines for EI 2.

This suggests that the time recording mechanism is limited

in its sensitivity. The extent of this insensitivity is not

certain but is probably hinted by other times recorded for

exactly the same events.

Thinning time for TI 2 was 160 milliseconds, time taken

for determining sub-lines for TI 2 was 160 milliseconds,

and time taken to determine sub-lines for EI 1 was 150

milliseconds. These suggests that events that have up to

160 milliseconds as time recorded for them to complete

may at other times have as low as 0 milliseconds recorded

as the time to complete them.

The second related unexpected issue is that exactly the

same processes with the same data take different amounts

of time to complete at different times. The first two rows

of results in table 2 show the time taken to convert the
image to grey scale and the time taken to perform Sobel

edge detection. The same amount of time was expected for

all four runs of the two processes. However, there were

variations of up to 10 milliseconds.

Further down the table, other unexpected variations were

also observed. The time recorded for peak detection for

TI1 was 160 and for TI2 it was 310 milliseconds meaning

there was a 150 milliseconds difference. Other unexpected

variations were those between butterfly filter application

times for TI1 and TI2 (10 milliseconds), between Hough

transform times for EI1 and EI2 (150 milliseconds), and

between peak detection times for EI1 and EI2 (10

milliseconds). These are in addition to the variations
involving 0 times already mentioned. These differences

are likely to be due to differences in work load on the

processor due to background processes, and related issues

at the times that the process times being studied were

recorded.

These two observations suggest that errors of up to 160

milliseconds can be expected, and so differences in time of

up to that figure should not be taken as significant.

2) Costs of Thinning:

The most obvious cost of thinning would be the time taken

for thinning in TI. From row 3 of table 2, the average time

taken for thinning is 80 milliseconds although it can be up

to 160 milliseconds. Factoring in the error margin adapted

in “1) Errors in Time Measurement” above, this time can

be ruled as insignificant.

Another way to see it is: Time taken for edge detection on

the average is 1090 milliseconds. Time taken for thinning
is 160 milliseconds.

Therefore thinning increases binary image derivation by a
factor of 160/1090, which is approximately 14.68%.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5158 242

TABLE I RESULTS OF PROCESSING TO THE POINT OF SUB-LINES DETECTION FROM THINNED AND

“UNTHINNED” EDGE IMAGE

Process Pre-processing type

With thinning (TI) No thinning (EI)
1 Number of edge pixels 2491 2491

2 Number of edge pixels

after thinning
1008 -

3 Input Image for Hough

transform

4 Number of peaks found 239 206

5 Number of local

maxima within 5x5

neighbourhood

38

22

6 Lines corresponding to

local maxima in 5x5

neighbourhood

superimposed on HT

input image

7 Number of sub-lines

found
40 57

8 Number of critical sub-

lines found

6

5

9 Sub-lines found

superimposed on HT

input image

10

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 1, January 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5158 243

TABLE 2 COMPARISON OF PROCESS TIMES FOR AN IMAGE WHEN IT IS THINNED AND WHEN IT IS NOT

Process Times

(milliseconds)

Pre-processing type

TI1 TI2

Difference

between TI1

and TI2

Average of

TI1 and TI2
EI1 EI2

Difference

between EI1

and EI2

Average of

EI1 and

EI2

1 Conversion to grey

scale time
1100 1090 10 1095 1090 1100 10 1095

2 Edge detection time 1090 1090 0 1090 1080 1090 10 1085

3 Thinning time 0 160 160 80 - - - -

4 HT time 1090 1090 0 1090 2190 2340 150 2265

5 Peak detection time 160 310 150 235 310 320 10 315

6 Butterfly filter

application time
150 160 10 155 160 160 0 160

7 Time to find sub-lines 0 160 160 80 150 0 150 75

8 Total time taken 3590 4060 470 3825 4980 5010 30 4995

B. Effects of Thinning on Processing Times of Subsequent

Processes

Other than thinning itself, there are only two other
processes for which TI records higher time than EI. One is

edge detection (row 2) where there is a difference of 5

milliseconds. This is insignificant as well as irrelevant

because edge detection happens before thinning. The other

is the time taken to find sub-lines (row 7), again higher by

an insignificant 5 milliseconds. Although the difference is

insignificant, it is not unexpected that TI records higher

time here than EI as the number of input lines for that

process 38, is higher than 22 for EI as row 5 of table 1

shows.

1) Benefits of Thinning:

In table 2, the most significant saving of time due to

thinning happened with the application of the Hough

transform where EI required on the average 1175

milliseconds more than TI. Put another way, a saving of

1175 milliseconds represents a saving of about 52% of the

2252 milliseconds taken by the Hough transform for EI on

the average. This is expected as the number of times the

core of the Hough transform algorithm runs is directly

proportional to the number of edge pixels in its input
image. TI had 2495 – 1008, i.e. 1487 fewer edge points

than EI (row 3 of table 1). This represents a 60% reduction

and correlates quite well with the 52% savings on time.

The process whose average EI time is higher with the next

highest value is peak detection. It is higher by 80

milliseconds, which by the error margin established in

subsection A.1) of section III, is not significant. Other

processes for the thinned TI recorded lower times include

conversion to grey scale – a 5 millisecond difference that
is irrelevant as the process happens before thinning - and

butterfly filter application also with an insignificant 5

millisecond difference.

2) Sum Effect of Thinning on Time Taken:

Thinning had no significant effect on time taken for

individual processes except for the Hough transform. This

effect is so significant it reflects in the average total time

row of table 2. There is a difference of 1170 milliseconds,

which is very similar to the 1175 millisecond difference of
the Hough transform. 1170 milliseconds represents

(1170/3825)%, i.e, 30.59% of the total time taken by TI.

Thinning makes a significant difference to the amount of

time taken.

IV. CONCLUSION

Thinning does reduce the number of edge-points that the

Hough transform has to act on. From the current

investigation, the reduction is by about 60%. Errors in

measurement of up to 160 milliseconds were observed
from the time recording scheme used. Time taken for

thinning is within the error of time measurement, and on

average, is about 15% of the total time to derive binary

image from gray scale image. Time taken to perform the

Hough transform on the thinned binary image is

significant, and 52% lower than time taken to perform the

Hough transform on unthinned binary image. This

correlates quite well with the 60% reduction in the number

of black pixels from the unthinned image to the thinned

image. The thinned image takes about 30% less time to

process altogether, than the unthinned image. The
difference in time is significant. In other words, thinning

does reduce the overall time to detect lines and find sub-

lines, despite the time taken to do thinning itself.

ACKNOWLEDGEMENT

This paper discusses work that was funded by the School

of Engineering of the Robert Gordon University,

Aberdeen in the United Kingdom, and was done in their

lab using their robot and their building.

REFERENCES

[1]. G. K. Damaryam and H. A. Mani, A Pre-processing Scheme for Line

Detection with the Hough Transform for Mobile Robot Self-Navigation

, In Press, International Organisation for Scientific Research – Journal
of Computer Engineering, 18(1), 2016

[2]. G. K. Damaryam, A Hough Transform Implementation for Line
Detection for a Mobile Robot Self-Navigation System, International Organisation

for Scientific Research – Journal of Computer Engineering, 17(6), 2015
[3]. G. K. Damaryam, A method to determine end-points of straight lines

detected using the Hough transform, International Journal of

Engineering Research and Applications, 6(1), 2016
[4]. D. L. Vaughn and R. C. Arkin, Workstation Recognition using a

Constrained Edge-based Hough Transform for Mobile Robot Navigation, 1990.

[5]. P. Hough, Method and Means for Recognising Complex Patterns,
United State of America Patent 3069654, 1962.

[6]. Duda and Hart. 1973. Pattern Classification and Scene Analysis (New

York: Joh Wiley and Sons, 1973).

[7]. A. Low, Introductory Computer Vision and Image Processing, (London,

United Kingdom: McGraw-Hill Book Company, 1991).

[8]. J. F. Boyce, G. A. Jones and V. F. Leavers, An implementation of the

Hough transform for line and circle location. Proc, SPIE Inverse

Problems in Optics, The Hague, Netherlands, 1987.

[9]. G. K. Damaryam, Visions systems for a mobile robot based on line

detection using the Hough transform and artificial neural networks,

doctoral diss., Robert Gordon University, Aberdeen, United Kingdom,

2008.

