
IJARCCE 
 ISSN (Online) 2278-1021 

  ISSN (Print) 2319 5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 

        Vol. 5, Issue 6, June 2016 
 

Copyright to IJARCCE                                  DOI 10.17148/IJARCCE.2016.5685                                               405 

Model Interactions in a Domain Specific 

Modeling Language: An ICT Solution to 

Transformations in Design of Fluid Supply 

Systems 
 

Igulu Kingsley Theophilus
1
, Piah Z. Patrick

2
, Japheth R. Bunakiye

3
, Georgewill Moses Onengiye

4
 

Dept of Computer Science, Ken Saro-Wiwa Polytechnic, Bori, Nigeria1, 2, 4 

Dept. of Mathematics/Computer Science, Niger Delta University, Wilberforce Island, Nigeria3 

 

Abstract: In domain specific modeling language development, model interactions and transformations play a crucial 

role. This paper introduces a new, syntax directed approach for the specification of modelinteractions for 

transformations within a domain specific modeling language. The technique is based on tokenization of the 

characteristic values and attributes of possible component elements of a fluid supply system. To demonstrate the 
mapping, expression parse trees and streams of tokens are recursively specified as syntax directed definitions in a 

context free grammar. With each grammar symbol, a set of attributes are associated, and with each production, a set of 

semantic rules for mapping values of the attributes corresponding to a typical fluid supply system physical design and 

modeling parameters are associated. The main contributions are the specifications that will aid the design of a domain 

specific modeling language for the representation of transformations and translation scheme execution engine for the 

target domain of fluid supply systems, and another is a possible pathway for the implementation of the semantics of the 

language with a syntax directed scheme that consists of a grammar and the set semantic rules. 

 

Keywords: Model Driven Engineering, Domain Specific Modeling, Values and Attributes, Context Free Grammar, 

Transmission Pipelines, Joints and Fittings. 

 

1. INTRODUCTION 

 

Domain Specific Modeling (DSM) provides solutions for 

computing and software platform complexities. It permits 

software engineers and related scholars in the field of 

Model Driven Engineering Technologies (MDE) [1] to 

hide the details of the platforms by raising the level of 

abstraction on which applications are built. The basic 

concepts of the platform frameworks are represented as 

the available kinds of objects in a new, domain-specific 

modeling language (DSML) [6]. The main focus of this 

paper is that using these high-level concepts in a formal 
modeling language structure, these models can be 

processed to generate workable transformations that 

provides best advantage for design of fluid supply systems 

[7]. A platform that could foster design activities, with 

fluid supply system design as an integral part of model 

interactions to which the work can be applicable. Naturally 

[3], domain-specific languages have capabilities for 

extensions, making their use easier and more consistent. It 

does therefore make some sense to present domain 

specific features with unique functionalities for use by 

domain experts, rather than wasting time writing all code 
character by character in order to achieve results. Usually 

the first steps proceeds with specifying the modeling 

language, and, fixing the abstractions; this capability 

creates model interaction in such a way that transfer of 

information is possible within the set conditions in the 

modeling language system [16]. One basic relevance in the  

 

 

ease of design transformations is the issue of interaction 

between models, interactions in the way of concepts 

devoid of possible parametric constraints as applicable 

with conventional modeling systems [2]. Interactions that 

can produce other complete models with noticeable 

properties relative to a given set of concerns in the fluid 

supply domains that captures accurately and concisely all 

of its interpretation and design intent for the specific 

problems and solutions [5].  The transformation impact in 

this context refer to the DSML software engineering 
methodology used to engineer model interaction in order 

to create new objects that encapsulates and relates the 

details pertinent to the viewpoints of the domain experts. 

Transformations in this pattern will raise productivity 

levels per man hour [8]. The remainder of this paper is 

outlined as follows: Section 1 of this report highlights an 

overview of domain specific modeling; section 2 gives a 

brief of related literature in the field of model driven 

engineering and model transformations. Section 3 of the 

paper gives an analysis of the domain of pipeline systems 

that transmit fluid from source to destinations.  Sections 4 
to 5 presented a detailed specification of attributes and 

values of components commonly found in fluid supply 

systems, and the possible interactions that are feasible in a 

domain specific modeling language to bring about 

transformations to meet the needs of experts in the 

industry. Section 6 gives the conclusion and future work. 



IJARCCE 
 ISSN (Online) 2278-1021 

  ISSN (Print) 2319 5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 

        Vol. 5, Issue 6, June 2016 
 

Copyright to IJARCCE                                  DOI 10.17148/IJARCCE.2016.5685                                               406 

2. BACKGROUND AND RELATED WORK 

 

2.1 Models and Model Driven Engineering 

Model -Driven Engineering (MDE) is a kind of software 

development approach, where models are seen as first 

class entities [4]. In MDE everything is a model, a model 

conforms to another model and model transformations 

takes models and produces models. Models are human 

concepts that explain systems in the real world, they are 

simply outcomes from abstractions, which means all 

domain specific modeling languages under MDE could 
provide domain experts some level of consciousness of an 

abstract model before bringing it forth through 

transformations in the modeling system internal 

mechanisms and logic [9].  

 

The model must represent concepts in the specific domain, 

the concepts has to come from the elements and building 

blocks of the library frameworks in order to set the 

abstractions and grouped to match the domain experts’ 

abstract model of the problem domain. These salient 

characteristics are essentially embodied in the domain 
model. Talking about the domain of fluid supply systems, 

getting the concepts for a proper design that depicts 

stakeholders’ viewpoints is purely an engineering design 

process. Engineers combine quite a number of design 

methods for solving most of their modeling problems. One 

of such exploration is the graphics or computer model. 

However, the use of computer models for engineering 

design practice is currently not seen to be productive in the 

MDE community; much more emphasis is centred on 

modeling these models to products that satisfies varied 

design intent.  

 
As much as there are lots of software platforms suited for 

modeling, they also portend a lot of shortcomings; users 

are often limited by their knowledge of the software or by 

problems solvable by it. These deficiencies tend to make 

engineering design standards as merely applicable to the 

creation of physical objects or, perhaps, software. A more 

appropriate approach is the application of a DSML as 

layers of reusable software to solving some such design 

issues pertaining to fluid transmission. The selling point is 

the ability for models to interact via their attributes and 

values within the internal dynamics of the DSML. 
 

2.2 Related Work 

Regarding the kind of syntax definitions and requirements, 

domain specific languages are typical resource for model 

transformations. K. Hölldobler, B. Rumpe, and I. 

Weisemöller[17] presents a process that allows to 

systematically derive a textual domain specific 

transformation language from the grammar of a given 

textual modeling language. They applied a systematic 

derivation of the semantics to UML class diagrams to 

obtain a domain-specific transformation language called 

CDTrans. This was demonstrated by incorporating 
familiar concrete syntax of the UML class diagrams and 

extending them with a few transformation operators. The 

present specifications in this paper are not restricted to just 

the UML software process but can be applied to any 

specific domain in the fluid transmission industry. 

Bernhard Rumpe and Ingo Weisem¨oller[18] discuss a 

domain specific modeling method for modeling parts of 

the system under development in a problem-oriented 

notation that is well-known in the respective domain. This 

technique is applicable to domain specific modeling 

languages that are often accompanied the desire to 

transform its instances.  

 

As such, it complements our technique, which an approach 
is tied to the tokenized instances of the language creation. 

Similarly, Tom Mens, Krzysztof Czarnecki, and Pieter 

Van Gorp[19] use a Language Engineering taxonomy of 

model transformation executions. The focus of their work 

is on helping developers in deciding which model 

transformation approach is best suited to deal with a 

particular problem. JochenKüster’s [20] research uses the 

model driven architecture approach for iterative 

refinement of models by model transformations. 

Conceptually, this work is closely related to ours; 

automation of recurring tasks can often be achieved by 
model transformations.  

 

3. FLUID SUPPLY SYSTEMS 

 

3.1 Design Considerations 

Physically, fluid supply systems are virtually pipelines. 

Pipelines are the most common means of transporting 

fluids [21]. Like any other flowline, small sections of 

pipeline are not easily removed for maintenance and 

consequently great care is taken to prevent problems 

arising in the first place. A pipeline is extremely expensive 

to lay, so when designing a pipeline, the engineer must 
consider the volume and the physical and chemical 

properties of the fluid, the nature of the environment 

through which the pipeline is going to traverse, and more 

specifically the diameter, length, size and type of pipe and 

other components.  

 

Also applicable are calculations in the design of oil and 

gas pipelines, certain calculations pertinent to the smooth 

running of the pipeline has to be done. In most pipeline 

calculations, assumptions must be made initially. For 

instance, as exemplified in figure 1[21] a line size may be 
assumed in order to determine maximum operating 

pressure and the pressure drop in a given length of pipe for 

a given flow volume. Assumptions on valves, pumps 

joints and fittings also contribute to overall pipeline 

system maximum performance and integrity. Once a 

domain specific language system with familiar pipeline 

engineering notations are available for domain experts to 

understands and design a pipeline, it should not be 

difficult to design and built any other of any type. Since 

standard pipe grades, sizes and weights are normally used, 

and maximum operating conditions specified, several 

formulae in terms of differing scenarios can be used to 
calculate the flow of oil and gas in a pipeline. These 

scenarios account for the effects of the attributes in the 

designs. 



IJARCCE 
 ISSN (Online) 2278-1021 

  ISSN (Print) 2319 5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 

        Vol. 5, Issue 6, June 2016 
 

Copyright to IJARCCE                                  DOI 10.17148/IJARCCE.2016.5685                                               407 

 
Fig. 1. A Typical Pipeline (Source: www.cobbfendley.com 

Transmission Pipeline Engineering Services) 
 

3.2 The Model Driven Pipeline Build Process 

Pipeline build process involves structural design in 

relation to loading and stresses, and determining route 

selection, i.e. the origin and destination of the pipeline. 

Other factors include the approximate length of the 

pipeline, the product to be transported, diameter and type 

of pipe used, hydraulic factors such as type of flows 

expected in a pipeline, approximate capital cost and 

running expenses [10]. Fluid supply pipeline projects are 

large scale multi-disciplinary activities that stems from 

conceptual capture through designs, which involves the 
investment of large amounts of cash and other resources 

[21]. Because of this, and the fact that productivity is the 

order of modern day large scale pipeline projects the 

development and implementation of a pipeline project 

involves so much design efforts. It is characterized with 

numerous compliance issues even after design is 

completed and the project kicked off. With model driven 

design, the model is the heart of the design, and the 

methodology of manipulating this model to ease the 

project execution for users becomes paramount. Creating 

and specifying the domain model in a metamodel of 
relationships and attributes will result in a modeling 

language [11]. The modeling language, which is specific 

to the domain of fluid supply engineering, will be capable 

of allowing the experts to easily get specifications correct 

on time and at very minimal costs instead of always 

returning to conformal forms and related issues (Eric and 

Oliver, 2012).  

 

4. DETAILED METHOD STATEMENT 

 

4.1 The DSM Approach  

The DSM approach is a software engineering technique 
for producing layers of reusable software platformsto 

perform and managemodeling. DSMshelves the user from 

syntax and programming complexities associated with 

most conventionalsoftware platforms. DSM utilizes a 

combination of the capabilities of an application model, a 

solution model, and then a knowledge base of the 

repositories of associated domain concepts. With these 

capabilities embodied in a rule processing domain specific 

modeling language, all aspects of design criteria reports 

and fabrication operations of any fluid supply systemcan 

be generated, providing operators with information on the 

systems current requirements for model interactions and 

possible orientations.  

 

Usually the application model is the user interface family 

of domain notations, which forms the basis for solutions to 

the design of the typical pipeline system for the supply of 

fluids. It is the interactive layer that provides the pipeline 

design factors, fundamental elements, and 
parameters. Included also are dimensional criteria, 

instruments criteria, support positioning, location 

classification and use of standards [13].  

Interacting with the system for a design operation requires 

some planning. Planning to learn about the elements 

considered in the design, code, factors, legislation, 

material selection, diameter selections (internal and 

external) considerations, and management is an essential 

step.Training and deep rooted knowledge about increased 

through put through careful selection of design criteria is 

also a necessary step. Major contributions on the part of 
the user at the application layer are knowledge on pipeline 

systems considered from a design point of view; the 

length, diameter, and loop placements precisely tailored to 

suit new load profiles. Increases in throughput of designed 

pipelines are readily accomplished if the diameter and 

length of the loops are sufficient. Pipelines can also be 

looped in stages to suit increasing demands on a defined 

timetable. The length of time required to loop a whole 

pipeline or pipeline sections is dependent on the amount of 

pipe and other components to be installed [40]. 

 

4.2 Model Specifications and Interaction 
It is important to note that models in a DSML are 

constructed using concepts that represent targets within the 

application domain. Models interacting in a language 

system, which suffices the design of a typical pipeline 

system that supplies fluid must represent concepts relating 

to any fluid pipelines. Specifying the interactions of such 

models therefore means the creation of the language 

metamodel. These models, which are basically the 

instances of the language metamodel are in the form of 

any relevant physical components such as pipes, fittings, 

joints, anchors hangers, stanchion, bolts and nuts, and 
gaskets and other pressure instruments like pumps, valves 

etc. Basic interactive component elements include joints in 

the form of joint types, joint dimensions, fittings in the 

form of fitting types, fitting dimensions, and the points of 

interaction for all of pipe (p), fittings, and joints in the 

order of (f.t.d.p for fittings; j.t.d.p for joints), and other 

components in the stream (See Fig 2).  
 

As far as a design scenario is explicitly identified through 

stakeholder relations with the language concrete syntax 

elements, it means then that internal communication 

among these models in their grammar units have enforced 

and made some possible interactions. Notable 

conventional applications in language design adopted here 
is the integrated semantic module parser component in the 

language meta model.  

http://www.cobbfendley.com/


IJARCCE 
 ISSN (Online) 2278-1021 

  ISSN (Print) 2319 5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 

        Vol. 5, Issue 6, June 2016 
 

Copyright to IJARCCE                                  DOI 10.17148/IJARCCE.2016.5685                                               408 

 
Fig. 2. Model Specifications 

 

For proper orientation and adequate model interactions in 

the internal mechanism, the semantic module encompasses 

mappings through syntax directed definitions that consists 

of the grammar and the set of semantic rules [12]. As 

shown in figure 2 the syntactic elements are specified as 

symbol substitutions for the major objects in the pipeline 

model that can be recursively performed to generate new 

modeling sequences and to keep track of domain specific 

relevant information [17]. The information is tagged with 

the pipeline component attributes (attr) and 

values(val),which can be transferred into the instruction 
sequence in the language construct.  
 

4.3 Design Considerations  

Oil and gas pipelines design scenarios, either onshore or 

offshore are usually set off by increasingly complex 

challenges in the exploration and development of energy 

resources. Successful execution of the design systems 

therefore requires innovation and creativity, and the 

passion to deliver must consider many variables: safety, 

technical, financial, environmental, regulatory, logistics 

and culture [13]. Companies engaged in fluid transmission 

activities, for example oil and gas pipeline companies 
prefer to operate their systems as close to full capacity as 

possible to maximize their revenues. This is actually one 

development strategy where a design project in the domain 

integrates storage capacity into the pipeline network 

design so as to increase average utilization rates.  This 

integration will then showcase designs that are capable of 

balancing flow levels by moving products to and from 

storage facilities. Major pipeline design circumstances and 

scenarios considered in our system are restricted to 

interactions of models specific to the domain of 

consideration, which is in this context a pipeline system 
that supplies fluids to and from storage facilities. 

Necessary inclusions are expansion parameters, control 

capacities, design dimensions and the addition of looping; 

which means adding a parallel pipeline along a segment of 

pipeline, addition of features for the building of an entirely 

new pipeline, and features for upgrading and expanding 

facilities, such as compressor stations, along an existing 

route. This methodology ensures some accuracy of 

calculations of the physical components attributes and 

values. These calculations yield significant system 

advantages because typical pipeline that transports oil and 

gas is expected to maintain uniform standards. To achieve 

this, a domain specific modeling language, which can 

enable model interactions to be able to bring to bear 

required transformations for the design of fluid supply 

systems is now becoming indispensable [14]. 

 

5. MODELING INTERPRETATIONS 

 

5.1 Tokenization 

In any typical physical fluid supply system, lots of models 

such as pipes, fittings, joints, anchors hangers, stanchion, 

bolts and nuts, and gaskets and other pressure instruments 

like pumps, valves are involved in varied connections and 

dimensions. Interactions of these components in their 

values and attributes is observed to be very feasible in a 

language with a stream of tokens; having the resultant 

effects of additional models or executable codes 
generation. Thevalues and attributes earlier exemplified in 

figure 2 represents the fluid supply system possible 

components characteristics. They are the stream of tokens 

that make up the language grammar that is segmented into 

its word units [4] as shown in figure 3. With each 

grammar symbol, and with each production, a set of 

attributes and a set of semantic rules are associated to 

corresponding physical design and modelling parameters 

of an entire fluid supply system. The entire lexemes in the 

token definitions are therefore syntax directed and consists 

of the grammar and the set semantic rules [6]. In line with 

domain specific modeling, the DSML platform needs to 
keep track of all these domain specific relevant 

information by tagging this information with attributes and 

associating the attributes with the language metamodel 

[11].  

 

𝑇𝑜𝑘𝑒𝑛𝑠: → 𝑓 = 𝑓𝑡 ∗ 𝑓𝑑 ∗ 𝑓𝑝  

1. 𝑇𝑕𝑒𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟− 𝑓𝑖𝑡𝑡𝑖𝑛𝑔𝑠 𝑓   

2. 𝑇𝑕𝑒𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠𝑦𝑚𝑏𝑜𝑙 −  =   

3. 𝑇𝑕𝑒𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟− 𝑓𝑖𝑡𝑡𝑖𝑛𝑔𝑡𝑦𝑝𝑒 𝑓𝑡   

4. 𝑇𝑕𝑒𝑚𝑢𝑙𝑡𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 −  ∗   

5. 𝑇𝑕𝑒𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 − 𝑓𝑖𝑡𝑡𝑖𝑛𝑔𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑓𝑑  

6. 𝑇𝑕𝑒𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 − 𝑓𝑖𝑡𝑡𝑖𝑛𝑔𝑝𝑜𝑖𝑛𝑡 𝑓𝑝  
 

𝑇𝑜𝑘𝑒𝑛𝑠: → 𝑗 = 𝑗𝑡 ∗ 𝑗𝑑 ∗ 𝑗𝑝 

1. 𝑇𝑕𝑒𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟− 𝑝𝑖𝑝𝑖𝑛𝑔𝑗𝑜𝑖𝑛𝑡 𝑗   

2. 𝑇𝑕𝑒𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠𝑦𝑚𝑏𝑜𝑙 −  =   

3. 𝑇𝑕𝑒𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟− 𝑗𝑜𝑖𝑛𝑡𝑡𝑦𝑝𝑒 𝑗𝑡   

4. 𝑇𝑕𝑒𝑚𝑢𝑙𝑡𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 −  ∗   

5. 𝑇𝑕𝑒𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 − 𝑗𝑜𝑖𝑛𝑡𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑗𝑑  

6. 𝑇𝑕𝑒𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟− 𝑗𝑜𝑖𝑛𝑡𝑝𝑜𝑖𝑛𝑡 𝑗𝑝   



IJARCCE 
 ISSN (Online) 2278-1021 

  ISSN (Print) 2319 5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 

        Vol. 5, Issue 6, June 2016 
 

Copyright to IJARCCE                                  DOI 10.17148/IJARCCE.2016.5685                                               409 

 
Fig. 3.Stream of Tokens 

 

5.2 Expression Parse Tree Interpretation 

The stream of tokens earlier exemplified in figure 3 makes 

up the language grammar that is segmented into its word 

units. These units are identified and further decomposed 

into parser processing. Mapping the core concepts 

produces the grammar rules. The production rules are 

basically specifying the symbol substitutions for the major 

objects in the fluid supply system that can be recursively 

performed to generate new modeling sequences [15]. 

Adopting this assertion to the syntax-directed definition in 

the DSML, the set of attributes (attr) and values (val) are 

associated with each grammar symbol, and the set of 
semantic rules with each production are all depicted in the 

expression parse trees shown in figure 4. The hierarchical 

presentation of the parse trees is indicative of the fact that 

the grammar productions are expressed by recursive rules 

[9]. The entire structure is a collection of fluid supply 

system components context free grammar comprising all 

the correspondingtokens for processing. These grammar 

phrases express the identifiers as generic collections that 

are iterated to produce the desired expression tree, taking 

into account the components build parameters and the 

associated grammar for each of the components. The 
resultant effect of the internal working mechanism of the 

DSML is an interpreter program running on the target 

platform that loads the program, and then acts on it.  

 

 
Fig. 4: Expression Parse Trees 

6. CONCLUSION AND FUTURE WORK 

 

A philosophy of modeling based on the fundamental 

elements of a fluid supply system is presented. The 

processes involve specifying the grammar elements of the 

underlying physical component with the intention of 

highlighting the essential steps for interactions in a domain 

specific modeling language. This modeling language has 

the basic features of a syntax directed definition for 

transformations that allows flexible development and 

specification. The resulting tool design and development is 
the next very important step in the future work. The 

flexibility of the language is based on tokenization of the 

characteristic values and attributes of possible component 

elements of a fluid supply system. The main contributions 

are the specifications that will assist in the design of the 

domain specific modeling language for the 

representationsand the possible pathway for the 

implementation of the semantics of the language. 

 

REFERENCES 

 
[1]  Thomas Stahl and Markus V• olter. Model-Driven Software 

Development. Wiley,2006. 

[2]  Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, 

Ward Cunningham,Martin Fowler, James Grenning, Jim 

Highsmith, Andrew Hunt, Ron Je_ries,et al. Manifesto for agile 

software development. 2001. 

[3]  B. Vanhooff and Y. Berbers. Supporting Modular 

TransformationUnits with Precise Transformation Traceability 

Metadata. In ECMDA-TW: Traceability Workshop, at Eu-ropean 

Conference on Model Driven Architecture, Nuremberg,Germany, 

November 2005. 

4]  Yuefeng Zhang and Shailesh Patel. Agile model-driven 

development in practice.IEEE Software, 28(2):84{91, 2011. 

[5]  Vinay Kulkarni, Souvik Barat, and UdayRamteerthkar. Early 

experience withagile methodology in a model-driven approach. In 

14th Int. Conf. on Model DrivenEngineering Languages and 

Systems, pages 578{590, 2011. 

[6]  Lorenzo Bettini. Implementing Domain-Specific Languages with 

Xtext and Xtend.Packt Publishing Ltd., 2013. 

[7]  Hamid Bagheri and Kevin J. Sullivan. Bottom-up model-driven 

development. In35th Int. Conf. on Software Engineering, pages 

1221{1224. IEEE/ACM, 2013. 

[8]  Jernej Novak, Andrej Krajnc, and RokZontar. Taxonomy of static 

code analysistools. In MIPRO, 2010 Proc. of the 33rd Int. Conv., 

pages 418{422. IEEE, 2010. 

[9]  TimoKehrer, UdoKelter, and Gabriele Taentzer. Consistency-

Preserving EditScripts in Model Versioning. In 28th IEEE/ACM 

Int. Conference on AutomatedSoftware Engineering, pages 

191{201. IEEE, 2013. 

[10]  Ste_enVaupel, Gabriele Taentzer, Jan Peer Harries, Raphael Stroh, 

Ren_eGerlach,and Michael Guckert. Model-driven development of 

mobile applications allowingrole-driven variants. In 17th Int. Conf. 

on Model-Driven Engineering Languagesand Systems, pages 1{17, 

2014. 

[11]  P. Stevens. Bidirectional model transformations in QVT: Semantic 

issues and openquestions. In Proc. of the 10 Int. Conf. on Model 

Driven Engineering Languages andSystems, Lecture Notes in 

Computer Science, pages 1–14. Springer, 2007a. 

[12] Lennart CL Kats, EelcoVisser, and Guido Wachsmuth. DSL 

Engineering – Designing,Implementing and Using Domain-Specific 

Languages. dslbook. org, 2013. 

[13]  Bauer, F.L., Ehler, H., Horsch, A., M¨oller, B., Partsch, H., 

Paukner, O., Pepper, P.:The Munich Project CIP, Volume II: The 

Program Transformation System CIP-S,Lecture Notes in Computer 

Science, vol. 292. Springer (1987) 

[14]  B. Rumpe and I. Weisemöller, “A Domain Specific 

TransformationLanguage,” in Workshop on Models and Evolution 

(ME), 2011. 



IJARCCE 
 ISSN (Online) 2278-1021 

  ISSN (Print) 2319 5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 

        Vol. 5, Issue 6, June 2016 
 

Copyright to IJARCCE                                  DOI 10.17148/IJARCCE.2016.5685                                               410 

[15]  M. Schmidt, “Transformations of UML 2 Models Using Concrete 

SyntaxPatterns,” in Rapid Integration of Software Engineering 

Techniques, ser.Lecture Notes in Computer Science. Springer 

Berlin Heidelberg, 2007,vol. 4401, pp. 130–143. 

[16] R. Grønmo and B. Møller-Pedersen, “Concrete syntax-based 

graphtransformation,” 2009, research Report 389. 

[17]  K. Hölldobler, B. Rumpe, and I. Weisemöller: Systematically 

Deriving Domain-Specific Transformation Languages. In: 

Conference on Model Driven Engineering Languages and Systems 

(MODELS), pp. 136-145, Ottawa, Canada, ACM New York/IEEE 

Computer Society, 2015 www.se-rwth.de/publications 

[18] Bernhard Rumpe and Ingo Weisem¨oller. A Domain Specific 

Transformation Language Software Engineering RWTH Aachen 

University, Germany http://www.se-rwth.de/ 

[19]  Tom Mens, Krzysztof Czarnecki, and Pieter Van Gorp: A 

Taxonomy of Model Transformations, Software Engineering Lab, 

Dagstuhl Seminar Proceedings 04101 http://drops.dagstuhl.de/ 

opus/volltexte/2005/11 

[20]  JochenKüster: Model-Driven Software Engineering Model 

Transformations IBM Research – Zurich (jku@zurich.ibm.com) 

MDSE 2011Motivation for Model Transformations 

[21] CobbFendleyTransmission Pipeline Engineering ServicesDallas 

County, Texas 2014 Mike Diamantini13430 Northwest Fwy., Suite 

1100Houston, Texas 77040 www.cobbfendley.com 

 

BIOGRAPHIES 

 

Igulu Kingsley Theophilusis a lecturer 

in the Dept. Of Computer Science, Ken 

Saro-Wiwa Polytechnic, Bori, Nigeria.  

He is a very sound computer scientist in 

the areas of Machine Learning, Agent 

Oriented Programing and Model Driven 

Engineering Software Technologies 
 

Piah, Z. Patrick is a Principal Lecturer 

in the Dept. Of Computer Science, Ken 

Saro-Wiwa Polytechnic,Bori, Nigeria. 

He is very experienced and specialized 

in Computational Geometry and 

Artificial Intelligence 

 

 

Japheth R. Bunakiye is a senior 

lecturer in the Dept. of 
Mathematics/Computer Science, Niger 

Delta University, Wilberforce Island, 

Nigeria. His areas of specialization 

include Model Driven Engineering 

Technologies, Software Requirements 

Engineering, and Methodologies 

 

O.M.D. Georgewillis a chief lecturer in 

the Dept. Of Computer Science, Ken 

Saro-Wiwa Polytechnic, Bori, Nigeria. 

He is specialized in Artificial 

Intelligence, Fuzzy Logic and 
Information Systems Concepts 

 

http://www.se-rwth.de/publications
http://www.se-rwth.de/

