
IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5929 126

Firewall as a Service in Cloud Infrastructure

Pavan Harapanahalli B
1
, Suresh Rathinam

2
, Minal Moharir

3

Computer Science, R V College of Engineering, Banglore, Karnataka, India
1, 3

Cloud Infrastructure Service, Unifylabs System Pvt Ltd, Banglore, Karnataka, India
2

Abstract: OpenStack is most widely used cloud platform to set up private cloud. OpenStack offers Compute, Identity,

Image and Networking services to deploy cloud platform. Firewall as a Service (FWaaS) of OpenStack secures

tenant’s network. OpenStack installers automate OpenStack services deployment to reduce human efforts involved.

Currently none of the installers support FwaaS deployment nor support different scenarios of OpenStack Network

service deployment like Distributed Virtual Routing (DVR), Virtual Router Redundancy Protocol (VRRP). The

proposed work focuses on automating OpenStack basic services deployment with different scenarios of Network

Service and FWaaS with Graphical User Interface (GUI) using Ansible tool. This work has made OpenStack service

deployment very easy with GUI, reduced human efforts and errors due to human mistakes. This work efficiently sets up

OpenStack cloud with FWaaS supporting different scenarios of OpenStack-Neutron on multi cluster environment.

Keywords: Cloud Computing, Distributed Virtual Routing, Firewall as a Service, OpenStack, Virtual Router

Redundancy Protocol, Ansible.

I. INTRODUCTION

OpenStack is open source software which manages large

pool of cloud resources. Compute, storage, network are

main resources OpenStack offers to its tenants. These

resources are configured and managed through OpenStack

REST full API, or through command line interface, or

using OpenStack dash board [1, 2]. OpenStack

architecture consists of a control node, one or more

compute nodes and network node. Optionally it may

consist of one or more storage nodes. Three node

architecture of OpenStack consists of one control node,

one compute node and one network node [3].

A. OpenStack Services

Basic OpenStack Services are as follow [4].

Identity Service: Keystone is project name given for

Identity service of OpenStack. Keystone provides an

authentication service for all other OpenStack services. It

provides accessible endpoints for all OpenStack services,

using which users/tenants and other OpenStack services

interact.

Compute Service: Compute service is named as Nova in

OpenStack. Nova creates and manages Virtual Machine

(VM) instances.

Network Service: Network Service is called as Neutron.

Neutron is responsible for creation of project networks

between VMs and connecting VMs to external network.

Neutron controls and manages virtual switches and virtual

routers. Image Service: Images Service in OpenStack is

known as Glance. Glance is responsible for Storing and

retrieving virtual machines disk images. OpenStack Nova

makes use of Glance during instance provisioning.

Controller node runs Identity service, Image Service,

management portions of Compute and Networking,

Networking plug-in and the dashboard. Network node runs

Networking plug-in and several agents that provision

tenant networks and provide switching, routing, NAT and

DHCP services. L3 agent is responsible for routing and

NAT operations. DHCP agent is responsible for DHCP

service. OpenvSwitch agent or Linux Bridge agent is

responsible for switching operations. This node also

handles external (Internet) connectivity for tenant virtual

machine instances.

Compute nodes runs hypervisor portion of Compute that

operates tenant virtual machines or instances.

Compute nodes also runs the Networking plug-in and

agents that connect tenant networks to instances and

provide security groups services. A security group is

named collection of network access rules that are use to

limit the types of traffic that have access to instances.

II. RELATED WORK

OpenStack supports VLAN, Generic Routing

Encapsulation Routing (GRE) and Virtual Extensible LAN

(VXLAN) for scalability. VLAN uses only 12-bit VLAN

ID to identify each network uniquely; only 4096 network

with different VLAN ID is possible, which is considered

to be very low for scalability. Tunnelling technologies like

GRE and VXLAN can be used to provide high scalability

[5-9].

OpenStack supports different technologies for Layer 3 and

Layer 2 operations. Linux Bridge provides same

functionality as normal layer 2 switch provides, but Linux

Bridge (LB) is not flexible for virtual and multitenant

cloud environment. Alternative to Linux Bridge is

OpenvSwitch (OVS), and it is highly flexible for virtual

environments [10-12].

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5929 127

Authors of [13] studies different OpenStack installers.

Currently available installers though install OpenStack

services efficiently lacks GUI features i.e. users not have

privileges to select among available OpenStack

Networking technologies between VLAN, VXLAN, GRE

based on users requirement. And also none of the currently

available installers support different scenarios of

OpenStack Neutron nor support Firewall as a Service. This

work automates OpenStack service deployment with user

friendly GUI, support different scenarios of Neutron and

Firewall as a Service.

III. OPENSTACK NETWORK SCENARIOS

This section describes architectures of Neutron

Networking scenarios. Neutron can be deployed in one

among the following three networking scenarios.

Description of each of them is given below.

1) Classic scenario.

2) Distributed Virtual Routing (DVR) scenario.

3) Virtual Router Redundancy Protocol (VRRP)

scenario.

A. Classic Scenario

This scenario describes installation of OpenStack Neutron

either using Linux Bridge or OpenvSwitch agent. Here

either Linux Bridge or OpenvSwitch agent manages

virtual switches. Currently available installers install

OpenStack networking service with classic OpenvSwitch

scenario. Users have to choose either Linux Bridge or

OpenvSwitch agent. Figure 1 shows architecture of classic

scenario.

On network node

1) Either Linux Bridge agent or OpenvSwitch agent

manage virtual switches and connectivity among them.

2) Dynamic Host Configuration Protocol (DHCP)

agent manages DHCP service for assigning IP addresses

for VMs.

3) L3 agent handles routing and NAT operation for

instances, routing traffic between project and external

networks.

Figure 1: Architecture of Neutron classic scenario

On compute nodes

1) Either Linux Bridge agent or OpenvSwitch agent

manage virtual switches and connectivity among them.

2) Linux Bridge agent handles security groups for

instances.

B. Distributed Virtual Routing (DVR) Scenario

In previous scenario, to route a data traffic from VM to

external network, routing operation is resides completely

in network node. To eliminate single point of failure of

network node DVR scenario has proposed. In DVR

scenario, routing operation resides in compute nodes also.

Figure 2 shows architecture of DVR scenario.

Figure 2: Architecture of Neutron DVR scenario

On network node

1) Open v Switch agent manages virtual switches

and connectivity between them.

2) L3 agent handles routing and NAT operation for

instances with a fixed IP address, routing traffic between

project and external networks.

3) DHCP agent handles DHCP services for VMs.

On compute nodes

1) Open v Switch agent manages virtual switches

and connectivity between them.

2) L3 agent for managing routing and NAT

operations for instances with a floating IP address, routing

traffic between project and external networks to eliminate

single point of failure.

3) L3 agent manages routing for instances with a

fixed or floating IP address using project networks on the

same distributed virtual router.

4) Linux Bridge agent manages security groups for

VMs.

C.Virtual Router Redundancy Protocol (VRRP) Scenario

This scenario describes a high-availability (HA)

implementation of the OpenStack Networking service.

This scenario installs Neutron either using Linux Bridge or

OpenvSwitch. VRRP provide high availability routing by

supporting random distribution of routing on different

network nodes. Figure 3 shows architecture of VRRP

scenario.

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5929 128

Figure 3: Architecture of Neutron VRRP scenario

On network nodes

1) Either Linux Bridge agent or OpenvSwitch agent

manage virtual switches and connectivity among them.

2) DHCP agent manages DHCP service for

assigning IP addresses for VMs.

3) L3 agent handles routing and NAT operation for

instances, routing traffic between project and external

networks.

On compute nodes

1) Either Linux Bridge agent or OpenvSwitch agent

manage virtual switches and connectivity among them.

2) Linux Bridge agent handles security groups for

instances.

IV. FIREWALL AS A SERVICE (FWAAS)

By deploying FWaaS [14] in cloud infrastructure users can

create firewall rule, firewall policies, firewalls using

Networking API calls to protect tenants’ networks.

Neutron FWaaS is configured on the nodes running the

Neutron L3 agent, and Neutron Server API configured on

the controller node to pick up the service.

Users can also expose the FWaaS feature in Horizon

(Dashboard) on the controller node. With a Neutron

firewall in place on the L3 router, any traffic traversing

that router will be inspected there before it is allowed to

continue.

V. PROPOSED WORK AND IMPLEMENTATION

For implementation, this work has used Python 2.7 and

Ansible [15] playbook. Ansbile playbook is an efficient

tool used to configure group of nodes remotely. Ansible

playbooks contain several tasks to be executed on group of

nodes. These Ansible playbooks are stored in .yml format

hence Ansible playbooks are also called as yml files in this

work. Python is used to handle GUI. Architecture of

proposed system is shown in figure 4.

Figure 4: System architecture of proposed work

A deployment server which is running an application, gets

configuration inputs from users and generates yml files for

different OpenStack services for different nodes, for

example yml file is created for keystone service will

configure control node to deploy keystone. These yml files

contain several tasks such as installing OpenStack

packages, configuring files, starting services, etc to

configure control node, compute nodes and network

nodes. Following yml files will be generated to deploy

proposed services.

Keystone: One yml file to configure control node, because

keystone service is configured only on control node.

Glance: One yml file to configure control node.

Nova: One yml files to configure control and one to

configure compute nodes.

Neutron: One yml files to configure control node, one yml

file configure compute nodes, one yml file network node/s

(Incase of VRRP).

FWaaS: One yml file to configure network node/s. In case

of DVR one yml file to configure compute nodes. One yml

file to configure control node.

These yml files are executed one by one in an order, to

deploy Keystone, Glance, Nova, Neutron (with selected

scenario, tunneling technology and virtual switch

technology) and FWaaS. Any error that occurs during

execution will be thrown to GUI with details. This system

will not let users to deploy next service until users

recovers the error. Most of the errors are mainly because

of user entered values through GUI text boxes such as

wrong IP addresses or URLs. In most of the cases errors

can be fixed by re-entering these values correctly. Ansible

is designed in such way that it erases previous

configuration and changes the configuration as per new

inputs.

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5929 129

VI. PERFORMANCE ANALYSIS

There are several methods in which OpenStack services

can be deployed. Let’s analyze human efforts involved in

these methods. OpenStack services can be deployed

manually; it’s been observed that users have to execute

about an average 356 operations on three node architecture

to deploy these basic services with FWaaS [14]. And also

there is a possibility that human can make mistakes in any

of these operations, to fix these errors there is need of

more human effort. Obviously human effort is directly

proportion to consumption of time.

Another approach is using only yml (without GUI) files to

automate these human operations to deploy OpenStack

Services, it completely reduces human interaction with a

process of cloud deployment and hence mistakes of

humans can be reduced completely. But human effort is

still needed to create these yml files again and again for

different services for different nodes. One more approach

is generating yml files based on user inputs through GUI.

In this approach human effort is to enter details like IP

address, URLs, selecting technologies that users wants to

deploy etc. In this approach there may be possibility of

error occurrence because of the values entered through

text boxes of GUI, such as IP addresses etc.

But human efforts required to deploy cloud have reduced

significantly in this approach. Figure 5 shows a

comparison of error occurrences in manual approach and

automated approach. From the figure it is observed that

error occurrence reduces significantly in automated

approach, and error occurrence drastically reduces with

increase in multi cluster size, this is due to the fact that one

single yml file is enough to execute similar tasks on group

of nodes.

Figure 5: Comparison of error occurrences in manual

approach and automated approach

VII. CONCLUSION AND FUTURE WORK

This work automates deployment of OpenStack Firewall

as a service, Neutron with users selected network

scenarios, technologies and other basic services of

OpenStack with GUI. This system supports multi node

cluster cloud environment. Behavior of firewall is tested

on different Neutron scenarios. Still there is a need of

system which will troubleshoot error that occurs during

deployment, based on error patterns. And also there in

need to automate other OpenStack services like Load

Balancer as a Service etc.

REFERENCES

[1] O. Khedher, Mastering OpenStack. Birmingham: Packt Publishing,

2015.Print.

[2] O. Sefraoui, M. Aissaoui and M. Eleuldj, "OpenStack: Toward an
Open-source Solution for Cloud Computing", International Journal

of Computer Applications, vol. 55, no. 3, pp. 38-42, 2012.

[3] A. Leiter and R. Fekete, "An Openstack Integration Method with
Linux Containers", 19th International ICIN Conference -

Innovations in Clouds, Internet and Networks19th International

ICIN Conference - Innovations in Clouds, Internet and Networks ,
Paris, pp. 219-221, 2016.

[4] Hewlett-Packard, “Red Hat Enterprise Linux OpenStack Platform

on HP ConvergedSystem 700x”, Technical white paper, November
2014.

[5] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina, “Generic

Routing Encapsulation (GRE),” RFC 2784, 2000.
[6] M. Mahalingam, D. Dutt, P. Agarwal, L. Kreeger, T. Sridhar, M.

Bursell, and C. Wright, ”Virtual eXtensible Local Area Network
(VXLAN): A Framework for Overlaying Virtualized Layer 2

Networks over Layer 3 Networks”, RFC 7348, 2014.

[7] R. Davoli and M. Goldweber, "VXVDE: A Switch-Free VXLAN
Replacement," 2015 IEEE Globecom Workshops (GC Wkshps),

San Diego, CA, 2015, pp. 1-6.

[8] R. Kawashima and H. Matsuo, "Non-tunneling Edge-Overlay
Model Using OpenFlow for Cloud Datacenter Networks," 2013

IEEE 5th International Conference on Cloud Computing

Technology and Science, Bristol, 2013, pp. 176-181.
[9] S. Jeuk, G. Salgueiro, F. Baker and S. Zhou, "Network

segmentation in the cloud a novel architecture based on UCC and

IID," Cloud Networking (CloudNet), 2015 IEEE 4th International
Conference on, Niagara Falls, ON, 2015, pp. 58-63.

[10] J. T. Yu, “Performance Evaluation of Linux Bridge,” In Proc.

Telecommunications System Management Conference, Louisville,

KY, Apr. 2004.

[11] B. Pfaff, et al., “Extending Networking into the Virtualization

Layer,” In Proc. 8th ACM HotNets, New York, NY, Oct. 2009.
[12] F. Callegati, W. Cerroni, C. Contoli and G. Santandrea,

"Performance of Network Virtualization in cloud computing

infrastructures: The OpenStack case," Cloud Networking
(CloudNet), 2014 IEEE 3rd International Conference on,

Luxembourg, 2014, pp. 132-137.

[13] A. Awasthi and R. Gupta, "Comparison of OpenStack Installers",
IJISET - International Journal of Innovative Science, Engineering

& Technology, vol. 2, no. 9, pp. 744-748, 2015.

[14] K. Jackson, C. Bunch and E. Sigler, OpenStack Cloud Computing
Cookbook - Third Edition. Packt Publishing, 2015.

[15] Red Hat, “The Benefits of Agentless Architecture”, Technical white

paper, October 2016.

BIOGRAPHIES

Pavan Harapanahalli B, Final year student of M.tech in

Computer Network Engineering from R V College of

Engineering, Banglore, Karnataka, India.

Suresh Rathinam, Principal Architect, Cloud

Infrastructure Services, Unifylabs Systems Pvt Ltd,

Banglore, Karnataka, India.

Minal Moharir, Associate Professor, Department of

Computer Science, R V College of Engineering, Banglore,

Karnataka, India.

