

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified Vol. 5, Issue 9, September 2016

Portable Low Cost Electronic Nose for Instant and Wireless Monitoring of Emission Levels of Vehicles Using Android Mobile Application

Vishesh S¹, Manu Srinath¹, Karthik P Gubbi², Shivu H N³, Prashanta³

B.E, Department of Telecommunication Engineering, BNM Institute of Technology, Bangalore, India¹ Student, Department of Telecommunication Engineering, Dayananda Sagar College of Engineering, Bangalore, India² Student, Department of Electronics and Communication Engineering, BNM Institute of Technology, Bangalore, India³

Abstract: Emissions of many air pollutants have been shown to have a variety of negative effects on public health and the natural environment. With the ever increasing population and the need for automobiles for transportation, the number of vehicles have increased considerably which has lead to increase in the emission of air pollutants such a CO, CO_2 , Hydrocarbons, SO_2 , etc., which may cause grievous problems to living beings and environment. One solution to this problem is frequent monitoring of the gases in the environment. In India, the present emission monitoring system is available only at emission testing centres located either in petrol bunks or few other places. The model we have designed can be handed over to the traffic police for continuous and instant monitoring of emission levels of vehicles. The present standard device is not portable and involves wired connections unlike our design which is portable, rechargeable and wireless. These features make our design easier to use than the traditional device. Also, our new model is comparatively cheaper than the existing device with the same level of accuracy. Unlike the present emission testing device our model uses an android application to monitor emission levels and does not require any paper work. Moreover, we express our distress in the present emission monitoring system which involves multiple malpractices by manipulating the recorded emission levels for bribe. This can be eliminated by our device which includes instant and real-time monitoring of emission levels of vehicles already certified.

Keywords: Air pollutants, continuous and instant monitoring, portable, rechargeable, wireless, android application, real time monitoring.

I. INTRODUCTION

activities on the biophysical environment. This paper Delhi to implement the 'Odd/Even' scheme. [2] Regular addresses one of the major environmental issues which is and efficient methods of monitoring the vehicular air pollution and steps to monitor and check the same. Environmental protection is a practice of protecting the natural environment at individual, organizational or government levels, for the benefit of the environment and all living beings.

In this paper we develop a model which can monitor the emission levels of automobiles wirelessly and record the real time values. Monitoring of emission levels from time to time is vital to check and reduce air pollution caused by emission of fatal gases like CO₂, CO, Methane, SO₂, etc., by automobiles into the atmosphere which can cause It is our distress to tell you that many malpractices are devastating effects to the environment and living beings. taking place in the present emission testing scenario. Our Increase in carbon emissions causes green house effect model enables instant and real time monitoring and and further leading to global warming. [1]

Increase in the levels of air pollutants can lead to bronchitis, asthma, emphysema or COPD (Chronic Obstructive Pulmonary Disorder) and also lung cancer. Recently due to increase in air pollution in New Delhi, India has lead to the formation of thick smog leading to

Environmental issues are caused by harmful human many fatal diseases. This forced the government in New emission levels may have prevented this condition.

> The present emission monitoring system is almost outdated. It is only available at emission testing centres, is not portable, expensive, involves using long wires and also requires paperwork. So we have developed a device named electronic nose which is of low cost, has almost the same accuracy, portable, wireless, instant monitoring device and can be used anywhere, anytime by individuals who intend to monitor the emission levels.

> verification of emission data by the traffic police. This eliminates the manipulation of the real emission data.

> Since our model is equipped with Bluetooth, the data can be transmitted wirelessly to the output device unlike the existing system. Also we have developed an android application which statistically and graphically displays the

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

accurate data of the respective vehicles and has a provision Figure (2) shows a photograph of one of the emission to enter the vehicle registration number as well. Any testing centres. As seen in the figure, the existing device is android device can be used to monitor the emission levels large and has wired connections between the sensing and with the android application installed in it. The real time output devices, making it a non-portable device. This is values and graphical data can be stored in the SD card one of the major short comings in the existing system. Our along with the peak values of the individual gases. Our device is capable of wireless monitoring, is light weight, device has been calibrated according to the industry standards and can also be scaled according to the new standards. If this device is used to monitor the emission levels by traffic police on road, rigorous monitoring of emission levels can be achieved and required actions can be taken against the defaulters. This would prevent major catastrophes mentioned earlier. There is a saying "Little drops of water make the mighty ocean". So as responsible citizens, let's contribute and help save our mother nature.

II. EXISTING EMISSION SYSTEM AND ITS SHORTCOMINGS

The block diagram of the existing emission testing system is as shown in Figure (1).

compact and portable. These features make it possible for the traffic police to monitor emission levels instantaneously.

Fig. 2 Photograph of an emission testing centre

Figure (3) shows the emission report of one of the vehicles.

COMPUTER	ISED POLLUTION UNDER	CHECK	CENTERS	6 (Rule 231(B)(8) of KMV	Rules 1989)	
This Vehicle meets En Mont	nission Standards Prescribe hs for Bharat Stage III or t	ed by Ri below a	ule 115(nd one y	2) of CMVR 1989 year for Bharat S	9. Certificat tage IV vel	e is All India va nicles.	lid, Six
Licence No :	837/2007-08	Photo of Vehicle					
Center Name :	Anjanadri Emission Testing Center			ICA-C	5	TRANSIE!	
Center Address :	113/1,5th main road, 7th cross,Chamarajapet, Bangalore -560018			0-29	18		
Customer Name :	SRINATH MANIYAL			1 500	all is		
Customer Mobile :	9886642805				and the state		
Pucc No :	P435169070						
Vehicle No :	KA05JD2918						
Year of Regn :	10-09-2014		1000				
Type of Vehicle :	2 Wheeler		P	etrol Test	0	ias Test	3
Type of Engine :	4 STROKE		Pres	Measured	Pres	Measured	
Make :	TVS Motor	1000	STD	level	STD	level	Unit
Model : Fuel :	Apache RTR160 PETROL	со	3.5	1.05		-	% Vol
Catalyst :	Catalyst	нс	4500	103		-	PPM
Test Date :	10-09-2016 11:41	CO2		4.40		-	%Vol
Valid Date :	09-03-2017	02		14.9		-	PPM
Contradiction of the second		Hol	lo	r	Certifica	te price: ₹50	

Fig. 3 Emission report of a vehicle

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

The above report reflects the emission readings of a the possible malpractices and also increasing transparency. particular tested vehicle on a particular date and time and verify the emission data instantaneously, thereby reducing

is valid for 6 or 12 months and therefore the traffic police We use an android application which displays the department has to accept this report without verification. emission data and a soft copy can be stored in the SD card But, by using our model, traffic police can monitor or of the device, thereby eliminating the need to print result of the emission test.

III.BLOCK DIAGRAM OF ELECTRONIC NOSE

Fig. 4 General block diagram of electronic nose

The block diagram of the electronic nose is as shown in figure (4). It consists of an array of three sensors- MQ-4 [3], MQ-135 [4] and MQ-7 [5] for sensing hydrocarbons (HC), Carbon-dioxide (CO₂), and Carbon monoxide (CO), respectively. These sensors are arranged in an array to record the emission parameters simultaneously. Figure (5) shows MQ-4, MQ-7 and MQ-135 respectively. Figure (6) shows MQ-4, MQ-7 and MQ-135 with their respective breakout circuits.

Fig. 5 MQ-4, MQ-7 and MQ-135

Figure (7) shows the circuit connections of a general MO sensor. This connection is the same for all three sensors. The sensed data is now transmitted to a microcontroller for processing. We have used Arduino UNO as the microcontroller.

Fig. 7 General circuit connections of MQ sensor

The analog input pins are connected to the respective analog output pins of the MQ sensors. And the analog real-time data is processed by the Arduino UNO [6] containing the ATmega328P microcontroller. [7]

The processed data is now transmitted through the Bluetooth wirelessly to the android smart phone with the application installed in it. Figure (8) shows the HC-05 Bluetooth module. [8] Figure (9) shows the image of the electronic nose developed by us and figure (10) shows the android application named 'sense_graph' developed by us for monitoring and storing the emission data.

Fig. 8 HC-05 Bluetooth module

International Journal of Advanced Research in Computer and Communication Engineering

IJARCCE

ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

Fig. 9 Electronic Nose

Graph				
x val		enter	vehicle	nun
y val		SAVI	E to dev	ice
CO reading	s CO	2 readi	ngs	HC readings
CO peak	CO2 pe	eal H	C peak	STOP
Y				
250				
200				
150				
100				
50				
50	100	150	200	250 X

Fig. 10 'sense_graph' android application

IV. METHODOLOGY

A. Embedded System Design

To design the embedded system for our project, we have followed the iterative waterfall model of embedded system design. Figure (11) shows the flowchart of iterative waterfall model. Basically, our requirements are MQ-135, MQ-4 and MQ-7 which are CO₂, HC and CO gas sensors respectively placed in an array called "sensor array".

Fig. 11 Iterative waterfall model of embedded system design

We have used Arduino UNO as the microcontroller to process the data output from the sensor breakout board. The analog output from the MQ sensor array is amplified using LM-393 and there is also provision for sensitivity adjustment. The analog output from the respective MQ sensors with breakout is given to analog ports A0, A1 and A2 of the Arduino UNO respectively.

A Bluetooth module HC-05 is used to wirelessly transfer serial data to the smart phone with android application installed in it. The range of the HC-05 Bluetooth is approximately 10 metres (30 feet).

Fig. 13 wireless monitoring of emission data using electronic nose

By placing the device near the exhaust of the automobile, one can monitor the emission readings on the Smartphone using our android application. A provision is given in the smart phone application to enter the registration number of the vehicle whose emission is being monitored. A graph of time v/s amplitude of the emissions (CO, CO₂ and HC) is plotted. CO and CO₂ are represented in %vol and HC is represented in ppm according to the present standards in India. Also a provision is made to display the peak values of these gases. The block diagram of the electronic nose with specific components is as shown in the figure (12).

ISSN (Online) 2278-1021 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified

IJARCCE

Vol. 5, Issue 9, September 2016

Figure (13) shows the wireless monitoring of emission So, our device was calibrated according to the present electronic nose to monitor the emission from vehicles.

B. Calibration

In India, the present measurement units for vehicular emissions are % vol for CO and CO₂ and ppm for HC.

data using electronic nose. One can make out the industry standards of measurements and our device difference between the old testing method and use of the faithfully matches the accuracy of that of the present device. The threshold values of these gases placed by the government is as shown in Table I and electronic nose is capable of issuing a warning in case the emission levels of a vehicle being monitored is higher than the threshold value.

Fig. 12 Detailed block diagram of electronic nose

TABLE I THRESHOLD VALUES FOR CO AND HC AS PER PRESENT STANDARDS IN INDIA

Sl No	Vehicle Type	CO (in %vol)	HC (ppm)
1	2 and 3 wheelers (vehicles manufactured on or before 31 st March 2000)	4.5	9000
2	2 and 3 wheelers (2 stroke) (vehicles manufactured after 31 st March	3.5	6000
	2000)		
3	2 and 3 wheelers (4 stroke) (vehicles manufactured after 31 st March	3.5	4500
	2000)		
4	Bharath Stage- II compliant 4- wheelers	0.5	750
5	4-wheelers other than Bharath Stage- II compliant	3.0	1500

V. RESULTS

Figure (14) shows the emission report of a vehicle using the device at an emission testing centre.

Figure (15), figure (16) and figure (17) show the emission the emission results of few vehicles obtained using the report of the same vehicle tested by using electronic nose.

As we can see, the compact and accurate report generated by the electronic nose and displayed wirelessly using 'sense_graph' android application. This report is saved in the SD card along with the vehicle number. Table II shows electronic nose.

TABLE II EMISSION RESULTS OBTAINED USING THE ELECTRONIC NOSE

			•		
Vehicle Number		KA 05	KA 01	KA 05	KA 01
		JD 2918	HK 4326	B 9185	MG 158
Type of Vehicle (wheeler)		2	2	3	4
Model		TVS Apache	TVS XL	Bajaj Auto	Maruthi Alto
Type of Engine		4-Stroke	2- Stroke	2- Stroke	4- Stroke
	CO (in %vol)	3.5	3.5	3.5	3.0
Threshold	CO_2 (in %vol)	-	-	-	-
Value	HC (in ppm)	4500	6000	3000	1500
	CO (in %vol)	1.03	2.89	0.48	2.15
Measured	CO ₂ (in %vol)	4.35	5.07	5.53	2.20
Value	HC (in ppm)	104	1754	2857	302

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

IJARCCE

Transport Department,Karnataka	Page 1 of 1
COMPUTERISED POLLUTION UN This Vehicle meets Emission Standards Pr Months for Bharat Stage	UNDER CHECK CENTERS (Rule 231(B)(8) of KMV Rules 1989) Prescribed by Rule 115(2) of CMVR 1989. Certificate is All India valid, Six e III or below and one year for Bharat Stage IV vehicles. Photo of Vehicle
Licence No : 837/2007-00 Anjanadri Emission Center Name : Testing Center	n
113/1,5th main roa Center Address : 7th cross,Chamaraj Bangalore -560018	ajapet, 8 KA 05 P 8633
Customer Name : VIJAY KUMAR Customer Mobile : 9739821575 Pucc No : P435169055 Vehicle No : KA05P8633	
Year of Regn: 04-07-2000 Type of Vehicle: 4 Wheeler Type of Engine: 4 STROKE	Petrol Test Gas Test Pres Measured Pres Measured Unit STD level STD level $0/0$
Model : 800-CAR Fuel : PETROL Catalyst : Catalyst	CO 3.0 2.25 Vol HC 1500 362 PPM CO2 2.80 %Vol
Test Date : 08-09-2016 17:55 Valid Date : 07-03-2017	02 7.4 PPM
and a set accentable witho	Hologram Sticker & Get Renewed the Certificate within the Expiry Date.
Certificate is not acceptable while	Testing Station Code (P435) Authorised Signatory

Fig. 14 Emission report of the vehicle with registration number "KA 05 P 8633" using the present emission testing device

Fig. 15 CO emission of the vehicle with registration number "KA 05 P 8633" tested using Electronic Nose

Fig. 16 CO₂ emission of the vehicle with registration number "KA 05 P 8633" tested using Electronic Nose

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

Fig. 17 HC emissions of the vehicle with registration number "KA 05 P 8633" tested using Electronic Nose.

VI. CONCLUSIONS

We have designed a device named the "Electronic Nose" which is portable, low cost, wireless, rechargeable, compact and easy to use so that monitoring of emission levels of automobiles becomes easier thereby keeping a check on vehicular emissions and its grievous effects on the environment and living beings. The use of android application instead of other output devices can revolutionize the current system of monitoring the emission data.

REFERENCES

- [1] The green house effect- facts on climate changehttp://climatechange.gc.ca/default.asp?lang=En&n=1A0305D5-1
- [2] The odd/even scheme in New Delhi to tackle air pollution http://timesofindia.indiatimes.com/city/delhi/Odd-even-schemerolls-out-in-Delhi/articleshow/50402441.cms
- [3] MQ-4 gas sensor data sheet with specificationshttps://www.sparkfun.com/datasheets/Sensors/Biometric/MQ-4.pdf
- [4] MQ-7 gas sensor data sheet with specificationshttps://www.sparkfun.com/datasheets/Sensors/Biometric/MQ-7.pdf
- MQ-135 gas sensor data sheet with specificationshttps://www.olimex.com/Products/Components/Sensors/SNS-MQ135/resources/SNS-MQ135.pdf
- [6] Arduino UNO (USA only) and Genuino UNO (outside USA) specifications- https://www.arduino.cc/en/Main/ArduinoBoardUno
- [7] ATMEL 8-Bit Microcontroller with 4/8/16/32KBytes IN-SYSTEM Programmable Flash DATASHEEThttp://www.atmel.com/images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-328P_datasheet_Complete.pdf
- [8] HC-05 Bluetooth module data sheet along with specifications http://www.electronica60norte.com/mwfls/pdf/newBluetooth.pdf

BIOGRAPHY

Manu Srinath was born in Bangalore (Karnataka). He has completed B.E in Telecommunication Engineering from VTU, Belgaum, Karnataka in 2015. His research interest includes networking, image processing and cryptography.

Karthik P Gubbi, pursuing (7th sem) B.E in Telecommunication Engineering at Dayananda Sagar College of Engineering, Bangalore. His research interests include image processing and digital signal processing.

Shivu HN, pursuing (7th sem) B.E in Telecommunication Engineering at BNM Institute of Technology, Bangalore.

Prashanta, pursuing (7th sem) B.E in Telecommunication Engineering at BNM Institute of Technology, Bangalore.