IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified Vol. 5, Issue 9, September 2016

A Review on Multi Focal Image Fusion **Techniques and Approaches**

Mamta Sharma¹, Sarika Khandelwal²

M. Tech Scholar (CSE), Geetanjali Institute of Technical Studies, Udaipur (Raj) India¹

Assistant Professor, Department of CSE, GITS, Udaipur (Raj) India²

Abstract: Image fusion is a process of merging two or more images of same scene to generate single fused image which provide vital information in the fused image. Image fusion method is used for removing noise from the images. Noise is an unwanted material which decreases the quality of an image and affecting the clarity of fused image. Noise can be of different types such as impulse noise, Gaussian noise, uniform noise etc. Images distort some times during transmission or acquisition or due to fault memory locations in hardware. Image fusion can be occurring at three levels such as pixel level fusion, feature level and decision level fusion. A lot of research is being done in the field of multi focal image fusion and encompassing areas of Computer Vision, Image processing, parallel and distributed processing, Automatic object detection, Robotics and remote sensing. This paper is a detailed study performed over a sequence of image fusion methods and algorithms regarding their implementation. Research issues in Image Fusion techniques are to increase efficiency in term API, Standard deviation, PSNR, and try to generate more informative fused images.

Keywords: Image fusion, multi focal image, PSNR, Entropy.

I. INTRODUCTION

In applications of digital cameras, when a lens focuses on a object at a given distance, all objects at same distance are sharply focused. Objects are not at the same distance out of focus and given objects are not sharp. It is generally not possible to capture an image that contains all relevant objects in focus. One way to overcome this problem is combining multiple image of same scene that is image fusion; in which one can capture a series of pictures with different focus settings and combine them to produce an image with sharply focus on each object. During fusion process, all the important visual information occurs in the input images must be transferred into fused image without introduction of distortion.

In this field the fusion algorithm should be reliable and robust to distortion such as noise or mis-registration. Image fusion is a branch of data fusion where data occurs in the form of arrays of numbers that represent brightness, distance, color, temperature, and other important implementing a sequence of process on the images that properties. Such data can be two-dimensional (multi focus would generate the good information in every image images), three-dimensional (audio, video sequences or prominent. The fused image is formed by merging such volumetric images), or higher dimensions. Last decades, meaningful information from the input images into a multi variance imaging techniques have become an single fused image. important source of information to aid diagnosis in many medical fields.

quality image from a set of given images. It is the process and pixel level fusion techniques. All the set of images of merging relevant information of two or more images have different features, different intensities and different into a single image wherein the resulting image will be resolution at different time and developed global point more informative and qualitative than any of the input mapping then search for control point matches of retinal images.

Any piece of information is meaningful only when it is able to convey the content about it. The clarity and quality of information is important. Image Fusion is a technique to improve the quality and quantity of information from a set of images. By the process of image fusion the more information from each of the given images is combining together to generate a resultant image whose quality is maximum to any of the input images. This is achieved by

2. EVOLUTION OF IMAGE FUSION

Image Fusion is such a technique to provide a superior In 2003, image fusion process use method of registering images. In this technique fourteen pixel level fusion

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

methods used to classified according qualitative and average and give the single resultant fused image. The quantitative performance.

In 2006, IHS image fusion technique introduces. This is applying in applications of remote sensing in multispectral and panchromatic images. Through this technique it distorts the colour from input image as in same way it applied in after image fusion. This technique has tradeoffs parameters with its new approach and fast or easy implementation.

In 2007, A panchromatic image is merged and gives the desired output with improved quality and efficient 3.2 Feature Level resolution. In this wavelet based method image fusion are It work with the features of input image like if one image compared on the base of their spatial frequencies. All the has its distorted eye and other have distorted any feature wavelet transforms technique always gives better result like nose, ear, head. In this level of technique fuse image than simple wavelet transform methods alone. The easily extract the features of both similar images wavelet based methods, particularly in terms of reducing individually, then fusion mechanism gives the enhanced color distortions in images.

In 2008, Image fusion techniques used wavelet and PCA The feature-level algorithms firstly segment the image algorithm for image fusion. Fused image can be avoided into contiguous regions and then fuse the regions together using wavelets with shift invariant property. It has been using their appropriate properties. The features used for concluded that image fusion using wavelet decomposition with higher level shows better result of performance in some metrics.

In 2009, Combination of pixel level and region based 3.3 Block level method with enhancement of edges and structure fusion applies for image fusion. These techniques are applicable for pixel level and energy based algorithms occur by analysing the data of images.

In 2010, Multiple techniques of fusion in RGB images, Gray Scale images occur. User interactive with DCT approach which is discrete cosine transformation generally for the better efficiency and information in Term fusion means to combine the information acquire in fused image.

In 2011, Image fusion occurs by different methods or techniques and applying 2D-DWT algorithm on input quality of fused image by reducing the noise. The images. Both Wavelet- DWT and SF is used for efficient continuous growth in data transmission through internet output in fused image. Coefficients of input image at lower approximations are used in laplacian algorithm. Where SF and Wavelet combined together give better result and they are working for high approximation. Finally DWT technique gives the desired results through 1. Spatial Domain Techniques desired new fused coefficients.

3. LEVELS OF IMAGE FUSION

Image fusion can be categorized into different levels: low level, middle level, and high level; or pixel level, feature level, and Block Levels.

3.1 Pixel Level Fusion

This is simplest technique in image fusion done at pixel domain method are less complex and high payload. This level. In this technique combine the values and method cannot even withstand at low pass filtering and intensities of two input images of same scene based on its common image processing attacks.

pixel-level mechanism works either in the spatial domain or in transform domain.

The prerequisite for such a process is that the images have been captured by homogeneous sensors, such that the images reproduce comparable or similar physical properties of the scene. The fusion technique, such as averaging, DCT method, principle component analysis (PCA), DCT and IHS based methods fall under the spatial domain approaches.

image after feature extraction.

this technique may be calculated separately from each image or may be obtained by the simultaneous process of all the images.

In block level based fusion occurs according to the pixel blocks of the image. Blocks level technique is highest level technique comparative to above method. It is multistage measurements and representation is calculated according to the regions of input image.

4. APPROACHES OF FUSION TECHNIQUES

several domains. Fusion is a process which can be used to improve excellence of descriptive from a set of images. The research issues of image fusion are to improve visible and also the methods which is been developed by the hackers in recent years forced developers to developed more reliable techniques of fusion

- 2. Transform Domain Techniques

4.1 Spatial Domain Techniques

In Spatial domain techniques we mainly deal with pixels of input image plane itself and all the operations done on pixel value of the input images. We know that the image is collection of pixels having (x,y) domain, Here x denotes the pixel position at X axis and y denotes the pixel position at Y axis. The Fusion techniques of spatial

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

Simple Maximum Method

In this method, we take two input images. And calculate their The Discrete Wavelet Transform (DWT) also converts maximum pixels corresponding to input images. The the image from the spatial domain to frequency domain. resultant fused image is generating by selecting the maximum intensity of corresponding pixels from both the input images

Simple Minimum Method

In this method, we take two input images. and calculate their minimum pixels for the resultant fused image is obtained frequency domains LH1, HL1 and HH1 have more detail by selecting the minimum intensity of corresponding Information more than frequency domain LL1. pixels from both the input image.

Simple Average Method

In this method, we take two input images. And calculate their average pixels corresponding to input images. The resultant fused image is generating by selecting the average intensity of corresponding pixels from both the input images

4.2 Transform Domain Techniques

Transformed domain based fusion are more robust and reliable as compared to simple spatial domain fusion. Such algorithms are robust against simple image processing operations like low pass filtering, adjustment (brightness and contrast) blurring, etc. On the basis of transforms of images from spatial domain to frequency domain, these techniques are classified as following.

1 Image fusion using Discrete Cosine transform. 2 Image fusion using Discrete Wavelet transform.

Discrete Cosine transforms.

DCT cosine transform is a transformation technique in this an image from space domain to transfer into frequency domain. In DCT method the generation of an even symmetric periodic sequence of frequency removes the discontinuity as the symmetric signal moves from one period to the next period smoothly.

As a result, like the DFT, the DCT does not suffer from leakage effects image pixels. Further, symmetric extension of the signal makes its length double from the original signal, and hence, its frequency resolution is better by a factor of two. Also, due to other properties like energy compaction, the computational advantage of image fusion being real rather than complex method makes it desirable for signal processing applications like image coding, speech coding, adaptive algorithms, and for many other coding methods.

Principal Component Analysis (PCA) method

Principal Component Analysis technique is a sub space method, which minimize the multidimensional data sets into lower dimensions for analysis. This method calculates the weights for each source image. This method uses the eigenvector corresponding to the largest Eigen value of the covariance matrix of each source image And we conclude that Proposed Method gives Better result for further processing of image fusion.

Discrete wavelet transform

The image is divided by vertical and horizontal lines and represents the first-order of DWT, and the image can be separated with four parts those are LL1, LH1, HL1 and HH1. In additional, those four parts are represented four frequency areas in the image. For the low- frequency domain LL1 is sensitively with human eyes. In the

Wavelet coefficient

Fig 1.2 discrete wavelet transform (DWT) decomposition

(B) (A) (C) Fig 1.3 A, B- Input Images, C-Fused image using DWT+DCT

TABLE 1 Result of image fusion using DWT-DCT

Measure	API	SD	PSNR	Entropy
Pepsi	97.8065	42.6922	36.6325	13.9461
leena	99.1347	46.7739	36.2360	4.8076
MRI Image	34.6227	44.0227	36.4992	12.1652

TABLE 2 Compared Result of image fusion using DWT-DCT

Measures	Existing [10] [12]	PSNR	Proposed DCT-DW	PSNR T
Pepsi	36.4166		36.6325	
MRI image	25.64		36.4992	

as compare to Existing Technique

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

Fig 1.4 Analysis Graph of image Pepsi with Existing Technique [6] And Proposed Technique

5. CONCLUSION

The Proposed algorithm presents Hybrid DWT-DCT Digital image fusion algorithm. Proposed method exploits strength of two combined transform domain techniques DCT & DWT to obtain better image quality of fused image. The idea of inserting embedding image in combined transform is based on fact that joint transform eliminates drawback of each other and thus an effective embedding image method can be obtained.

From the results achieved by different technique mentioned in above it is observed that proposed image fusion techniques provide higher PSNR compared to individual DWT, DCT based existing image fusion technique so proposed work is better for image quality than existing image fusion technique. Proposed technique has lower standard deviation and higher PSNR compared to existing DWT and DCT technique so proposed technique provide more quality image compared to existing technique.

6. FUTURE WORK

Proposed technique can be modified for further enhancement of image quality parameter of fused image and performances are calculated against different attacks. Till now, we have worked upon grey scale and coloured image but we can perform fusion on animated image and video as well in future.

REFERENCES

- James, Alex Pappachen, and Belur V. Dasarathy. "Medical image fusion: A survey of the state of the art." Information Fusion 19 (2014): 4-19.
- [2.] Abuturab, Muhammad Rafiq. "Multiple color-image fusion and watermarking based on optical interference and wavelet transform." Optics and Lasers in Engineering (2016).
- [3.] Galande, Ashwini, and Rahul Patil. "The art of medical image fusion: A survey." Advances in Computing, Communications and Informatics (ICACCI), 2013 International Conference on. IEEE, 2013.
- [4.] Li, Shutao, Bin Yang, and Jianwen Hu. "Performance comparison of different multi-resolution transforms for image fusion." Information Fusion 12, no. 2 (2011): 74-84.

- [5.] Stathaki, Tania.Image fusion: algorithms and applications. Academic Press, 2011.
- [6.] Miao, Qi-guang, Cheng Shi, Peng-feiXu, Mei Yang, and Yao-bo Shi. "A novel algorithm of image fusion using shearlets." Optics Communications284, no. 6 (2011): 1540-1547.
- [7.] Liu, Zheng, Erik Blasch, ZhiyunXue, Jiying Zhao, Robert Laganiere, and Wei Wu. "Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: a comparative study." IEEE transactions on pattern analysis and machine intelligence 34, no. 1 (2012): 94-109.
- [8.] Wang, Zhaobin, Yide Ma, and Jason Gu. "Multi-focus image fusion using PCNN." Patt
- [9.] Patil, Ujwala, and Uma Mudengudi. "Image fusion using hierarchical PCA." In image Information Processing (ICIIP), 2011 International Conference on, pp. 1-6. IEEE, 2011.
- [10.] K. Kannan and S. Arumuga Perumal "Fusion of Multifocus images using HDWT for Machine Vision." Indian Journal of Computer Science and Engineering (IJCSE) Vol 2, no. 5 (2011): 0976-5166.
- [11.] Rani, Kusum, and Reecha Sharma. "Study of different image fusion algorithm." International journal of Emerging Technology and advanced engineering 3, no. 5 (2013): 288-291
- [12.] Shivsubramani Krishnamoorthy and K P Soman "Implementation and comparative Study of image fusion algorithms". International Jornal Of Compuer Applications Vol 9, no. 2 (2010): 0975-8887
 [13.] PreetKaur, Geetulalit, "Comparative Analysis of DCT, DWT &
- [13.] PreetKaur, Geetulalit, "Comparative Analysis of DCT, DWT & LWT for Image Compression" International Journal of Innovative Technology and Exploring Engineering (IJITEE) Volume-1, Issue-3, August 2012.
- [14.] Sakkara, Sumanth, D. H. Akkamahadevi, K. Somashekar, and K. Raghu. "Integer wavelet based secret data hiding by selecting variable bit length."International Journal of Computer Applications 48, no. 19 (2012): 7-11.
- [15.] Nguyen, Nghia Q., and Richard W. Prager. "High-Resolution Ultrasound Imaging With Unified Pixel-Based Beamforming." IEEE transactions on medical imaging 35, no. 1 (2016): 98-108.
- [16.] Lu, Jun, Jonathan Li, Gang Chen, Linjun Zhao, BoliXiong, and GaoyaoKuang. "Improving pixel-based change detection accuracy using an object-based approach in multitemporal SAR flood images." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8, no. 7 (2015): 3486-3496.
- [17.] Lu, Jun, Jonathan Li, Gang Chen, Linjun Zhao, BoliXiong, and GaoyaoKuang. "Improving pixel-based change detection accuracy using an object-based approach in multitemporal SAR flood images." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8, no. 7 (2015): 3486-3496.

BIOGRAPHIES

Ms. Mamta Sharma is M.tech scholar in CSE from Rajasthan Technical University, Kota (GITS, Udaipur)

Ms. Sarika Khandelwal is an Associate Prof. M.Tech Dissertation guide in GITS, Udaipur. She done M.Tech from U.P. Technical University, Lucknow and her domain of research includes Biometric security & soft computing.