
IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5907 29

Design and Implementation of Spectrum

Analyzer

Monali Chaudhari
1
, Vaishali Kulkarni

2

PG Student, Department of Electronics and Communication Engineering, SKN Collage of Engineering, Pune, India
 1

Professor, Department of Electronics and Communication Engineering, SKN Collage of Engineering, Pune, India
 2

Abstract: Over the last couple of decades, different types of spectrum analyser were developed for numerous

applications in various fields, such as, measurement of spectral purity of multiplex signals, percentage of modulation of

AM signals, and FM modulation characteristics and pulse-modulated signals. The spectrum analyser is also used to

interpret the demonstrated spectra of pulsed RF radiated from a radar transmitter. A spectrum analyser is the primary

tool used for studying the spectral anatomy of numerous electrical and optical waveforms. The present day‟s spectrum

analyser is a vital portion of the engineer's toolbox. Which is used for the demonstrations of a power spectrum over a

given frequency range, altering the display as the assets of the signal modification. Here, we present the basic idea

around how the spectrum analyser works in a different environment, how it is efficient as compared to other type of

measuring instruments and all additional characteristics of the spectrum analyser. In the presence of many signals,

monitoring is very complicated to determine the performance of a system or device. The major components of

spectrum analyser and how it is used during analysing the performance of devices.

Keywords: Signal, Spectrum, Period gram, Fast Fourier Transform (FFT).

I. INTRODUCTION

Spectrum analyser is used for the measurement of an

amplitude of a signal with respect to frequency [1]. The

inputs for the spectrum analyser are electrical, optical,

vibration or acoustic signals generated from different

source undergoes analysis for measuring the performance

of the respective device. Spectrum analyser generally used

for testing and high frequency measurements purpose [2].

Spectrum analyser covers the frequency range of up to 40

GHz and beyond [3]. It is generally used in all wired and

wireless applications for development, installation,

production and maintenance [4]. In case of microwave

receivers, the signal strength is weaker than the noise and

of having a lower frequency cannot measure such signal

by using spectrum analyser in normal mode. It has a

facility to convert a signal having very low or very high

strength is converted into decibel (dB). In spectrum

analyser, lower frequency signals are modulated to convert

it into higher frequency components in the range of the

analyser. We can also analyse the performance of the

device or system by understanding the characteristics of

noise and its types by comparing it with other signals [5].

The section 2 presents the description of the analyser with

block diagram followed by Section 3 explains the

background essential for the analyser designing. Section 4

presents real time implementation. The conclusion is

drawn in section 5.

II. DESCRIPTION OF THE ANALYSER.

The data flow in this paper runs rather linearly. Initially,

the audio signal is inputted into the system through the

audio jack. This input signal is amplified and filtered to

reduce the noise and then it has been sent to the ADC

(Analog to Digital Convertor) of the microcontroller for

the further processing. Here we have used the 32-bit ARM

Fig 1. – Block diagram of audio spectrum analyser.

7TDMI RISM LPC 2148 microcontroller for the filtering.

The LPC2148 will sample the audio signal at a constant

rate and perform a Fast Fourier Transform (FFT) to

convert the signal into the frequency domain. This

frequency domain data is transmitted to the GLCD, which

processes the information into a histogram visualization in

real-time.

III. BACKGROUND

The most important and basic question is how the audio

signal are sampled and processed into the frequency

domain, it essential to understand many fundamental

signal processing concepts. It is also important to

understand how the sampling rate is determined. We used

an ADC channel on the FFT to sample the analog audio

input into discrete digital values. As per the Nyquist

Sampling Theorem, the sampling rate essential be twice as

that of the highest frequency of the sampled signalled to

prevent aliasing which will distort the signal. Another

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5907 30

most important factor is to understand how the acoustic

signal is converted from its original time domain form to a

frequency domain representation. The Fourier transform is

a mathematical algorithm that translates a time domain

signal into the frequency domain. Various types of Fourier

transforms are accessible depending on whether the input

is discrete or continuous and whether the output is to be

discrete or continuous. Since we are dealing with finite

digital systems, we elected to use the Discrete Fourier

Transform (DFT) which converts a discrete time domain

audio signal of a finite number of points N into a discrete

frequency signal of N points, referred to as frequency bins

afterword because each point represents a “bin” or range

of frequency content. There are multiple algorithms

available that are used to calculate the result of the DFT

faster than calculating the DFT directly using its defined

equation (while preserving the same exact result),

recognised as the Fast Fourier Transform or FFT. Many

FFT algorithms exist, but almost all of them uses recursive

divide-and-conquer techniques that reduce the O(N2)

computation time of the DFT O(Nlog2(N)). The large

numbers of points N, permits the increase in speed is very

significant in reducing calculation time particularly in

software applications. Because of its recursive nature, it is

usually necessary for N to be a power of 2. Use of a fixed-

point number based FFT algorithm adapted for software to

convert the discrete digital audio signal into a discrete

frequency bins.

IV. REAL TIME IMPLEMENTATION OF THE

ANALYSER

At the beginning, it is necessary to calculate the input bias

voltage offset for the analog audio signal to meet the

requirements. Hence, the two most important factor to be

consider for the calculations: the ADC reference voltage

and the range of the amplifier. The ADC reference voltage

is the voltage corresponding to the maximum value of the

ADC (1024) and any voltages above this returned the

maximum value. The Texas Instruments LM358 op-amp is

used as a main amplifier component along the ARM

7TDMI RISM LPC 2148 microcontroller for the digital

signal processing as shown in fig 2. A non-inverting

amplifier circuit, with the gain of the amplifying circuit is

equal to 1+(300kΩ/100kΩ) = 4. Furthermore, a low-pass

RC filter has used to remove frequencies above 4 kHz to

reduce aliasing. The RC time-constant corresponds to a cut

off frequency of about 3.7 kHz, but it has a slow drop off

and the RC filter transfer function doesn‟t reach values

below 0.5 until much higher cut off frequencies, thus we

wanted to set the cut-off slightly before our desired value

of 4 kHz. The software portion consistsof a code for the

FFT MCU. Here the oscilloscope required real-time

operation that had periodic Interrupt Service Routines

(ISRs) which occurred extremely precisely at equal time

intervals. In the software part the FFT MCU code

performs the ADC sampling of the audio signal, the FFT

frequency conversion and UART transmission of the

frequency data.

Fig 2 – ARM lpc2148 Board.

Regarding oursoftware setup, we used Keil uVision 4 to

build and write our code, and to program processor. We

also set our crystal frequency to 12 MHz.

Fig 3 – FFT Spectrum Output display unit.

The FFT MCU does the sampling of the modified signal

from the analog circuit whose output was fed into the

ADC0. In order to get accurate results, it must ensure that

the sample to the ADC port at precisely spaced intervals.

Since the ADC is running at 4.5 MHz and it takes 10 ADC

cycles having 2.44uS. The ADC set to „left adjust result‟,

so that all 10 bits of the ADC result were stored in the

AD0CR register. At a sample rate of 8 kHz, an ADC value

will be requested every 125uS, which means sufficient

time should be there for a new ADC value to be ready for

each requested time interval. The sample rate was set to be

cycle accurate at 8 kHz by setting the 12 MHz Timer 0

counter to interrupt at 1500 cycles

(12000000/8000=1500), and having the MCU interrupt to

sleep (slightly before the main interrupt) to ensure that no

other processes would be interfering with the precise

execution of the Timer 0 ISR where the ADC is sampled.

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5907 31

FFT conversion of the Audio Signal to Frequency Bins,

the ADC values are stored in a buffer of length 128 as

fixed-point FFT code which is maximized at a 128-point

operation, Because, the program may have crash due to

memory overflow for any larger FFT. A graphical LCD

(GLCD) for displaying the output shown in fig 3. As it is

always good have the more number of points possible

which results in more frequency bins and a more precise

frequency representation of the audio signal. This value of

128 is parameterized as N_WAVE in the code. The code,

with a subroutine called FFT fix, took two arrays of length

128, the real and imaginary components, and the base 2

logarithm of 128 for the number of FFT iterations

(recursions) to complete. The code performs the forward

transformation of the time domain to the frequency

domain of the input real and imaginary arrays, and return

the result in place in the same arrays that were inputted.

The fixed-point 32-bit numbers are used, where the high

order 16- bits represent the integer digits and the low order

16-bits represent the decimal digits. The code requires a

table of length 128 of one succession of a sine wave to be

executed in order to run the FFT and which is initialized in

the main method. Since the input array is purely real, the

128 length zero vector has been initialised to represent the

imaginary component of the input signal. It also included

several fixed-point number operation macros that perform

multiplication and convert various data types to fixed-

point format. In the main, program continuously waited

until the ADC buffer filled to 128 samples, and then it

immediately starts the FFT operation. Initially, the

imaginary buffers from the previous FFT operation makes

zeroed out, and then ADC buffer copied into an array

representing the real input. The window of real array with

a trapezoidal mask with side-slopes of 32 points are used

to remove any sharp cut offs at the end of the ADC buffer

which may introduce a high frequency content. Because,

ideally ADC input to be infinite and continuous but

Fourier transform must be finite in implementation, and

should have this is then shifted left by 16 to increase the

values of the FFT output.

Therefore, the ADC values copied into bits 17-24 of the

32-bit number. Since all the ADC values are purely

integers and the fixed-point FFT does not know whether

the input is decimal valued or not, it does not really matter

where data sits bitwise in the 32-bit fixed-point number

since the end result will be read as an integer and not a

fixed-point number. This real input array and a zeroed out

imaginary input array are the inputs to FFT. Here we have

only taken the magnitude information of the frequency

content of the signal in the consideration. Thus, the

magnitude of the frequency content by taking the sum of

the squares of both the real and imaginary frequency

outputs.

Theoretically to get the actual magnitude, it is necessary to

take the square root of the sum of squares, but since it is

just a scaling factor and too low in magnitude of the

frequency content, left it as the sum of squares. In the first

FFT code implementation lot of operations has been done

with integer operations and not with the fixed-point

operations, which implies incorrect frequency magnitude

data and caused output to look “noisy”. So, after switching

to the fixed point operation by using the fixed-point

macros, shows the much cleaner output and represents the

actual frequency content of the audio signal. It is tested by

hard coding a sine wave signal with known frequency and

viewing the frequency output to see if there is only one

non-zero frequency bin. Since the frequency content are

mirrored through middle of the FFT output, when the

input is purely real, only the first 64 points of the 128-

point output is relevant and stored. These 64 points

represents frequency bins. So as to only transmit and

display 32 frequency bins, depending on the frequency

range the to be display, either paired and combined

adjacent bins to form 32 bins of 125 Hz resolution (0-4

kHz range), or only transmit the first 32 bins (0-2kHz

range). Once this frequency magnitude content array

prepared, the data is ready to transmit to the GLCD.

Before, fully implementation of the code, the output of

FFT tested by just outputting 32 bin values as a text string

by using UART through USB port on PCB to PC by using

a serial connection at 9600 baud rate and viewed the

output using HyperTerminal. After the data transmission,

the ADC index set back to 0, So that program could start

to sample ADC values again into ADC buffer, overwriting

the old buffer‟s values.

V. CONCLUSION

With the extremely satisfying final results we are able to

meet the majority of our expectations set in the project.

We successfully implemented a fully functional audio

spectrum analyser which operates in real time mode and

accurately displayed the frequency content with a

histogram imagining of the input audio signal. By using

standard 3.5mm audio jacks or small mice as analog to

digital transducer along with very few components we

have built a low cost, very economical audio spectrum

analyser. Which may not only allow the users to view their

favourite music in a fun and interactive fashion, but it also

offers information about the music otherwise inaccessible.

REFERENCES

[1] S. M. Metev and V. P. Veiko, Laser Assisted Microtechnology, 2nd

ed., R. M. Osgood, Jr., Ed. Berlin, Germany: Springer-Verlag, 1998.

[2] Morris Engelson, “Modern spectrum analyzer: theory and
applications”, Artech House (1984).

[3] A. A. Abidi, “High-frequency noise measurements on FET's with
small dimensions” Electron Devices, IEEE Transactions, Vol. 33,

Issue 11 (1986).

[4] Mark Pelusi1, Feng Luan, Trung D. Vo, Michael R. E. Lamont,
Steven J. Madden, Douglas A. Bulla, Duk-Yong Choi, Barry

Luther-Davies and Benjamin J. Eggleton, “Spectrum analyzer

covers frequency range of up to 40 GHz and beyond. It is generally
used in all wired and wireless applications for development,

installation, production and maintenance, Nature Photonics 3, pp.

139 - 143 (2009).
[5] S. Thomas, N. S. Haider, “A Study on BASICS OF A SPECTRUM

ANALYZER”, IJAREEIE, Vol. 2, Issue 6 (2013).

[6] Frequency Domain and Fourier Transforms
https://www.princeton.edu/~cuff/ele201/kulkarni_text/frequency.pdf

