
IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5972 340

Understanding Domain-Driven Design,

Command Query Responsibility Segregation &

Event Sourcing and their importance in

Computer Architecture

Shailee Vora

B Tech Final Year in Computer Engineering, VJTI, Mumbai, Maharashtra, India

Abstract: The layered architecture which consists of UI, Business Logic and Database as the three sections of it, has

been proven to have quite a lot of issues with respect to scaling, maintenance and optimization. Here, I have explained

the basic idea behind Domain Driven Design (DDD), Command Query Responsibility Segregation (CQRS) and Event

Sourcing (ES) and how they can be leveraged for overcoming the shortcomings of the layered architecture.

Keywords: Domain Driven Design (DDD), Command Query Responsibility Segregation (CQRS), Event Sourcing

(ES), Business Logic and Database.

1. CONCEPTS

This section explains the three concepts this paper
presents, namely, DDD, CQRS & ES, and their working

with suitable diagrams where required.

a. Domain-Driven Design (DDD)

DDD is about trying to make your software a model of a

real-world system or process. This term was coined by

Eric Evans in his book by the same name. In using DDD,

you are meant to work closely with a domain expert who

can explain how the real-world system works. For

example, if you are building a stock market trading

system, your domain expert could be an experienced stock
trader. Between yourself and the domain expert, you build

a ubiquitouslanguage, which is basically a conceptual

description of the system. The idea is that you should be

able to write down what the system does in a way that the

domain expert can read it and verify that it is correct. In

our trading example, the ubiquitous language would

include the definition of words such as „stock‟, „market‟,

„future‟, „options‟ and so on.

The concepts described by the ubiquitous language will

form the basis of your object-oriented design. DDD

provides some clear guidance on how your objects should

interact, and helps you divide your objects into the

following categories [1]:

• Value objects, which represent a value that might have

sub-parts (for example, an address may have a street name,

town/city name, district name, state name, country name

and zip code/pin code).

• Entities, which are objects with identity. For example,

each Customer object has its own identity, so we know

that two customers with the same name are not the same

customer.

• Aggregate roots are objects that own other objects. This
is a complex concept and works on the basis that there are

some objects that don't make sense unless they have an

owner. For example, an 'Order Line' object doesn't make

sense without an 'Order' to belong to, so we say that the

Order is the aggregate root, and Order Line objects can

only be manipulated via methods in the Order object.

DDD also recommends several patterns:

• Repository, a pattern for persistence (saving and

loading your data, typically to/from a database)

• Factory, a pattern for object creation
• Service, a pattern for creating objects that manipulate

your main domain objects without being a part of the

domain themselves. When a significant process or

transformation in the domain is not a natural responsibility

of an Entity or Value Object, add an operation to the

model as standalone interface declared as a Service.

Define the interface in terms of the language of the model

and make sure the operation name is part of the

Ubiquitous Language. [2]

b. Command Query Responsibility Segregation (CQRS)
Many people think that CQRS is an entire architecture, but

they are wrong. CQRS is just a small pattern. This pattern

was first introduced by Greg Young and Udi Dahan. They

took inspiration from a pattern called Command Query

Separation (CQS) which was defined by Bertrand Meyer

in his book “Object Oriented Software Construction”. The

main idea behind CQS is: “A method should either change

state of an object, or return a result, but not both. In other

words, asking the question should not change the answer.

More formally, methods should return a value only if they

are referentially transparent and hence possess no side

http://en.wikipedia.org/wiki/Domain_expert
http://en.wikipedia.org/wiki/Abstract_factory_pattern

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5972 341

effects.” (Wikipedia) Because of this we can divide

methods into two sets:

• Commands - change the state of an object or entire

system (sometimes called as modifiers or mutators).
• Queries - return results and do not change the state of

an object.

In a real situation it is pretty simple to tell which is which.

The queries will declare return type, and commands will

return void. This pattern is broadly applicable and it makes

reasoning about objects easier. On the other hand, CQRS

is applicable only on specific problems. Many applications
that use mainstream approaches consists of models which

are common for read and write side.

Figure 1: CQRS flow

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5972 342

Having the same model for read and write side leads to a

more complex model that could be very difficult to be

maintained and optimized. The real strength of these two

patterns is that you can separate methods that change state

from those that don‟t. This separation could be very handy
in situations when you are dealing with performance and

tuning. You can optimize the read side of the system

separately from the write side.

The write side is known as the domain. The domain

contains all the behavior. The read side is specialized for

reporting needs. Another benefit of this pattern is in the

case of large applications. You can split developers into

smaller teams working on different sides of the system

(read or write) without knowledge of the other side. For

example developers working on read side do not need to
understand the domain model.

i. Query side

The queries will only contain the methods for getting data.

From an architectural point of view these would be all

methods that return Data Transfer Objects (DTOs) that the

client consumes to show on the screen. The DTOs are
usually projections of domain objects.

In some cases it could be a very painful process, especially

when complex DTOs are requested. Using CQRS you can

avoid these projections. Instead it is possible to introduce a

new way of projecting DTOs. You can bypass the domain

model and get DTOs directly from the data storage using a

read layer. When an application is requesting data, this

could be done by a single call to the read layer which

returns a single DTO containing all the needed data.

Figure 2: Query side example

The read layer can be directly connected to the database

(data model) and it is not a bad idea to use stored

procedures for reading data.

A direct connection to the data source makes queries very

easy to by maintained and optimized. It makes sense to de-

normalize data. The reason for this is that data is normally

queried many times more than the domain behavior is

executed.

This de-normalization could increase the performance of

the application.

ii. Command side

Since the read side has been separated the domain is only

focused on processing of commands. Now the domain

objects no longer need to expose the internal state.

Repositories have only a few query methods aside from

GetById.

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5972 343

Figure 3: Command side example

Commands are created by the client application and then
sent to the domain layer. Commands are messages that

instruct a specific entity to perform a certain action.

Commands are named like DoSomething (for example,

ModifyName, CreateOrder, DeleteOrder ...). Commands

are handled by command handlers [3].

iii. Event-Driven Architecture

Event-driven architecture (EDA), also known as message-

driven architecture, is a software architecture pattern

promoting the production, detection, consumption of, and

reaction to events.

An event can be defined as "a significant change

in state". For example, when a consumer purchases a car,

the car's state changes from "for sale" to "sold". A car

dealer's system architecture may treat this state change as

an event whose occurrence can be made known to other

applications within the architecture. From a formal

perspective, what is produced, published, propagated,

detected or consumed is a (typically asynchronous)

message called the event notification, and not the event

itself, which is the state change that triggered the message

emission. Events do not travel, they just occur. However,
the term event is often used metonymically to denote the

notification message itself, which may lead to some

confusion [Wikipedia]. In Figure 1, the Event Bus is used

for the propagation of these event notifications.

c. Event Sourcing

i. Why should one use ES?

You can use event-driven architecture to solve the

distributed data management challenges in a microservices

architecture. However, one major challenge with

implementing an event-driven architecture is atomically

updating the database and publishing an event. Consider,

for example, the Create Order use case. The service that

implements this use case must perform two operations:

insert a row into the ORDER table and publish an

OrderCreated event. It is essential that both operations are
done atomically. If only one operation happened because

of a failure then the system would behave incorrectly.

The standard way to do it atomically is to use a distributed

transaction involving a database and a message broker.

However, due to some drawbacks of this approach this is

exactly what we do not want to do.

ii. Working of ES

A great solution to this problem is an architectural pattern

known as event sourcing. The traditional way to persist an

entity is to save its current state. Event sourcing uses a

radically different, event-centric approach to persistence.
A business object is persisted by storing a sequence of

state-changing events. Whenever an object‟s state

changes, a new event is appended to the sequence of

events. Since that is one operation it is inherently atomic.

https://en.wikipedia.org/wiki/Software_architecture
https://en.wikipedia.org/wiki/Event_(computing)
https://en.wikipedia.org/wiki/State_(computer_science)
https://en.wikipedia.org/wiki/Metonymy

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5972 344

An entity‟s current state is reconstructed by replaying its

events. To see how event sourcing works, consider the

Order entity of an Online Transaction System.

Traditionally, each order maps to a row in an Ordertable

along with rows in another table like the Order_Line_Item

table. But when using event sourcing, the Order Service

stores an Order by persisting its state-changing events:

Created, Approved, Shipped, Cancelled. Each event would

contain sufficient data to reconstruct the Order‟s state.

Figure 4: Persistence of state changing events (OrderCreated, OrderApprovedetc)

Events are persisted in an event store. Not only does the

event store act as a database of events, it also behaves like

a message broker. It provides an API that enables services

to subscribe to events. Each event that is persisted in the
event store is delivered by the event store to all interested

subscribers. The event store is the backbone of event-

driven microservices architecture.

In this architecture, requests to update an entity (either an

external HTTP request or an event published by another

service) are handled by retrieving the entity‟s events from

the event store, reconstructing the current state of the
entity, updating the entity, and saving the new events.

Here is how the Order Service handles a request to update

anOrder.

Figure 5: UpdateOrder request handled by Order Service

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 9, September 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5972 345

iii. Other benefits of event sourcing

As you can see, event sourcing addresses a challenge of

implementing an event-driven architecture by getting rid

of the procedure of updating a database and then using

message brokers to publish events. Additional significant
benefits of persisting business events include the

following:

 100% accurate audit logging - Auditing functionality

is often added as an afterthought, resulting in an inherent

risk of incompleteness. With event sourcing, each state

change corresponds to one or more events, providing

100% accurate audit logging.

 Easy temporal queries - Because event sourcing

maintains the complete history of each business object,
implementing temporal queries and reconstructing the

historical state of an entity is straightforward. [4]

2. Relationship between DDD, CQRS & ES in a nutshell

a. Domain Driven Design and Command Query

Responsibility Segregation

The database connected to the writeside of the CQRS

system, has the domain model connected to it thereby

providing the benefits of DDD which are mentioned in

section 1.a to the CQRS system.

b. Command Query Responsibility Segregation and Event

Sourcing

The database connected to the write side of the CQRS

system is persistent storage and stores events as per the

rules of ES.

3. Need for DDD, CQRS & ES

a. Traditional layered approach has the database as the

single point of failure.

b. In a data driven approach of modeling data, there was
no way to carry out logging, auditing, tracing.

c. Each change in the database structure takes

exponentially more time than the previous one in the

layered approach.

d. The CAP theorem of distributed system, namely,

Consistency, Availability and Partitioning, cannot be

satisfied always as the size of data grows and the

transactions increase in number.

e. Read and Write optimization on the same database

can‟t be achieved.

f. Data is always stale and cannot be put to good use. [5]

4. Advantages of using DDD, CQRS & ES

a. The database is not a single point of failure when DDD

is used with CQRS and ES because events can be

recreated owing to the ES mechanism and the lost state

of the database can be recreated.

b. Logging, auditing, tracing etc can be carried out if ES

is used in the system.

c. When used together, they work with stale data to build

a performant distributed system.

d. Read side and write side databases are different, thus

optimizing each separately is possible.

e. Changes to the database structure don‟t take
exponential time because in DDD, to add a new

functionality to the software, a new domain is added

and connected to the existing domains instead of

having to modifying the existing domains.

5. Applications of DDD, CQRS & ES

a. Designing online shopping websites.

b. Designing the software for hospital management

systems.

c. Designing software‟s for banks.

REFERENCES

[1] Robert Knight, “Can Someone Explain DDD In Plain English

Please”, http://stackoverflow.com/questions/1222392/can-someone-

explain-ddd-in-plain-english-please/1222488#1222488

[2] Lev Gorodinski, “Services in Domain Driven Design”,

http://gorodinski.com/blog/2012/04/14/services-in-domain-driven-

design-ddd/

[3] Kanasz Robert, “Introduction to CQRS”, http://www.codeproject.

com/Articles/555855/Introduction-to-CQRS

[4] Eventutate, “Event Sourcing”, http://eventuate.io/whyevent

sourcing.html

[5] Eric de Carufel, “How DDD, CQRS and Event Sourcing constitute

the architecture of the future”, http://www.slideshare.net/

MSDEVMTL/how-ddd-cqrs-and-event-sourcing-constitute-the-

architecture-of-the-future

[6] Konrad Garus, “Achieving Consistency in CQRS with Linear Event

Store”, http://squirrel.pl/blog/2015/09/14/achieving-consistency-in-

cqrs-with-linear-event-store/

[7] Martin Fowler, “CQRS”, http://martinfowler.com/bliki/CQRS.html

[8] Martin Fowler, “Event Sourcing”, http://martinfowler.com/

eaaDev/EventSourcing.html

[9] Mahmud Hasan, “Domain Driven Design - Clear Your Concepts

Before You Start”, http://www.codeproject.com/Articles/

339725/Domain-Driven-Design-Clear-Your-Concepts-Before-Yo

BIOGRAPHY

Shailee Vora, a final year B. Tech Computer Engineering
student at Veermata Jijabai Technological Institute (VJTI)

Mumbai, Maharashtra, India. I had worked on a project in

an MNC as an intern where I had to understand the

concepts of DDD, CQRS and ES in order to begin with the

project that I had been assigned. The duration of the

internship was just a total of 8 weeks which meant I

needed to learn all these concepts very quickly, but I

figured how difficult it was to look up books and websites

to gain considerable proficiency over these concepts in

such a short time as each of these concepts is quite vast on

its own. Thus, the motivation behind writing this paper
was to make a concise reference material for readers

interested in this domain of computer architecture. I wrote

this paper with the aim to just give a basic insight into

these topics from my experience.

http://stackoverflow.com/questions/1222392/can-someone-explain-ddd-in-plain-english-please/1222488%231222488
http://stackoverflow.com/questions/1222392/can-someone-explain-ddd-in-plain-english-please/1222488%231222488
http://gorodinski.com/blog/2012/04/14/services-in-domain-driven-design-ddd/
http://gorodinski.com/blog/2012/04/14/services-in-domain-driven-design-ddd/
http://squirrel.pl/blog/2015/09/14/achieving-consistency-in-cqrs-with-linear-event-store/
http://squirrel.pl/blog/2015/09/14/achieving-consistency-in-cqrs-with-linear-event-store/

