
IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51012 68

A Hybrid Approach for GTS Using Min-Max

Algorithm on GPU and CPU

Dipali V. Patil
 1
, Kishor N. Shedge

 2

M.E. Student, Department of Computer Engineering, SVIT, Nashik, India 1

Assistant Professor, Department of Computer Engineering, SVIT, Nashik, India 2

Abstract: In field of the game theories and artificial intelligence Game-tree-search is the classical problem. The

general use of GTS algorithm is in the real time applications having much higher complexity like video games, chess,

connect4/connect6 etc. Different algorithms for game tree are used to search out the player's next best move on the

game tree in minimum time. Main focus of system is on increasing massive parallelism abilities of GPUs to accelerate

the speed of game tree algorithms and propose general parallel game tree algorithm on the GPUs. In game tree search,

GPU surpasses CPU if there is highest level of parallelism is achieved due to its searching is in BFS manner and CPU

is in DFS manner so that CPU didn‟t produce improvement. Here combination of DFS and BFS technique is main

focus and appropriate selection will be the depth-first-search on CPU and use breadth-first-search on GPU and looks

like hybrid CPU and GPU solutions.

Keywords: SIMD, MIMD, GPU, Connect6, Parallel Computing.

I. INTRODUCTION

Many applications [4] [5] [6] have get advantage from

the parallelism capability of GPU. Some AI issues will

be simply resolved by GPU due to its SIMD design special

for parallelism. GPU is stands for graphical process unit.

Single instruction multiple data (SIMD) design of system

having several process elements (PE) that perform

constant operation on multiple information points at the

same time and it exploits the information level parallelism.

On the SIMD, single instruction computations are
performed at a one time. CUDA development toolkit

supports the parallel work and enforced on GPU. In

Artificial Intelligence, game tree search is the

vital approach and GTS is employed to seek out the

best move for computer games. Parallel computation task

on the GPU is performed as a concurrently

execution thread blocks set. These are organized into a 1d

grid or 2d grid. 1d, 2d or 3d grid with every thread

selected by distinctive combination of indices. The

hardware schedules the execution of blocks on the

multiprocessors as units of thirty two threads referred to as

warps. Computing on graphics process units handles
computation just for computer graphics and handled by

GPU, however computation in applications historically

handled by the C.P.U.

A. Game Tree

Game tree is the directed graph whose nodes are positions

and edges are the moves. Complete game tree of game is

the game tree beginning at the initial position and having

all possible moves from every position. The Fig.1 shows

the primary two levels, within the game tree for the game

tick-tack-toe. Three choices of move has offered for 1st

player: in the center, at the edge, or in the corner and also

the second player has four choices for the reply

if 1st player played in the center, otherwise two choices

and game is continue. GTS is combinatorial problem thus

difficult to search out an optimum solution for many type

of games like Chess and Connect6; thus focus is use

better GTS algorithms to get close-optimal solutions.

Fig1 Game tree of tick-tack-toe

II. LITERATURE SURVEY

Since 1980‟s, number of parallel game tree search

algorithms have been proposed. Different algorithms for

the Game trees are described below.

Brockington and Schaeffer [9] were provide APHID:

Asynchronous parallel game tree searching method. For

finding out the minimax value as compare with the

synchronous algorithms, asynchronous algorithms are

better and efficient. APHID makes the algorithm easy to

integrate into a sequential game-tree-searching program.

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51012 69

In comparison with synchronous searching methods,

APHID having the better speedup.

P. Borovska and M. Lazarova [10] was proposed the

minimax algorithm. This algorithm for the game tree
search and divided into two stages i.e. first stage is for first

player i.e. computer. Second stage for the second player

i.e. human. The minimax algorithm try to find out the best

move for first player i.e. computer even if second player

i.e. human plays the best move over it. When it chooses

the computer move it maximizes the computer score, at

the other side minimizing that score by choosing the best

move for the human player when human move is choose.

M. S. Campbell and T. A. Marsland [11] was proposed the

algorithm that was negamax algorithm. Both the minimax

and Negamax algorithms are similar with only one slight
difference is that, it use the maximization function on

place of using both maximization and minimization

functions. That process is done by negating value that is

returned from children from the opponent's point of view

instead of searching for minimum score.

D. E. Knuth and R. W. Moore [12] was proposed the

algorithm that is Alpha Beta algorithm. This algorithm

form by doing some smart modification in the MiniMax

and NegaMax algorithms. Moore and Knuth proved the

things that is, time needed to search the tree can be

reduced by pruning the many branches of the game tree
and gives the same output as similar to the MiniMax or

NegaMax algorithm. In the alpha beta algorithm, cutting

the uninteresting branches of the game tree is the basic

idea.

V. Manohararajah [13] presented the principle variation

splitting algorithm. PVS is a tree based parallel GTS

algorithm using multiple processor. In this PVS algorithm,

the initial branch is marked by 1 as a principle node [24].

In game tree, nodes should be serially searched by first

processor P0 before beginning of parallel search of other
nodes. Other processor has to wait, for finishing the

searching of previous one. One‟s all processor finished

their task, best move to player return by PVS. Drawback

of PVS, processor who has completed their task needs to

wait for another processor.

V. Manohararajah [13] presented the Enhanced principle

variation splitting algorithm. EPVS avoid limitation of

PVS algorithm and use the multiprocessor platform. In the

EPVS algorithm, subtrees are assigned to idle processor

from other busy processor So that efficiency and

performance is increased. Extra communication overhead
will be comes along with EPVS method.

R. M. Hyatt [14] was proposed Dynamic Tree Splitting

algorithm for parallel GTS. Peer-to-peer model for multi-

processor systems is used for DTS. In this split-points list

(SP-LIST) were maintained by which all processors find

uncalculated nodes to process. DTS algorithm is usable

and scalable compared with PVS and EPVS.

III. MOTIVATIONS

Major goal of GTS is that finding the best move of the

player's that maximizes his/her probabilities of winning.

For several computer games, hard to search out an
optimum solution as a result of GTS may be a

combinatorial problem within the field of game theory and

it additionally having an exponential time complexity.

Hence, looking for close to optimum solution is very

important factor to accelerate the speed of GTS for real

time applications like real time games on computer. Main

motivation to use the GPU is that, it processes the

thousands of game tree nodes in parallel and plenty

of applications gets benefits from its parallelism

capability. GPU having a lot of computing power, low

power consumption and huge memory bandwidth; these
factors make them a lot of applicable. CPU have few cores

with various cache and it can handle only few software

threads at just the once however on the opposite

facet GPU having lots of core thus it can handle thousands

of threads in parallel. Thus it's necessary to research that

GTS will get benefit from GPU and compare with GPU-

based approach with CPU-based approaches

IV. PROPOSED SYSTEM

Some of the challenging problems arise when we are

working with GPU unit and according to previous studies
i.e. Low pruning efficiency of the parallel GTS algorithms,

Complexity of the algorithm design for SIMD

architecture, Low performance of divergence on GPU for

rule-based computer games. To solve these GTS

challenges, following node based parallel method to utilize

the potential of GPU can be utilized efficiently.

A. Node-based Approach

1. Adopt node-based parallel computing for the game tree

search.

The tree-based approach isn't suite for the GPU design.
The node based approach is assigning a group of nodes

from one or multiple subtrees to processors,

on other aspect the tree-based approach is assigned to

processors. The utilization of method isn't only taking

benefits of the high concurrency of GPU equally avoiding

the complexity of tree splitting.

2. Combination of depth-first searching and breadth-first

searching.

There are two strategies to search the tree, the depth-first

search and also breadth-first search. For GPU based

Game-tree-Search algorithm, choice is that the depth-first
search on CPU due to memory limit and use breadth-first

search on GPU. In BFS technique all threads evaluates

node in parallel and for DFS traversing tree structure.

3. Hybrid programming on both CPU and GPU.

Hybrid programming is achieved through GPU-CPU

combination severally, using BFS and DFS methods.

CPU is maintaining game tree structure and perform

depth first search on generated tree and conjointly

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51012 70

interacting with GPU. GPU takes tree nodes from the

CPU is responsible for evaluating all nodes in parallel that

is breadth first search is performed. Therefore, technique

is to use both CPU and GPU architecture in GTS

algorithmic program.

B. Architecture of the system

The most common goal of Game Tree Search is finding of

the players move so maximizes his probability of winning.

In Game tree, game is spitted into several number

of alternatives choices these are thought as possible moves

that is next move for the player. Several of the alternatives

of the games are computed as consecutive by processor in

depth first Search manner using tree-based approach.

Primarily tree based approach can‟t be simply employed

in GPU as a result of the SIMD technique on GPU. Node-
based approach is advantageous over tree-based approach

because of during which C.P.U generating the number

of possible trees contains the nodes and leaf. On the CPU,

creates the number of possible moves in the style of tree.

CPU is blaming for the the execution control and is

responsible for the maintaining a gametree structure. On

the GPU unit by number of threads, evaluation of all nodes

and leafs takes place. Exploiting this hybrid approach

takes a advantages of computation on the C.P.U. in

the DFS manner in addition as evaluation of nodes by the

GPU in a BFS manner.

Fig. 2. Architecture of system

Using such a combination of CPU and GPU the system
design is form as shown within the Fig. 2 Input for the

system in the form of problem data set referred to

as matrix that is provided as an input to CPU. Once the

matrix is provided as an input to the system, CPU

generates variety of possible trees contains the nodes as

well as leaf. CPU is performs operation like maintaining

the tree structure, processing data, generation of the all

nodes, and the tree pruning, conjointly performs checking

of leaf nodes, and in the end solution returned to root

node. Calculation of the many tree nodes is doing within

the same depth in the current game tree, that breadth-first

search (BFS). Additionally, every cycle in the search

process will take in deepest nodes of the present game tree
that is depth-first search (DFS). This means on DFS

approach CPU works to calculate the nodes, since

CPU will execute quicker as compare to GPU during this

situation. And on the BFS approach, GPU used for

calculating the branch and the leaf nodes within the

parallel.

C. Algorithm

Input:

Initial position of game tree search P0.

Output:
Best Move of player i.e. MBest.

Begin:

Step1: Set the P0 as root of the Game Tree Search

Step2: if Tree T Null

Step3: return

Step4: else

Step5: Tree formation/generation on the CPU

Step6: Node formation and structure maintain on the CPU

Step7 Depth First Search to process the tree and pruning

the redundant nodes

Step8: Leaves, branch nodes are assigned to the GPU to

calculate them concurrently
Step9: Calculates branch and leaf nodes in parallel as the

Breadth first search

Step10: Updates parent node i.e. P0

Step11: Returns result i.e. MBest

End:

V. EXPERIMENTAL RESULTS

For the connect4/connect6 game experiments are

performed on the machine with CPU configuration Intel

core i5 processor with 8GB RAM and GPU

Fig. 3. Time comparision CPU vs. GPU

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51012 71

configuration NVIDIA GEFORCE GTX680 with 46

CUDA cores and 1024 threads with 2GB memory. CUDA

version 6.2 is used for system.

Fig. 3 shows the time comparison CPU vs. GPU across the
parameters depth and width of tree for connnect4/connect6

game. As the depth of tree increase, GPU time goes on

decreasing and CPU time increases. Consider width of tree

7 in this case. CPU time exceeded as compare to the GPU.

Table I shows the time comparison CPU vs. GPU across

the parameters depth and width of tree for

connnect4/connect6 game. As the depth of tree increase

with constant width 10 for all values of depth, GPU time

goes on decreasing and CPU time increases.

TABLE I TIME COMPARISON CPU VS. GPU

Depth width GPU(time in ms) CPU(time in ms)

8 10 8.42 0.7

10 10 8.41 17.26

20 10 8.42 358.5

Time comparison CPU vs. GPU across the parameters

depth and width of tree for connnect4/connect6 game

showed in Table II. As the depth of tree increase with

constant width 12 for all values of depth, GPU time goes

on decreasing and CPU time increases.

TABLE II TIME COMPARISON CPU VS GPU

Depth width GPU(time in ms) CPU(time in ms)

2 12 45.47 0.009

5 12 44.23 0.194

10 12 44.53 377.05

VI. CONCLUSION

Main focus of the system design is on the Parallelization

of the Node based Game Tree Search Algorithms on CPU

and GPU. Parallel algorithm for game tree search

presented the approach that is node based approach for

gaining the fast optimal solution of the real time computer

games on the Graphics processor that is GPU. Using the

node based computing and combining the DFS and BFS

on the CPU-GPU units respectively.

With the help of this hybrid combination on the CPU and

GPU architecture, this approach taking the capability of
GPU for computing massive nodes parallely and CPUs

flexibility for tree pruning. This approach can be tested on

connect4/connect6 games and results show that node

based algorithm for parallel implementation gains the

speed over the serial implementation of the GTS.

Improving the more game tree GTS algorithm and applied

it with large scale cluster of GPU will be consider as

future work.

REFERENCES

[1] Liang Li, Hong Liu, HaoWang, Taoying Liu, Wei Li, “A Parallel

Algorithm for Game Tree Search using GPGPU”, IEEE Transaction

on Parallel and Distributed Systems, aug, 2015.

[2] K. Rocki and R. Suda, “Parallel minimax tree searching on GPU,”

in Parallel Processing and Applied Mathematics, vol. 6067, R.

Wyrzykowski, J. Dongarra, K. Karczewski, and J. Wasniewski,

Eds., Berlin, Germany: Springer, pp. 449–456, 2010

[3] D. Strnad and N. Guid, “Parallel alpha-beta algorithm on the GPU,”

Journal in Computing and Information Technology, vol. 19, no. 4,

pp. 269–274, 2011.

[4] X. Huo, V. T. Ravi, W. Ma, and G. Agrawal, “Approaches for

parallelizing reductions on modern GPU,” International Conference

on High Performance Computing (HIPC), pp. 1–10, 2010.

[5] W. Ma and G. Agrawal, “An integer programming framework for

optimizing shared memory use on GPU,” International Conference

on High Performance Computing, pp. 1–10, 2010.

[6] J. Soman, M. K. Kumar, K. Kothapalli, and P. J. Narayanan,

“Efficient Discrete Range Searching primitives on the GPU with

applications”, International Conference on High Performance

Computing (HiPC), pp. 1-10, 2010.

[7] C. E. Shannon, “Programming a computer for playing chess”,

Philosophical Magazine Series 7, 41(314):256-275, 1950.

[8] G. Karypis and V. Kumar, “Unstructured tree search on SIMD

parallel computers,” IEEE Transaction on Parallel and Distributed

Systems, vol. 5, no. 10, pp. 1057–1072, 1994.

[9] M. G. Brockington and J. Schaeffer, “APHID: Asynchronous

parallel game-tree search,” Journal of Parallel and Distributed

Computing, vol. 60, no. 2, pp. 247–273, 2000.

[10] P. Borovska and M. Lazarova, “Efficiency of parallel minimax

algorithm for GTS,” in Processing International Conference on

Computer Systems and Technologies, pp. 14:1–14:6, 2007.

[11] M. S. Campbell and T. A. Marsland, “A comparison of minimax

tree search algorithms,” report on Artificial Intelligence, University

of Alberta, Canada, vol. 20, no. 4, pp. 347–367, 1983.

[12] D. E. Knuth and R. W. Moore, “An analysis of alpha-beta pruning,”

Artificial Intelligence, vol. 6, no. 4, pp. 293–326, 1975.

[13] V. Manohararajah, “Parallel alpha-beta search on shared memory

multiprocessors,” Master„s thesis, Graduate Department of

Electrical and Computer Engineering, University of Toronto,

Toronto, Canada, 2001.

[14] R. M. Hyatt, “The dynamic tree-splitting parallel search algorithm,”

ICCA Journal, vol. 20, no. 1, pp. 3–19, 1997.

[15] M. G. Brockington, “A taxonomy of parallel game-tree search

algorithms,” ICCA Journal, vol. 19, pp. 162–174, 1996.

[16] R. M. Karp and Y. Zhang, “On parallel evaluation of game trees,”

in Proccesing 1st Annual ACM Symposium on Parallel Algorithms

and Architecture, pp. 409–420, 1989,

[17] H. Wang, S. Potluri, D. Bureddy, C. Rosales, and D. K. Panda,

“GPU-aware MPI on RDMA-enabled clusters: Design,

implementation and evaluation,” IEEE Transaction on Parallel and

Distributed System, vol. 99, 2014.

[18] J. E. McClure, H. Wang, J. F. Prins, C. T. Miller, and W. Feng,

“Petascale application of a coupled CPU-GPU Algorithm for

simulation and analysis of multiphase flow solutions in porous

medium systems,” in Processing 28th IEEE International Parallel

and Distributed Processing Symposium, pp. 583–592, 2014.

[19] K. Rocki and R. Suda, “Large-scale parallel monte carlo tree search

on GPU,” in Processing IEEE International Parallel and Distributed

Processing Symposium, pp. 2034–2037, 2011.

[20] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover, “GPU cluster

for high performance computing,” in Processing ACM/IEEE

Conference on Supercomputing, pp. 47–53, 2004.

[21] J. Zhang, H. Wang, H. Lin, and W. Feng, “cuBLASTP: Fine-

Grained parallelization of protein sequence search on a GPU,” in

Processing 28th IEEE International Parallel and Distributed

Processing Symposium, pp. 251– 260, 2014.

