
IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51046 228

Implementation of MESI Protocol Using Verilog

Penmetsa Durga Devi
1
, Tammineni Ravindra

2

M.Tech Student, ECE, GVPCOE (A), Visakhapatnam, India
1

Assistant Professor, ECE, GVPCOE (A), Visakhapatnam, India
2

Abstract: Multiprocessor system is a system which contains two or more processors working simultaneously and

sharing the same memory. Nowadays multiprocessors are being widely used due to their high throughput and

reliability. It is important to maintain data consistency in multiprocessor system as different processors may

communicate and share the data with each other. In multiprocessor systems caching plays a very important role. Cache

coherence is a major issue in multiprocessor systems. In this paper we have designed three direct-mapped caches and to

maintain cache coherence and data consistency among the processors we have used the MESI protocol. The MESI

protocol is invalidation based cache coherence protocol. In this protocol each cache block can be in one of four states

i.e., Modified, Exclusive, Shared and Invalid. In this protocol, whenever a processor writes into the local cache, all

copies of it in other processors are invalidated in order to maintain data consistency and cache coherence. The cache

design is simulated and synthesized using Xilinx ISE 14.7 Simulator and XST Synthesizer.

Keywords: Cache Coherence, Direct-mapped Cache, MESI, Xilinx.

I. INTRODUCTION

In recent years multiprocessors are gaining more

importance as they have better performance and reliability

than single processor systems. Multiprocessors with

shared memory are being used in the today’s computers

and researches [1]. Using the single address space the

processors can communicate among themselves because

address space is shared among the processors in

multiprocessor systems. So, same cache entry exists in

other processors as the address is being shared. The shared

memory multiprocessor system architecture is shown in

the Fig.1.Sharing of data among the processors is not a

problem during reading operation but it is a serious

problem during write operation. When one processor

writes a value to a location that is being shared, the

changed value has to be updated to all caches otherwise

the processors hold different data for the same location

which is called as cache coherence problem [2].

Consider three processors named P1, P2, P3 sharing a

same memory [3]. The processor P1 wants to read a value

at location X. It reads the value from main memory and

caches its value into P1. The processor P2 wants to read a

value at location X.

Fig. 1. Shared memory multiprocessor system

It reads the value from main memory and caches its value

into P2as shown in Fig.2. The processor P1 wants to write

a value to location X. This is shown in Fig.3. Now if

processor P3 performs read operation on location X. In p1

at location X, value stored is 10 and in p2 at location X,

the data stored is 5, therefore data inconsistency arises

when we perform write operation to a shared address

location. This is shown in Fig.4.

Fig. 2. P1, P2 reading values from memory

Fig. 3. P1 performing write operation in location X

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51046 229

Fig. 4. Data inconsistency in multiprocessor systems

The paper objective is to overcome the data inconsistency

and cache non-coherence in multiprocessor systems. To

obtain data consistency and cache coherence in

multiprocessor systems, MESI Protocol [4-6] is

implemented in this thesis work. In MESI protocol,

whenever a write operation to a shared location is

performed, an invalidate signal is issued by the cache

controller to all those caches containing same address

location as shown in the Fig.5, so that no stale data is read

by the processors.

Fig. 5. Cache coherence in multiprocessor systems using

MESI Protocol

II. CACHE MEMORY

Cache memory is being used in the modern computer

systems, to temporarily hold the currently accessed

contents of the main memory locations[7]. To the cache

the processor sends four input signals, they are

cpu_cac_add, cpu_cac_read, cpu_cac_data and

cpu_cac_wrt. To the processor the cache sends three

outputs they are cac_cpu_hit, cac_cpu_miss,

cac_cpu_data. If the processor requested address location

is not found in cache then the cache sends cac_mem_read,

cac_mem_add, cac_mem_data and cac_mem_wrt as

inputs to the memory. After data is fetched from memory,

the data is placed in the cache through mem_cac_data

signal sent by the memory to the cache as shown in the

Fig.6.

The memory that is designed in this paper is of 32bytes.

Therefore five address bits are required. Eight bytes size

direct mapped cache is designed in this paper.

Fig. 6. Architectural view

III. DIRECT MAPPED CACHE DESIGN

 In this cache organization, each location in main memory

can go in only one entry in the cache. One way set

associative cache is the other name for direct mapped

cache [8-9]. There is no replacement policy like least

recently used algorithm etc., in direct mapped cache

because there is only one cache entry. This is the simple

form of cache.

A. Cache entry structure

Cache row entries usually have the following structure:

Dirty(1 bit) Valid(1 bit) Tag(2 bits) Data(8 bits)

Fig. 7. Cache entry structure

 Dirty bit: The dirty bit is set, whenever a write

operation is performed on cache. The writing policy

that we have used in this paper is write-back policy.

In this policy writes are not immediately reflected to

main memory.

In this whenever a write operation is performed on

cache, it is marked dirty. If the cache line marked

dirty is evicted from cache block, the changed data is

written to that particular location in main memory

and the dirty bit is made to zero.

 Valid bit: The valid bit is used to know whether the

data present in the cache entry is valid or not. If the

data present in the cache entry is valid, then the valid

bit is set otherwise it is cleared.

 Tag: The part of the cache line that stores the address

of the block is called the tag field. Tags are added to

the cache entry along with data in order to supply the

remaining bits of address, which are used to

differentiate memory locations that are mapped to the

same cache block.

The CPU address is divided into index and tag. 32 bytes of

main memory is taken, so the 5 address bits are divided

into tag and index. The MSB 2 bits are tag bits and the

remaining 3 bits are index bits. This is shown in the Fig. 8.

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51046 230

Fig. 8. Cache hit

B. Operations performed on cache

 Four operations are performed on cache[10]. They are:

 Read hit: If the cpu_tag and the tag stored inside the

cache match with each other, then read hit is said to

occur.

 Read miss: If the cpu_tag and the tag stored inside the

cache does not match with each other, then read miss

is said to occur. As the required address is not present

in the cache, the processor sends the address and read

signal to the memory and after fetching the data, the

cache is updated with this data.

 Write hit: If the cpu_tag and the tag stored inside the

cache match with each other , then write hit is said to

occur and the dirty bit is set.

 Write miss: If the cpu_tag and the tag stored inside

the cache does not match with each other, then write

miss is said to occur. As the required address is not

present in the cache, the processor sends the address

and write signal to the memory and after writing the

data, the cache is updated with this data.

IV. MESI PROTOCOL

MESI Protocol is the commonly used invalidation

protocol. The processor’s cache line can be in any of the

four states [11-12]. The four states are Modified,

Exclusive, Shared and Invalid.

 Modified: This is the only copy in cache. The data

present in the cache is different from the data present

in the main memory. So, to indicate the data change in

cache, we are using a dirty bit. The dirty bit is set

whenever the data in the cache is changed. After

writing back the changed value to main memory, the

dirty bit is cleared.

 Exclusive: This is the only copy in the cache. The

data present in the cache is same as the data present in

the main memory. The data present in the cache is a

valid data.

 Shared: This copy is present in more than one cache.

The data present in the cache is same as main

memory. The data present in the cache is the valid

data.

 Invalid: If the requested location is not found in cache

then, the cache line is in invalid state. The cache line

is also in invalid state, if the data present inside the

cache line is not valid.

A. Operations performed on local caches:

1. Read hit

2. Read miss

3. Write hit

4. Write miss

The cache controller takes the following different actions

based upon the read or write signals sent by the CPU.

Read Hit:

The processor sends the read signal and address to the

cache, if the location is found in the cache then read hit is

said to occur. The cache line can be in any one of the three

states i.e., modified, exclusive and shared.

 If the location is found in the cache then based on the

states the controller takes the following actions:

a) M state: The controller returns the modified data to

the processor and there is no state change.

b) S or E states: The controller simply returns the value

and there is no state change.

Read Miss:

The processor sends the read signal and address to the

cache, if the location is not found in cache then read miss

is said to occur. Now the controller sends the read signal

and address to the cache2, if the location is found in the

cache2 then the controller puts this data to cache1 and

reads the value. If the location is not found in cache2 also,

then controller now sends the read signal and address to

the cache3. If the location is found in cache3, then that

data is placed in cache1. If the location is not found in

cache3 then the controller sends read signal and address to

main memory. After reading the value from memory, the

data is placed into cache1.

If the location requested by the processor is not found in

cache1, controller sends the read signal to remaining

caches. If location found in other caches then based on the

states the controller takes the following actions:

a) One cache has E copy: The controller puts this value

to the cache1 and changes both the cache line states to

shared state.

b) Several caches have S copy: The controller puts this

value to the cache1 and changes cache1 state to

shared state and leaves other states state to shared

state.

c) One cache has M copy: The controller puts this value

to cache1 and marks its state as shared. Now the other

cache modified value is copied back to memory and

its state is changed from modified to shared state.

d) No other caches have the copy: The controller reads

the value from memory and puts this value into

cache1 and cache1 state is marked as exclusive as this

the only cached copy

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51046 231

Write Hit:

The processor sends the write signal and address to the

cache, if the location is found in the cache, then write hit is

said to occur. After writing the new data to the cache, the

dirty bit is set. The dirty bit is cleared after writing back

this modified data to the main memory. During write

operation, if the cache line is in shared state then the

controller changes its other copies state to invalid state.

If the location is found in the cache then based on the

states the controller takes the following actions:

a) M state: The controller updates the local cache and

sets the dirty bit. The controller doesn’t change the

state.

b) E state: The controller updates the local cache and

controller changes its state from exclusive to

modified.

c) S state: The controller updates the local cache and

controller changes the local cache state to modified

and the controller changes other caches states from

shared to invalid.

Write miss:

The processor sends the write signal and address to the

cache, if the location is not found in the cache, then write

miss is said to occur.

a) No other copies in caches: The controller writes the

value to memory and it places this value to local

cache and marks its state as modified.

b) One cache has E copy or more caches have S copy:

The controller reads the value from memory and local

copy is updated and state is set to modified state. The

controller invalidates the other cache copies and

changes their state to invalid.

c) One cache has M copy: The controller after writing

back its value to memory its state is marked as

invalid. The local copy value is updated and the state

is set to modified.

V. SIMULATION RESULTS

In this paper the results are simulated using Xilinx ISE

14.7 Simulator.

A. Simulation results for single cache

Fig. 9. Cache Read hit and Read Miss

Fig. 10. Cache Write hit

Fig. 11.Cache write back mechanism

B. Simulation results for cache coherence in

multiprocessors using MESI Protocol.

Fig. 12. Cache coherence in multiprocessor system

VI. CONCLUSION

In recent years, multiprocessor systems are being widely

used. Multiprocessor systems are highly reliable and

economic when compared to uniprocessor systems.

Sharing of data among the processors is not a problem

during the read operation but it is a serious problem during

write operation. When one processor writes a value to a

location that is being shared, the changed value has to be

updated to all caches otherwise, the processors hold

different data for the same address. The major issue in

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51046 232

multiprocessor system is data inconsistency and cache

non-coherence. To overcome these drawbacks a MESI

cache coherence protocol is implemented in this paper.

The MESI is a four state, invalidation based protocol. We

have designed three caches and have implemented MESI

Protocol, to achieve cache coherence and data consistency.

REFERENCES

[1] Kalyani D. Kohle, U. M. Gokhale, Darshan Pendhari, “Design of

cache controller for multicore systems using parallelization
method”, Proceedings of 11th IRF international conference, June

2014.

[2] Dubois, Briggs,“Effects of cache coherency in multiprocessors”, in
IEEE Transactions on computers, vol. 31, issue-11, Nov 1982, pp.

1083-1099.

[3] David J.Lilja, “ Cache coherence in large scale shared memory
multiprocessors”, ACM Computing surveys, vol. 25, No.3, Sept.

1993, pp. 303-338.

[4] Daniel J. Sorin, Manoj Plakal, Anne E. Condon, ”Specifying and
verifying a broadcast and a multicast snooping cache coherence

protocol”, IEEE Transactions on parallel and distributed systems,

vol. 13, No. 6, June 2002.
[5] Kaushik Roy, Payan kumar, Meenatchi ,“Comparative study on

cache coherence protocols”, IOSR Journal of computer engineering,

vol. 17,issue. 3,Ver-1,May-June 2015, pp. 71-75.
[6] Xiantuo Rao, Teng Wang, Xin’an Wang, “A Low-Power and High-

efficiency Cache Design for Embedded Bus-based Symmetric

Multiprocessors”, 2013 IEEE conference, pages 1-4.
[7] Linda Null, Julia lobus, “The essentials of computer organisation

and architecture”,3rd edition, Jones and Bartlett learning.

[8] Pavan Shree B. V, Mrs. Anitha V, “ Design and implementation of

direct mapped cache memory with same tag bit

information”,International journal of computer science and mobile
computing, vol. 4,issue-6, June 2015, pp. 978-983.

[9] D.A.Patterison, J.I.Hennessy.1998.Computer organization and

design.4th edition.
[10] Zhenghong Wang and Ruby B. Lee,” A Novel cache architecture

with enhanced performance and security”, 41st IEEE international

symposium on microarchitecture, 2008, pp. 83-93.
[11] Sultan Almakdi, Abdul Wahab Alazeb, Mohammad Alshahari,

”Cache coherence mechanisms”, International journal of

engineering and innovative technology, vol. 4, issue-7, January
2015.

[12] Lubomir Ivano, New Rochelle, “Modelling and verification of

cache coherence protocols”, IEEE international symposium on
circuits and systems, vol. 5, may 2001, pp. 129-132.

