
IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51047 233

Application of Genetic Algorithms in Software

Testing Techniques

Dr. V. Sangeetha
1
, T. Ramasundaram

2

Head, Assistant Professor, Department of Computer Science, Periyar University College of Arts & Science,

Pappireddipatti, Dharmapuri, Tamilnadu, India
1

Assistant Professor, Department of Computer Science, Sri Vijay Vidyalaya College of Arts & Science, Nallampalli,

Dharmapuri, Tamilnadu, India
 2

Abstract: The ultimate aim of the software testing is to deliver a quality and reliable software product to end user. To

ensure software quality, we need an effective software testing, but it is not an easy job, we have to face certain issues

like an effective generation of test cases, prioritization of test cases and so on. To overcome these issues, various

techniques and methodology have been proposed. At present, automatic test case generation using evolutionary

algorithm has been the area of interest for many researchers. Genetic Algorithm (GA) is one of the evolutionary

algorithms whi1ch produce an optimal solution to any problem. In this paper, we are going to briefly discuss

applications of genetic algorithm in various software testing techniques.

Keywords: Genetic Algorithm, Software Development Life Cycle, Software Testing, Test Data

I. INTRODUCTION TO SOFTWARE TESTING

Software Testing is an activity in Software Development

Life Cycle (SDLC) where the errors remaining from all

the previous activities must be detected. Hence, Software

testing performs a vital role in SDLC for ensuring

software quality and reliability. During testing, system‟s

behaviour is monitored, so that we determine whether or

not there is a failure. Testing can only reveal the presence

of faults, not their absence [1].

Verification and validation processes can also be used to

checking the software that whether or not it meets its

requirement specification and the functionality expected

by the user. Verification is made to ensure that the

software meets specification and is related to structural

testing whereas validation is related to the functional

testing and is made by executing software under test [2].

The ultimate goal of verification and validation processes

is to establish confidence that the software system is „fit

for purpose‟ [3].

There are different kinds of software testing techniques.

Broadly, there are two basic types of testing techniques:

Black box testing and White box testing. Black Box

Testing is also called functional testing because this

testing is only concerned with the functionality of the

software being developed.

White box testing is also called structural testing in which

only concern is internal structure of the software. In white

box testing, path testing considers 1.Control flow testing -

it tests all possible paths of the control flow graph. 2. Data

flow testing - during testing, it tests the definitions of

variables and their subsequent use.

Fig.1 Basic Types of Software testing

Testing can be done either manually or automatically by

using tools. As per as quality, performance, and cost of

software development are a concern, it is found that

automatic testing is better than manual. However, very

few automatic test case generating tools are available

today.

Various types of techniques have been proposed for

generating test cases automatically. Recently, a lot of work

is being done for automatic test cases generation using soft

computing techniques like fuzzy logic, neural networks,

Genetic Algorithm, and evolutionary computation

providing keys to the problem areas of software testing.

Genetic Algorithm often gives an optimal solution to all

type of problems. Genetic Algorithm is an emerging

methodology for automatic test case generation for various

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51047 234

types of testing techniques. In this paper, various software

testing techniques which perform using Genetic

Algorithms are presented.

II. INTRODUCTION TO GENETIC ALGORITHMS

Genetic algorithm (GA) is a kind of evolutionary

algorithms. It is a general purpose and robust optimization

technique based on the way nature evolves species using

the natural selection of the fittest individuals. The possible

solutions to the problem are represented by a population of

chromosomes.

A chromosome is a string of binary digits and each one

digit that creates a chromosome is called a gene. This

initial population can be totally random or can be created

manually using the greedy algorithm. The pseudo code of

a basic algorithm for GA is as follows [4].

Fig. 2 The Pseudo code for basic GA Algorithm

GA uses three operators on its population which is

described below:

A. Selection

To determine how individuals are preferred for mating

based on their fitness values is done by selection scheme.

First, the fitness values can be defined as the capability of

an individual to survive and reproduce in an environment.

Fitness values calculated using fitness function proposed

in the algorithm. Weights are used to find the relative

contribution of a path to the fitness calculation. In

consequence, more weight is assigned to a path which is

more “critical”.

Selection scheme generates the new population from the

old one, thus starting a new generation. Every

chromosome is evaluated in present generation to

determine its fitness value. This fitness value is used to

select the better chromosomes from the population for the

next generation. The fitness function is using here is

F = wi

n

i=1

Where, wi = weight assigned to i
th

 edge on the path under

consideration

The algorithm works by assigning weights to the edges of

Control Flow Graph on the basis of the importance of path

in which the edge lies. Higher weights are assigned to the

edges of the path corresponding to the critical section of

the code for example branch statements, loops, control

statements etc. for which testing is necessary. After all the

fitness function values are intended, the possibility of

selection pj for each path j, so that

pj = Fj / Fj

n= initial population size

ck = pj

k

j=1

Then cumulative possibility ck is measured for each path k

with an equation [5][6].

B. Crossover or Reproduction (Recombination)

After selection, the crossover operation is applied to the

selected chromosomes. It involves an exchange of genes

or sequence of bits in the string between two individuals.

Crossover happens according to a crossover possibility pc,

which is an adjustable parameter. For each parent selected,

generate a random real number r in the range [0, 1]; if r <

pc then select the parent for crossover. After that, the

selected data are formatted randomly. Each pair of parents

generates two new paths, called offspring.

The crossover technique used is one point crossover done

at the midpoint of the input bit string. After crossover, the

mutation operator is applied to a randomly selected subset

of the population [5].

C. Mutation

Mutation is performed on a bit-by-bit basis. Mutation

alters chromosomes in small ways to introduce new good

traits. It is applied to bring diversity in the population.

Every bit of every chromosome in the offspring has an

equal chance to mutate (change from “0” to “1” or from

“1” to “0”), and the mutation occurs according to a

mutation possibility pm, which is also an adjustable

parameter.

To perform mutation, for each chromosome in the

offspring and for each bit within the chromosome,

generate a random real number r in the range [0, 1]; if r <

pm then mutate the bit.

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51047 235

III. GENETIC ALGORITHM IN SOFTWARE

TESTING TECHNIQUES

In this section, we will discuss in detail about the

applications of Genetic Algorithm in various testing

techniques [7]. Software testing is an optimization

problem to minimize the number of test cases and

minimize the time, cost and effort. And also increase the

quality of the software.

A. Applications of GA in White Box Testing

White Box Testing is used to test internal structure of a

program. It includes statements, conditional statements,

loop statements. Structural testing aims to achieve the test

cases that will force the desired coverage of different

structures. In some of the research work discuss the code

coverage, data flow testing, control flow testing and

mutation testing using Genetic Algorithm.

1).Control Flow Testing or Path Testing:

Praveen Ranjan Srivastava and Tai-Hoon Kim [8], has

been proposed a technique for identifying the most critical

path clusters in a program using the genetic algorithm to

generate test cases. This approach uses a weighted CFG

(Control Flow Graph). Path testing searches a suitable test

case that covers every possible path in the program to find

out the errors. If the program has loops, then there will be

an infinite number of the path.

To cover each path, we need a large number of test cases,

it becomes computationally impractical. Since it is

impossible to cover all paths in the program, the path

testing selects a subset of paths to execute and find test

cases to cover it. CFG selects an independent path for a

new set of statements or condition. While testing, every

independent path must traverse at least once.

S.Keshavarz and Reza Javidan [9], Proposed a new

technique using Genetic Algorithm to generate test data. In

coverage path testing, a test data is good data if causes to

an independent traversal of a path. The main worry about

the software testing is automatic and ordered generation of

data is mandatory and sufficient for testing. Data is a

mandatory and sufficient only if it causes a traversal on an

independent path. For that, we offer a systematic and

automated procedure to generate data necessary and

sufficient test of a program based on program control flow

graph and the covered aim of critical edges.

Yeresime Suresh and Santanu Ku Rath [10], Worked on

automated test data generation using GA. Here the test

data defined as the population in GA. In initial population,

each individual bit string (chromosome) is a test data. This

set of chromosomes is used to generate test data for

feasible basis paths. The procedure for generating test data

for feasible basis paths using GA is coded using

MATLAB. It randomly generates the initial population,

evaluates the individual chromosome based on the fitness

value and applies the GA operations such as selection,

crossover, and mutation to produce next generation. This

iterative process stops when the genetic algorithm finds

optimal test data.

2). Data Flow Testing:

Moheb R. Girgis, Ahmed S. Ghiduk, and Eman H. Abd-

Elkawy[11]. Worked on automatic test path generation

based on two proposed GA-based and PSO-based

techniques that cover the all-uses criterion for the program

under test. These two techniques do their search by

constructing new paths from previously generated paths

that are evaluated as effective test paths. Then, we

presented a GSO-based technique that effectively

combines the proposed GA-based and the PSO-based

techniques to improve the individual's score for natural

selection of the fitness and for good knowledge sharing at

the same time.

In each iteration of the proposed GSO algorithm, the

population is divided into two parts and they are evolved

with the two techniques respectively. They are then

recombined in the updated population, that is again

divided randomly into two parts in the next iteration for

another run of genetic or particle swarm operators.

Na Zhang, Biao Wu and Xiaoan Bao [12], Proposed a

method for generating test data automatically using Multi-

Population Genetic Algorithm. The algorithm defined the

concept of external pressure which as the degree of

competition between individuals. Fully considering the

influence of coverage, branch condition and degree of

competition between individual species of three aspects,

and give different weights, we design a fitness function to

evaluate the merits of the individual species.

Janvi Bandlaney, Rohit Ghatol, Romit Jadhwani [13],

Presented a paper on an introduction to data flow testing.

In his paper, they generated the idea of a control flow

testing. According to them, control flow diagrams are a

keystone in testing the structure of software programs. By

examining the flow of control between the various

components, they designed and selected test cases. Data-

flow testing is a control-flow testing technique which also

examines the life cycle of data variables. The main goal of

their paper is to discuss the concept of data-flow testing

and applying it to a running example.

B. Application of GA in Black Box Testing

Black box testing is which testing the functionality of

software and software full fill their specification and user

requirement. In some research performed, functional

testing and regression testing using Genetic Algorithm.

1). Functional Testing

Francisca Eanuelle [14] has presented a GA-based

technique to generate good test plans for functionality

testing in an unbiased manner to avoid the expert's

interference. The motivation behind this work is to prove

that the GA is able to generate good test plan although the

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51047 236

best sequence of the test plan is unknown. The test plan or

test sequence totally relies on the experts or the people

who understand the application well.

The emphasis is given on the fact that “an error in a

program is not necessarily due to the last operation

executed by the user but may have been due to a sequence

of previously executed operations that leads an application

in an inconsistent state”.

In other words, as a sequence of operations is executed,

the state of inconsistency is non-decreasing or a problem

in a software application is directly proportional to the

level of inconsistency of the state in which application is.

In this work, the operation of large granularity has been

chosen so that the sequence of operation that leads

application to the inconsistent state can be identified.

Ruilian Zhao, Shanshan lv [15], used the neural network

and GA for the functional testing. The neural network is

used to create a model that can be taken as a function

substitute for the SUT. The emphasis is given on the

outputs which exhibit the important features of SUT than

inputs. In that case, test cases should be generated from

the output domain rather than input domain.

The feed forward neural network and backpropagation

training algorithm are used for creating a model. The

neural network is trained by simulating the SUT. The

outputs generated from the created model are fed to the

GA which is used to find the corresponding inputs so that

automation of test cases generation from output domain is

completed.

In this paper, inputs to the GA are the function model

generated from the neural network, a number of input

variables n, range of input variables that is upper [n] and

lower [n], population size, maximum iteration number,

goal output g, maximum fitness function f, crossover

probability and mutation probability.

The fitness function is defined as max where c is the actual

output and the g is the goal output of the SUT. The

population is evaluated by applying GA.

The difference between goal output and the actual output

of SUT using the neural network is used for calculating

fitness value of the individuals in the population. If fitness

value exceeds or reaches the maximum fitness value, then

search stops and the current individual is taken as the test

inputs for the corresponding outputs.

2). Regression Testing

N. Kaushik, M. Salehie, L. Tahvildari, and S. Li, M.

Moore [16], proposed a paradigm called Dynamic

Prioritization which involves changing the order of test

cases during the testing process. Since the test case pool

changes through the development cycle, the list of

prioritized test cases would change as well.

A. Kaur, S. Goyal [17] proposed a new Genetic Algorithm

to prioritize the regression test suite is introduced that will

prioritize test cases on the basis of complete code

coverage. The genetic algorithm would also automate the

process of test case prioritization.

A. Jiang, Y. Mu, Z. Zhang [18], Selects the test cases that

can test part of changes and then do the reduction for these

selected test cases. In addition to the methods mentioned

in this section, a large number of methods were proposed

in the past. A good survey of test case prioritization

methods, as well as algorithms for optimal test sequence

analysis, can be found in [19] and [20].

IV. CONCLUSION

Various techniques have been proposed for test case

generation; however, no one could achieve the best

performance for every piece of code. Test case generation

becomes an optimization problem today. So, there are

scope remains open for applying some more technique to

achieve a better result.

A Genetic algorithm is one such optimization technique.

In this paper, the applications of genetic algorithm in

various software testing techniques have been discussed.

This will pave the path for further work in this direction.

REFERENCES

[1] Pankaj Jalote, An integrated approach to software engineering, 3rd

edition, Springer

[2] Paul C. Jogersen, Software testing: A craftsman approach. 3rd
edition, CRC presses, 2008.

[3] Ian Somerville, Software engineering, 9th edition, Pearson, 2011.

[4] Goldberg, D.E, Genetic algorithms: in search, optimization and
machine learning, Addison Wesley, M.A, 1989.

[5] Klir, G.J., Yuan, B.: Fuzzy sets and fuzzy logic: Theory and

applications. Prentice-Hall Inc., Englewood Cliffs (1995)
[6] Last, M., Eyal, S.: A Fuzzy-based lifetime extension of genetic

algorithms. Fuzzy sets and systems 149(1), 131–147 (2005).

[7] Chayanika Sharma, Sangeeta Sabharwal, Ritu Sibal, Software
testing techniques using genetic algorithm, IJCSI International

Journal of Computer Science Issues, Volume 10, Issue 1,2013,

1694-0784
[8] Praveen Ranjan Srivastava and Tai-hoon Kim, Application of

genetic algorithm in software testing, International Journal of

Software Engineering and Its Applications Volume 3,Issue 4,2009
[9] S. Keshavarz and Reza Javidan, Member, IACSIT, Software quality

control based on genetic algorithm, International Journal of

Computer Theory and Engineering, Vol. 3, No. 4, August 2011
[10] Yeresime Suresh and Santanu Ku Rath, A genetic algorithm based

approach for test data generation in basis path testing, The
International Journal of Soft Computing and Software Engineering

[JSCSE], Vol. 3, No. 3, Special Issue: e-ISSN: 2251-7545, March

2013.
[11] Moheb R. Girgis, Ahmed S. Ghiduk, and Eman H. Abd-Elkawy,

Automatic data flow test paths generation using the genetical

swarm optimization technique, International Journal of Computer
Applications (0975 – 8887) Volume 116 – No. 22, April 2015.

[12] Na Zhang, Biao Wu and Xiaoan Bao, Automatic generation of test

cases based on multi-population genetic algorithm, International
Journal of Multimedia and Ubiquitous Engineering Vol.10, No.6

(2015).

[13] Janvi Bandlaney, Rohit Ghatol, Romit Jadhwani, An introduction to
data flow testing, NCSU CSC TR-2006.

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51047 237

[14] Francisca Emanuelle et. al., “Using genetic algorithms for test plans
for functional testing”, 44th ACM SE proceeding, 2006, pp. 140 -

145.

[15] Ruilian zhao, shanshan lv, “Neural network-based test cases
generation using genetic algorithm” 13 IEEE international

symposiums on Pacific Rim dependable computing. IEEE, 2007,

pp.97 - 100.
[16] N. Kaushik, M. Salehie, L. Tahvildari, S. Li, M. Moore (2011)

“Dynamic prioritization in regression testing” IEEE fourth
international conference on software testing, verification and

validation workshops, pp: 135-138

[17] A. Kaur, S. Goyal (2011) “A genetic algorithm for regression test
case prioritization using code coverage”, International journal on

computer science and engineering, vol. 3, pp:1839-1847

[18] A. Jiang, Y. Mu, Z. Zhang (2010) “Research of optimization

algorithm for path-based regression testing suite”, 2nd IEEE

International workshop on education technology and computer

science, pp:303-306
[19] R. Kavitha, N. S. Kumar (2010) “Test case prioritization for

regression testing based on severity of fault” (ijcse) international

journal on computer science and engineering Vol. 02, No. 05, pp:
1462-1466

[20] S. Raju, G. V. Uma (2012) “Factors oriented test case prioritization

technique in regression testing using genetic algorithm” European
Journal of Scientific Research, Vol.74, No.3, pp. 389-402.

BIOGRAPHY

T.Ramasundaram was born in

Dharmapuri, Tamil Nadu (TN), India,

in 1982. He received the B.Sc.egree in

Computer Science from the Periyar

University, Salem, Tamilnadu, India,

in 2003 and the M.Sc. degree in

Computer Sciencefrom the Periyar

University, in 2005, and M.Phil degree from the Periyar

University, in 2009. He is currently pursuing the Ph.D.

degree with the Department of Computer Science, Periyar

University. His research interests include Software

Engneering and data mining.

