

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified Vol. 5, Issue 10, October 2016

Coin Based Automated Blood Sugar Level Monitoring System for the Public

Vishesh S¹, Manu Srinath¹, Jnanesh Kumar N², Karthik P Gubbi³, K Sri Krishna³, Mohan M⁴,

Gaurav Rai Chattarki⁵

B.E, Department of Telecommunication Engineering, BNM Institute of Technology, Bangalore, India¹

B.E, Department of Electronics and Communication Engineering, BNM Institute of Technology, Bangalore, India²

Student, Department of Telecommunication Engineering, Dayananda Sagar College of Engineering, Bangalore, India³

Student, Department of Mechanical Engineering, RV College of Engineering, Bangalore, India⁴

Student, Department of Electronics and Communication Engineering, BNM Institute of Technology, Bangalore, India⁵

Abstract: In this paper, we propose a blood sugar level monitoring system (blood glucose monitoring) for the public which is easy to use, automated, coin based and prints instant results. Blood glucose monitoring is a way of testing the concentration of glucose in the blood (glycaemia). Particularly in the case of diabetes mellitus, a blood glucose test is performed by piercing the skin (typically on the finger) to draw blood and then applying the blood on to a chemically active disposable 'test strip'[1]. Most people with diabetes mellitus are advised to monitor their blood glucose level at least twice or thrice in a day or even more in cases where the patients have very high blood sugar levels. This can be done at home or hospitals. The present cost of monitoring blood sugar level at hospitals in India ranges from Rs 50 to Rs 100. If an individual wants self monitoring of blood glucose level at home, the device named "Glucometer" may cost him up to Rs 2500 (approximately) and the cost of each test strip ranges from Rs 30 to Rs 50. This will be a costly affair for people who are suffering from diabetes mellitus and cannot afford the above luxury. So, we have developed a coin based blood glucose monitoring system for the public. By inserting a Rs 5 or Rs 10 coin, one can easily monitor the blood glucose level. This machine can be placed in public places like municipality offices, community buildings, hospitals, etc. The machine is automated and even an illiterate person can operate it and obtain the test results. We have designed a system which is light weight, compact and user friendly. Also the needles used for piercing is of "one time use", sterile and will be disposed after every single use making the device safe and risk free.

Keywords: blood sugar level monitoring, glycaemia, test strip, diabetes mellitus, Glucometer, "one time use", sterile.

I. INTRODUCTION

Diabetes Mellitus (DM), commonly referred to as As the disease progresses, a lack of insulin may also diabetes, is a group of metabolic diseases in which there develop. This form was previously referred to as "non are high blood sugar levels for a prolonged period [2]. The insulin-dependent diabetes mellitus" (NIDDM) or adultsymptoms of high blood sugar levels include frequent onset diabetes the primary cause is excessive body weight urination, increased thirst and increased hunger. If left and inadequate exercise [3]. untreated, diabetes can cause further complications. [3] • Gestational diabetes is the third main form and occurs Acute complications include diabetic ketoacidosis, when pregnant women without a previous history of nonketotic hyperosmola coma or death [4]. Serious long term complications include heart diseases, stroke, chronic kidney failure, foot ulcers and damage to the eyes [3].

Diabetes is caused either due to insufficient insulin produced by pancreas or the cells in the body not responding to the insulin properly [5].

There are three main types of diabetes mellitus:

• Type 1 DM results from the pancreas's failure to produce enough insulin. This form of DM was previously referred to as "insulin-dependent diabetes mellitus" (IDDM) or "juvenile diabetes". The cause is unknown [3]. • Type 2 DM begins with resistance to insulin, a condition in which cells fail to respond to insulin properly.

diabetes develop high blood sugar levels.

Type 1 DM may be treated with insulin injections. [3] Type 2 DM may be treated with medication and with or without insulin doses. [7] Gestational diabetes usually resolves after the birth of the baby. [8] For treatment and maintaining healthy levels of glucose/sugar in the body, one has to monitor blood sugar levels frequently. According to World Health Organization, DM has become one of the most fatal diseases in the world if left untreated and without frequent monitoring of the same.

As of 2015, an estimated 415 million people had diabetes worldwide, [9] with type 2 making up about 90% of cases. [10][11] This represents 8.3% of the adult population, [12] with equal rates in both men and women. [13] Diabetes at

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

least doubles the risk of early death. [3] From 2012 to most significant symptoms of diabetes. Table 1 shows the 2015, approximately 1.5 million to 5 million deaths each comparison between type 1 and type 2 diabetes. [10] year resulted from diabetes. [7][9] Figure 1 shows the Figure 2 shows the rates of diabetes worldwide in 2000.

Table 1 Comparison between Type 1 and Type 2 Diabetes

Feature	Type 1 Diabetes	Type 2 Diabetes
Onset	Sudden	Gradual
Age on Onset	Mostly in Children	Mostly in Adults
Body Size	Thin or Normal	Often Obese
Ketoacidosis	Common	Rare
Autoantibodies	Usually present	Absent
Endogenous Insulin	Low or Absent	Normal, decreased or increased
Concordance in Identical Twins	50%	90%
Prevalence	~10%	~90%

Table 2 Epidemiological studies of type 2 diabetes in Northern region of India

Ν	orth India		Urb	an		Rural	
Place	Year of Publication	Ν	Age	Prevalence (%)	Ν	Age	P (%)
Chandigarh	1966	3486	30+	2.9	-	-	-
Lucknow	1973	2190	20+	1.1	-	-	-
Delhi	1974	2291	20+	2.7	-	-	-
Delhi	1986	6878	20+	3.1	-	-	-
Delhi	1991	2572	20+	4.1	992	20+	1.5
Delhi	1991	-	-	-	999	20+	0.4
Punjab	1994	-	-	-	1100	30+	46
Srinagar	2000	1538	40+	5.2	4045	40+	4.0
Delhi	2001	532	18+	10.3	-	-	-
Delhi	2001	2300	20+	11.6	-	-	-
Jaipur	2003	1091	20+	12.3	-	-	-
Jaipur	2004	458	20+	16.8	-	-	-
Rajasthan	2004	-	-	-	882	20+	1.8
Delhi	2005	2122	20-59	15.0	-	-	-
Jaipur	2007	1127	20+	20.1	-	-	-
Nagpur	2007	-	-	-	924	30+	3.7

Table 3 Epidemiological studies of type 2 diabetes in Southern region of India

S	outh India		Urt	an		Rura	l
Place	Year of Publication	N	Age	Prevalence (%)	Ν	Age	P (%)
Hyderabad	1966	21396	20+	4.1	-	-	-
Chennai	1966	5030	20+	5.6	-	-	-
Pondicherry	1968	2694	20+	0.7	-	-	-
Hyderabad	1972	-	-	-	2006	20+	2.4
Gangavati	1990	-	-	-	765	30+	2.2
Trivandrum	1991	-	-	-	1488	20+	1.3
Chennai	1992	900	20+	8.2	1803	20+	1.3
Chennai	1997	2183	20+	11.6	-	-	-
Chennai	1999	1198	20+	7.6	-	-	-
Trivandrum	2000	518	20+	12.4	-	-	-
Bangalore	2001	1359	20+	12.4	-	-	-
Chennai	2001	1668	20+	13.5	-	-	-
Hyderabad	2001	1427	20+	16.6	-	-	-
Chennai	2003	1262	20+	12	-	-	-
Chennai	2006	2350	20+	15.5	-	-	-

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Godavari	2006	-	-	-	4535	30+	13.2
Kochi	2006	3069	18-80	19.5	-	-	-

Table 4 Epidemiological studies of type 2 diabetes in Eastern and Western regions of India

India		Urban			Rural		
Place	Year of Publication	Ν	Age	Prevalence (%)	Ν	Age	Prevalence (%)
			Eastern	Region			
Kolkata	1975	4000	20+	2.3	-	-	-
Kolkata	1991	-	-	-8.2	2375	20+	0.8
Guwahati	1998	1016	20+	11.7	-	-	-
Kolkata	2001	2378	20+	-	-	-	-
		,	Western	Region			
Mumbai	1963	18243	20+	1.5	-	-	-
Mumbai	1966	3200	20+	2.1	-	-	-
Ahmedabad	1991	-	-	-	1294	20+	3.9
Mumbai	2001	520	20+	7.5	-	-	-
Mumbai	2001	2084	20+	9.3	-	-	-
Sindhudurg	2006	-	-	-	1022	20+	9.3

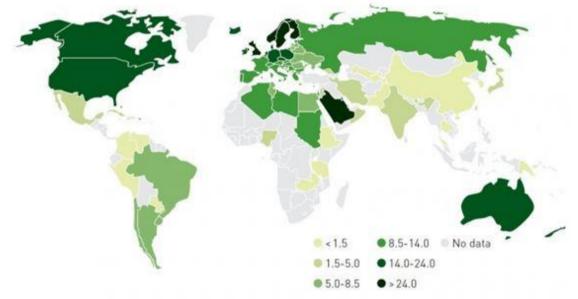


Fig. 7 New case of type 1 diabetes in children 0 to 14 years per 100,100 children per year, 2011

among males and females respectively (as per 2014 study). [15] Table 2, table 3 and table 4 show Epidemiological studies of type 2 diabetes in Northern, Southern Eastern and Western regions of India. Figure 7 shows new case of type 1 diabetes in children 0 to 14 years per 100,100 children per year, 2011. [14] Figure 8 shows global prevalence estimates of diabetes by 2025.

As per graphical and statistical data presented above, there is a serious need for blood sugar monitoring and treatment at the right time and with the right approach. Figure 9 shows the unrelenting march of diabetes. [16] We have developed a coin based, automated blood glucose

Figure 3 shows prevalence estimates of diabetes for 2007. monitoring system. Sterile needles are loaded into the Figure 4 shows DM deaths per million persons in 2012. machine for pricking the finger of a person. Up to 96 Figure 5 and Figure 6 show diabetes prevalence in India needles can be loaded into the machine at a time and the needles are of one time use thereby eliminating the risk of any infections. A person can monitor blood glucose level in just 2.5 to 3 minutes after initializing the machine by inserting a coin through the coin slot. We have used glucometer strips for blood sample collection which is directly connected to the glucometer and instant values appear on the LED/LCD display and printed report is generated. Once the strips become empty, there is a signal for reloading the strips. Also, a warning signal pops up as soon as the number of needles reaches a specified minimum level. Even a poor person can insert a coin and monitor the blood glucose level and obtain an instant report.

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Fig. 1 Most significant symptoms of diabetes

Since these machines are placed in public places, anyone can access this facility with ease. Also, it is user friendly and a fast paced result is obtained thereby reducing the time spent in the queue.

II. BACKGROUND

Self monitoring of blood glucose level is essential to optimise glycaemic control in diabetes mellitus. Since the proposed model in this paper will be easily accessible to the public, user friendly and inexpensive, self monitoring can be augmented. Also printed reports can be generated which can be filed and a consultation with a diabetologist or a physician could almost make a person live a healthy and risk free life.

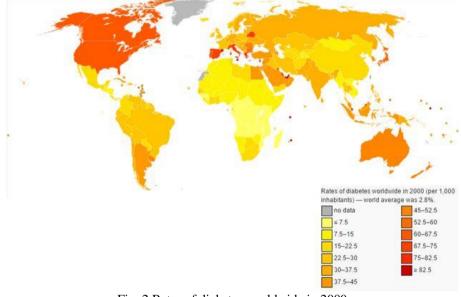


Fig. 2 Rates of diabetes worldwide in 2000

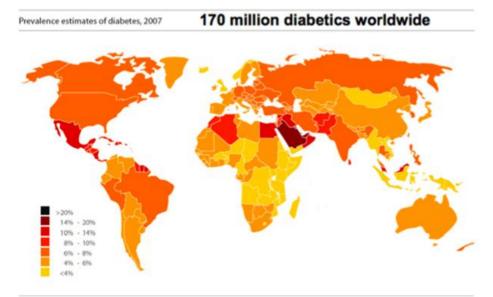


Fig. 3 Prevalence estimates of diabetes for 2007

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified Vol. 5, Issue 10, October 2016

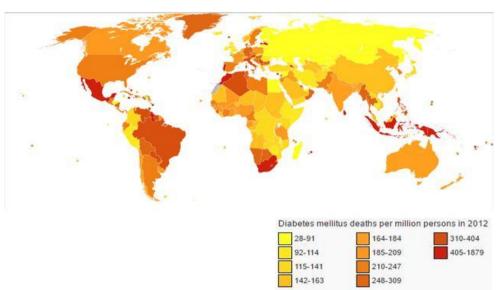


Fig. 4 DM deaths per million persons in 2012

Fig. 8 Global prevalence estimates of diabetes by 2025

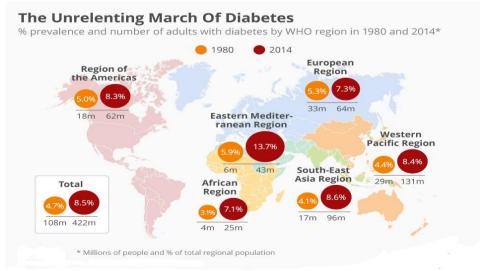


Fig. 9 the Unrelenting March of Diabetes

SOURCE: DIABETES ATLAS THIRD EDITION, © INTERNATIONAL DIABETES FEDERATION, 2006

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

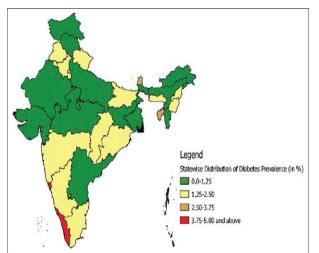


Fig. 5 Diabetes prevalence in India among males (as per 2014 study)

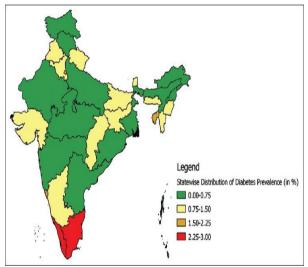


Fig. 6 Diabetes prevalence in India among females (as per 2014 study)

III.METHODOLOGY

A. Schematic Diagram

The schematic diagram of the coin based automated blood sugar level monitoring system is as shown in figure 10.

It consists of a programmable coin acceptor [16] into which a person can insert Rs 5 or Rs 10 coin (for rural and urban areas respectively) in the coin slot. By inserting the coin, the system gets initiated and is ready to perform. The coin collector collects the coin and can be emptied from time to time. A microcontroller is used to dictate the actions to each and every device of the system, thus making blood glucose level monitoring completely automated.

We have designed a cylindrical needle package as shown in figure 11 which consists of twelve 22mm x 15 mm slots. It is designed to be 320 mm in length and 170 mm in diameter. The cylinder can hold a maximum of 96 sterile, one-time use needles for piercing (each of the 12 slots can

hold a maximum of 8 needles). The cylinder is rotated by 22.5 degrees each time to pick a new sterile needle. We have employed a robotic arm as shown in figure 12 to fetch the needle from the slot in the cylinder, to place it in the needle holder and dump the pin into the bin after usage.

Once an appropriate coin is detected by the coin detector, the system is initiated and a sterile needle is fetched from the cylindrical package and is placed in the needle holder by the robotic arm. And the person is asked to press the button in the needle and consequently his/her finger is pierced from which a drop of blood can be used to measure blood glucose level.

Our system consists of a glucometer which is loaded with test strips and one strip pops out each time. Now the person can place the pierced finger on to the test strip and blood glucose value is obtained and displayed on the display screen of the glucometer (the unit being mg/dl).

The test report can be obtained from the printer which is employed in the system as shown in the schematic diagram. We have employed an LCD instruction display to guide the user for self monitoring of the blood glucose level. We have also provided a bin to collect the used test strips and needles to avoid infections. The system also has power and reset buttons. The system needs an AC power supply. The whole system is controlled by a timer and each person gets about 2 to 3 minutes to monitor his or her blood glucose level. The timer is vital in order to make our system systematic and to reduce the "stand in queue" time of the public.

B. System Design and Working

In this section, we discuss in detail, the system design and the working of each and every entity we have mentioned in the previous section. When a person inserts a coin, the system is initiated or ready to use. For this purpose, we have made use of a programmable coin detector/acceptor (which can accept up to three different types of coins) as shown in figure 13 and we employ a coin collector for collection or deposition of coins which can be emptied from time to time. The machine indicates when the coin collector is full and cannot accept any more coins. The connections to the programmable coin detector/acceptor are as shown in figure 14.

When the system is initiated, the servo motor rotates the cylindrical needle package by an angle of 22.5 degrees each time. The construction and dimensions of the needle package is as shown in figures 15. Figure 16 shows the cut section view of the cylindrical needle package. Each hollow cuboidal slot attached to the cylinder of the needle package consists of 8 sterile needles. Figure 17 and figure 18 show the cuboidal slot and the sterile needle used in the process (before piercing). The nose of the needle pops out of the cylinder so that it can be pulled down by the robotic arm and into the needle holder.

ISSN (Online) 2278-1021 ISSN (Print) 2319 5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

IJARCCE

ISO 3297:2007 Certified Vol. 5, Issue 10, October 2016

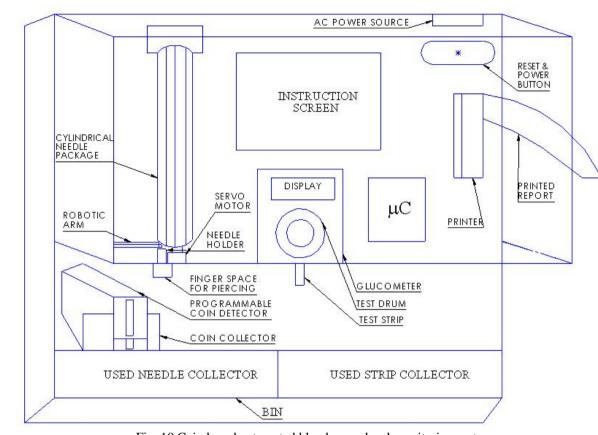


Fig. 10 Coin based automated blood sugar level monitoring system

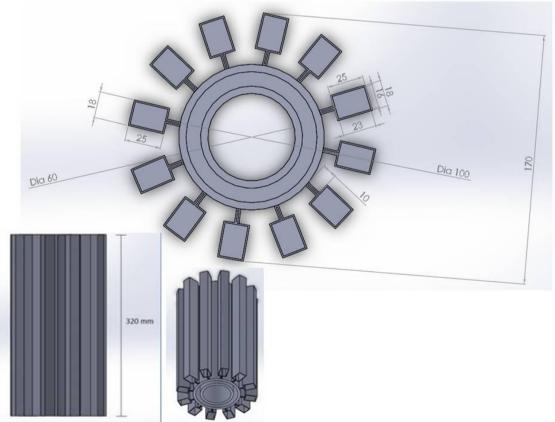
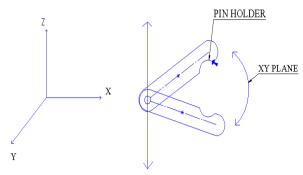


Fig. 11 Cylindrical Needle Package

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016



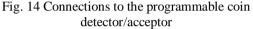


Fig 12 Robotic Arm

The robotic arm and the needle placed in the needle holder are as shown in figures 12 and 19 respectively. Within 3 to 4 seconds after the coin is inserted, a sterile needle is fetched and placed in the needle holder. The person has to now place the finger at the space provided for piercing as shown in figure 10 and here the person gets his or own time to press the button in order to pierce a finger. This is essential in order to allow proper piercing. And once the button is pressed, a test strip comes out of the glucometer. Once the finger is pierced and the blood comes out, it has to be placed on the test strip which absorbs the blood by capillary action and the blood glucose level in mg/dl is displayed on the glucometer screen. All these functions are controlled by the microcontroller. Also, there is a LCD instruction screen which guides the user throughout the process of self monitoring and is as shown in figure 20. The printer generates a report with date, time and blood glucose value. After a period of 2-3 minutes, the entire system goes into sleep mode in order to save power and the process continues with each insertion of coin by users. A reset button is provided in order to reset the system if anything goes wrong in the process of monitoring. A power button which is essential is provided to shut down the system completely.

An alarm system is developed in order to sound an alarm when the coin bin and bin used to collect the used needles and strips are full.

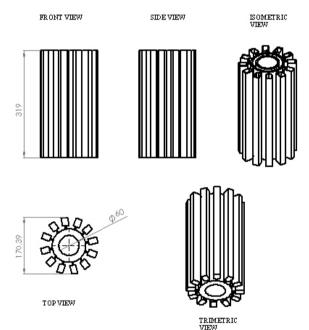


Fig. 13 Programmable Coin Detector

Fig. 15 construction and dimensions of the needle package

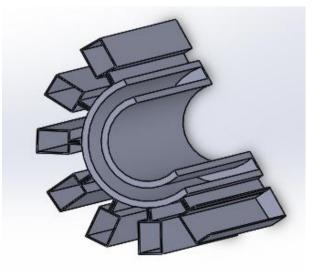


Fig 16 Cut section view of the cylindrical needle package

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

An alarm system is also provided in order to indicate when the test strips and needles are empty and need replacement. A provision is made to replace the cylindrical needle package and the cylindrical drum holding the test strips after they are empty.

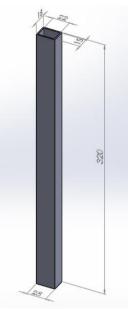


Fig. 17 Cuboidal slot

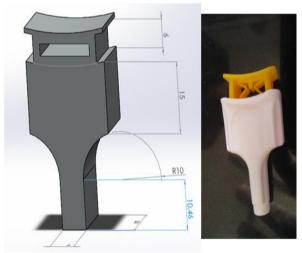


Fig. 18 Sterile needle package (before using)

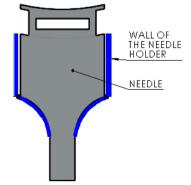


Fig. 19 Needle placed in the needle holder

Fig. 20 LCD Instructions Screen

C. Instructions Set (to the Users and Handlers)

a) On the instructions screen:

- Insert coin
- Press here
- Add blood to the strip
- Empty the bin
- Out of needles
- Out of strips
- Time out
- Insert paper roll
- Collect report
- Fatal error
- Out of paper
- Error
- Sorry try again

b) On the glucometer display:

- Insert the test drum
- Error
- Invalid test strip
- Invalid decoder
- Low battery
- Set date
- Set time
- Insert blood
- Processing

IV.RESULTS

The differences between estimation of glucose in whole blood by glucometer, our device and serum glucose by glucose oxidase method are as shown in the table 5. Figure 21 shows venous blood sampling and our design uses whole blood method of blood glucose monitoring.

Although the whole blood method is not as accurate as venous blood sampling, it is the best method for self monitoring, instant and anytime monitoring of blood glucose level. Our design makes the method of whole blood sampling easily accessible to the public, inexpensive

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

and produces printed reports for the consultation with the d) Evaluate whether influencing factors may account for concerned doctor. The error factor can be corrected. To obtain blood glucose in serum from figures in whole blood, it is multiplied by a factor of 1.15. This error factor e) Take action if a consistent pattern of glucose levels may be decreased with improved techniques of whole blood monitoring.

With the development of glucose meters, patients could adjust the dose of their insulin to achieve near physiologic control as possible. Patients with type 2 diabetes could modify carbohydrate intake and exercise to also achieve better glycemic control. The American Diabetes But to do so, glucometers would have to have much more Association (ADA) advises most people with diabetes to maintain blood glucose levels as close to normal as expensive. When it comes to health outcomes, experts possible. Frequent blood glucose must be interpreted by agree that accuracy at every blood glucose level is less healthcare professionals so that the patients can be guided important than the accuracy at levels for which a wrong toward safer and more targeted glycemic control. So to number is most likely to cause a clinical error. Those are achieve this, an automated coin based blood glucose monitoring system can be employed and provide open access to public.

A person can monitor his/her blood glucose level as shown in table 6. This can be made possible by following these basic steps in pattern recognition and management:

- a) Identify the target blood glucose levels before and after meals (i.e., 80 to 120 mg/dl pre-meal and <140 mg/dl, 2 hours after eating).
- b) Perform self-blood glucose monitoring (SBGM) at the same time each day. Record any factors that can possibly influence the blood glucose levels, such as timing of the test in relation to the meal, carbohydrate intake, drug dosage, activity level and illness.
- c) Look for patterns of glucose above or below target range on 3 or more consecutive days, or low readings lasting 2 days.

- glycemic patterns, and
- above or below a target is identified.

V. DISCUSSIONS

Many people want their glucometers to have laboratorylevel accuracy, which is understandable.

complicated technology which could get exceptionally the results that might encourage you to make a possible harmful decision about not treating hypoglycemia (low blood glucose) or dosing too much of insulin for what appears to be high blood glucose.

Fig. 21 Venous blood sampling

Day	Before breakfast	2 Hours After breakfast	Before lunch	Before dinner	Bedtime
Monday	-	81	127	234	92
Tuesday	128	203	78	281	167
Wednesday	123	-	-	170	375
Thursday	93	-	-	-	-
Friday	45	-	153	177	253
Saturday	-	135	-	-	95
Sunday	87	-	-	107	123
Monday	58	163	200	83	132
Tuesday	113	160	136	335	102
Wednesday	-	156	-	143	-
Thursday	118	-	-	-	104
Friday	74	115	158	202	315
Saturday	267	160	163	210	180
Sunday	-	156	-	124	-

Table 6 Daily self monitoring of blood glucose level to achieve glycaemic control

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

 Table 5 Differences between estimation of glucose in whole blood by glucometer, coin based automated blood sugar

 level monitoring system and serum glucose by glucose oxidase method

Point of comparison	Whole Blood by Glucometer	Whole blood by coin based automated blood sugar level monitoring system	By glucose oxidase method (venous blood sampling)
Region of blood collection	Finger (preferred)	Finger (preferred)	IV line of the patient
Results	Instant	Instant	Takes time
Test strips	Needed	Needed	Not needed
Cost	Rs 50 to Rs 100 per test	Rs 5 to Rs 10 per test	Rs 50 to Rs 100
Self monitoring	Yes	Yes	No
Automated	No	Yes	No
Expenditure for glucometer	Yes (Rs 1000 to Rs 2500 approx)	No (since it is public property, it can be shared)	No
Accuracy	Less accurate when compared to glucose oxidase method	Less accurate when compared to glucose oxidase method	Comparatively accurate
Printed report	No	Yes	Yes
Need for reagents	No	No	Yes
Public accessibility	No	Yes	Present only at hospitals and PHCs

TARGETS FOR BLOOD GLUCOSE CONTROL

TARGETS FOR BLOOD GLUCOSE CONTROL

The ideal target values for a good glycemic control should be as follows

Fasting Plasma Glucose Rectangular Ship	70 – 130 mg/dl
2 hrs Post food Plasma Glucose	135 - 180 mg/dl
1 hr Pre food Plasma Glucose	90 - 130 mg/dl
HbA1c	<6.5 %
Blood Pressure	130/80 mmHg
Total Cholesterol	Less than 200 mg/dl
LDL Cholesterol	Less than 80 mg/dl
HDL Cholesterol	More than 40 mg/dl in Men. More than 50 mg/dl in Women.
Triglycerides	Less than 150 mg/dl

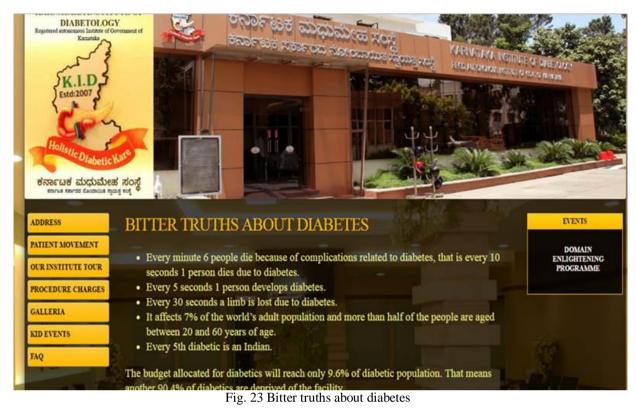

*The above values are as per International Standards Regular monitoring of blood sugars at home with the help of a glucometer is recommended and also maintenance of a SMBG (Self Monitoring of Blood Glucose) chart, which should be showed to your Diabetologist during every visit.

Fig. 22 Targets for blood glucose control

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

VI.CONCLUSIONS

The proposed "Coin based automated blood glucose level [2] monitoring system" would be a boon to the public, who can monitor their blood glucose levels by themselves to achieve glycemic control. It is a compact, inexpensive and user-friendly device for self monitoring of DM. Also the generated reports can be filed and by consultation with a diabetologist or a physician, one can live a healthy life. Figure 22 shows the targets for blood glucose control which are international standards of regular monitoring of blood sugars at home with the help of glucometer [17]. By achieving glycemic control, one can avoid the other adverse effects of DM such as those mentioned in earlier. Figure 23 shows the bitter truths diabetes [17]. As they say "Health is wealth" and "Prevention is better than cure". [8]

ACKNOWLEDGMENT

We would like to express our sincere gratitude towards **Dr HS Manjula, MD and Dr Ruthwik Rajanna** for guiding us in our research and providing research materials for the same. Further, we would like to thank Karnataka Institute of Endocrinology for providing us data on Type-1 and Type-2 Diabetes Mellitus and present system of monitoring the same. We would also like to thank our friends and colleagues. This accomplishment would not have been possible without them. [13]

REFERENCES

[1] "glucometer test-strip"- http://engineering.mit.edu/ask/how-doglucometers-work

- [2] "About diabetes"- World Health Organization. Retrieved 4 April 2014.
- [3] "Diabetes Fact sheet N°312" WHO, October 2013- Archived from the original on 26 Aug 2013. Retrieved 25 March 2014.
- Kitabchi, AE; Umpierrez, GE; Miles, JM; Fisher, JN (Jul 2009). "Hyperglycemic crises in adult patients with diabetes." Diabetes Care. 32 (7): 1335–43. doi:10.2337/dc099032. PMC 2699725. PMID 19564476.
- [5] Shoback, edited by David G. Gardner, Dolores (2011). "Chapter 17". Greenspan's basic & clinical endocrinology (9th ed.). New York: McGrawHill Medical. ISBN 0071622438.
- [6] RSSDI textbook of diabetes mellitus. (Rev. 2nd ed.). New Delhi: Jaypee Brothers Medical Publishers. 2012. p. 235. ISBN 9789350254899.
- [7] "The top 10 causes of death Fact sheet N°310". World Health Organization. Oct 2013.
- [8] Cash, Jill (2014). Family Practice Guidelines (3rd ed.). Springer. p. 396. ISBN 9780826168757.
- [9] "Update 2015". IDF. International Diabetes Federation. p. 13. Retrieved 21 Mar 2016.
- [10] Williams textbook of endocrinology (12th ed.). Philadelphia: Elsevier/Saunders. pp. 1371–1435. ISBN 9781437703245.
- [11] Shi, Yuankai; Hu, Frank B (7 June 2014). "The global implications of diabetes and cancer". The Lancet. 383 (9933): 1947–8. doi:10.1016/S01406736(14)608862. PMID 24910221.
- [12] Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V, et al. (Dec 15, 2012). "Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010.". Lancet. 380 (9859): 2163– 96. doi:10.1016/S01406736(12)617292. PMID 23245607.
- [13] "Annual Report 2014" (PDF). IDF. International Diabetes Federation. Retrieved 13 July 2016.
- [14] Epidemiology of type 1 diabetes- http://www.diapedia.org/type-1diabetes-mellitus/2104085168/epidemiology-of-type-1-diabetes
- [15] Diabetes prevalence in india among males and femaleshttp://www.ijem.in/article.asp?issn=2230-8210;year=2014; volume =18;issue=1;spage=124;epage=125;aulast=Kumar

International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

- [16] The unrelenting march of diabetes- http://www.managedcaremag. com/archives/2016/5/who-diabetes-no-longer-rich-country-problem
 [17] Kanalta la latitata of Diabata language http://www.managedcaremag.
- [17] Karnaktaka Institute of Diabetology http://www.kidbangalore.in

BIOGRAPHIES

Vishesh S who hails from Bangalore (Karnataka) has completed B.E in Telecommunication Engineering from VTU, Belgaum, Karnataka in 2015. His research interest includes embedded systems, wireless communication and medical electronics. He is also the founder of the firm 'Konigtronics'.

Manu Srinath who hails from Bangalore (Karnataka) has completed B.E in Telecommunication Engineering from VTU, Belgaum, Karnataka in 2015. His research interests include networking, image processing and cryptography

Karthik P Gubbi, pursuing (7th sem) B.E in Telecommunication Engineering at Dayananda Sagar College of Engineering, Bangalore. His research interests include image processing and digital signal processing.

Mohan M who hails from Bangalore (Karnataka) is pursing B.E in Mechanical Engineering at RV College of Engineering, Bangalore. His area of interest in research is design and analysis of mechanical models and systems.

Jnanesh Kumar N hails from Bangalore (Karnataka). He has completed B.E in Electronics and Communication Engineering from VTU, Belgaum, Karnataka in 2015. His areas of interest include Digital electronics and Internet Engineering.

K Sri Krishna hails from Manthralaya (Andhra Pradesh). He is currently pursuing BE in Telecommunication Engineering at Dayananda Sagar College of Engineering, Bangalore. His area of interest in research is Networking.

Gaurav Raj Chattarki hails from Gulbarga (Karnataka). He is currently pursuing BE in Electronics and Communication Engineering at BNM Institute of Technology, Bangalore. His areas of interest in research include Feedback Systems and Aerospace Engineering.