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Abstract: Event-related fMRI allows estimation of the hemodynamic response associated with transient brain 

activation evoked by various sensory, motor and cognitive events. Choosing a sequence of events that maximizes 
efficiency of estimating the Hemodynamic Response Function (HRF) is essential for conducting event-related brain 

imaging experiments. This paper presents a comparative analysis of two different paradigms of event-related fMRI 

using MATLAB platform. The distinction between random and periodic stimulus trial is used to distinguish between 

designs that are specified in terms of the occurrence that an event will occur at a series of time points (random) and 

those in which events always occur after a fixed interval of time or pre-specified time (periodic). These designs can be 

parameterized using General Linear Model (GLM) in terms of design matrix that embodies constraints and the model 

of HRF. This analysis shows that statistical efficiency falls off dramatically as the Inter-Stimulus Interval (ISI) gets 

sufficiently short, if the ISI is kept fixed for all trials. However, if the ISI is properly randomized from trial to trial, the 

efficiency improves with decreasing mean ISI. The results demonstrate the feasibility of using randomized 

experimental design for event-related fMRI thereby facilitating imaging modalities. 
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I. INTRODUCTION 

 

Functional Magnetic Resonance Imaging (fMRI) is one of 

the leading brain mapping technologies for studying brain 

activity in response to mental stimuli. Event-related 

experimental designs are very popular in fMRI research 

[1, 3, 6, 10 and 11]. Unlike the traditional blocked designs, 

where multiple trials of a particular condition are grouped 

together in blocks, event-related designs allow different 
trials or stimuli to be presented in arbitrary sequences, thus 

eliminating potential confounds such as habituation, 

anticipation, set, or other strategy effects [11, 13]. Most 

importantly, event-related fMRI is optimal for estimating 

the parameters of the Hemodynamic Response Function 

(HRF) associated with individual events [9]. There has 

been a growing interest in the choice of Stimulus Onset 

Asynchrony (SOA), i.e., the amount of time between the 

start of one stimulus and the start of another stimulus that 

has been focused by the emergence of a dichotomy in 

event-related fMRI using multiple trial/event types [5]. 

The distribution of SOAs is a critical factor in 
experimental design and can be chosen, subject to some 

constraints, to maximize the efficiency of response 

estimation. HRF estimation efficiency depends not only on 

experimental design, but also on the nature of fMRI noise 

[2]. 

The estimation efficiency of a given event-related 

sequence is a mathematical construct that reflects the 

ability of the sequence to provide an estimate of the HRF, 

taking into account noise associated with the fMRI signal  

 

 

[2]. Maximization of HRF estimation efficiency is critical 

for event-related fMRI experimental design, since it 

minimizes the error in estimating the HRF for a data set of 

given size, or alternatively, reduces overall scanning time 

for a criterion signal-to noise level. The aim of this paper 

is to compare relative efficiencies of random and periodic 

SOAs of event-related fMRI design.  
Rest of the paper is organized as follows: Section II 

describes theory of general linear model for event-related 

fMRI, section III presents the experimental step-up, 

section IV illustrates results and discussion. Conclusion of 

this work is presented in section V. 

 

II. MODELLING OF EVENT-RELATED FMRI 

 

The most widely used model for the event-related fMRI 

designs is the General Linear Model (GLM). The 

following section provides a detailed description of the 

General Linear Model [8, 14]. 
 

General Linear Model 

Consider an event-related fMRI experiment where C 

represents different stimulus conditions to an observer 

while recording the Blood - Oxygen Dependent level 

(BOLD) signals evoked in the brain of the subject over a 

series of T consecutive fMRI measurements i.e., the 

repetition time (TRs). The stimulus presentation can be 

represented quantitatively with a T × C, binary Stimulus 
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Matrix, D, whose entries indicate the onset of each 

stimulus condition (columns) at each point in time (rows). 

Now assume that the model of how a voxel is activated by 

a single, very short stimulus is accurate model. This 

activation model is called hemodynamic response function 

(HRF), h, for the voxel. It can be estimated from the 

measured BOLD signals. Assume that the voxel is also 

activated to an equal degree to all stimuli. In this scenario 

the BOLD signal evoked can be represented over the 

entire experiment with another T × C  matrix X called 
the Design Matrix that is the convolution of the stimulus 

matrix D with the voxel’s HRF, h [12]. 
 

X = D ∗ h 
 

A simple way to model tuning to the stimulus conditions 

in an experiment is to multiply each column of the design 

matrix by a weight that modulates the BOLD signal 

according to the presence of the corresponding stimulus 

condition. The selectivity of V individual voxels can be 

modelled simultaneously through a C × V Selectivity 

Matrix, β. Each entry in β is the amount that the vth  voxel 

(columns) is tuned to the cth  stimulus condition (rows). 
Given the design matrix and the selectivity matrix, the 

BOLD signals y of selectively-tuned voxels can be 

predicted with a simple matrix multiplication: 

y = Xβ 
 

The noise in a voxel is often modeled as a random 

variable 𝜖. A common choice for the noise model is a 

zero-mean Normal/Gaussian distribution with some 

variance σ2 

ϵ ~ N(0, σ2) 
 

Though the variance of the noise model may not be known 

prior, there are methods for estimating it from data. 

Combining all of these to compose a comprehensive 

quantitative model of BOLD signals measured from a set 

of voxels during an experiment: 

y = Xβ +  ϵ 

y =  D ∗ h β +  ϵ 
 
This is referred to as the General Linear Model (GLM) 

[14]. 

 

Estimation 

In a typical fMRI experiment the researcher controls the 

stimulus presentation, D, and measures the evoked BOLD 

responses y from a set of voxels. The problem then is to 

estimate the selectivities of the voxels based on these 

measurements. Specifically, the parameters β  that best 
explain the measured BOLD signals during the experiment 

are to be estimated. The most common way to do this is a 

method known as Ordinary Least Squares (OLS) 

Regression. Using OLS, the idea is to adjust the values 

of β  such that the predicted model BOLD signals are as 
similar to the measured signals as possible. In other words, 

the goal is to infer the selectivity each voxel would have to 

exhibit in order to produce the measured BOLD signals. 

The optimal OLS solution for the selectivities β  is given 

by: 

β = (XTX)−1XTy 
 

Therefore, given a design matrix X and a set of voxel 

responses y associated with the design matrix, the 

selectivities of voxels to the stimulus conditions 

represented by the columns of the design matrix can be 

calculated. 

 

Basis Function 

The basic assumption made in order to use the GLM is 
that the model of the Hemodynamic Response Function 

(HRF) for the voxel is an accurate model. A common 

practice is to use a canonical HRF model established from 

previous empirical studies of fMRI time-series. However, 

voxels throughout the brain and across subjects exhibit a 

variety of shapes, so the canonical model is often 

incorrect. Therefore it becomes necessary to estimate the 

shape of the HRF for each voxel [7]. 
 

There are a number of ways that have been developed for 

estimating HRF’s, most of them are based on temporal 

basis function models [15]. There are a number of basis 

function sets available and Finite Impulse Response is one 

such basis function. The HRF is modelled using a flexible 

basis set composed of a set of delayed impulses 

called Finite Impulse Response basis. 
 

In order to estimate the HRF of each voxel to each of 
the C stimulus conditions using an FIR basis function 

model, a design matrix composed of successive sets of 

delayed impulses is created, where each set of impulses 

begins at the onset of each stimulus condition. For 

the T × C-sized stimulus onset matrix D, calculate 

an [T× HC] FIR design matrix, XFIR , where H is the 

assumed length of the HRF which is to be estimated. 
 

For each voxel, the weight on each column of  XFIR  that 

will best explain the BOLD signals, y, measured from 

each voxel is to be determined. Now this problem can be 

formed in terms of a General Linear Model: 

y =  XFIR β
FIR

 

 

where, β
FIR

 are the weights on each column of the FIR 

design matrix. The values of β
FIR

 are set such as to 

minimize the sum of the squared errors (SSE) between the 

model above and the measured actual responses 

SSE =  (y(i)N
i −  XFIR  

(i)
)2, 

 

Then the Ordinary Least Squares (OLS) solution can be 

used to solve the problem for β
FIR

 [4].  Specifically, the 

weights are solved as: 

β
FIR
  = (XFIR

T XFIR )−1XFIR  y 

 

Once determined, the resulting CH×V matrix of 

weights β
FIR
  has the HRF of each of the V different voxels 

to each stimulus condition along its columns. 
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Efficiency 

Since fMRI data are a continuous time series, the 

underlying noise 𝜖 is generally correlated in time. This 

noise can be modeled as a Gaussian process with zero 

mean and a constant multivariate covariance, Cϵ. In 

general, the values that comprise Cϵ are unknown and have 

to be estimated from the fMRI data themselves. 

For a known or estimated noise covariance, the Maximum 

Likelihood Estimator (MLE) for the model parameters β  

is: 

β  = (XTCϵ
−1X)XTCϵ

−1y 
 

Because the ML estimator of the HRF is a linear 

combination of the design matrix X and a set of 

corresponding responses, which are both random 

variables, the estimator is itself a random variable. It thus 

follows that the estimate for the HRF also has a variance. 

A formal metric for efficiency of a least-squares estimator 

is directly related to the variance of the estimator. The 

efficiency is defined to be the inverse of the sum of the 

estimator variances. An estimator that has a large sum of 
variances will have a low efficiency, and vice versa. The 

variances can be recovered from the diagonal elements of 

the estimator covariance matrixCβ , giving the following 

expression for the efficiency, E [16] 

E = 1 𝑡𝑟𝑎𝑐𝑒(𝐶𝛽 )  

 

The covariance matrix 𝐶𝛽  for the GLS estimator with a 

given noise covariance 𝐶𝜖  is: 

𝐶𝛽  =  (𝑋𝑇 .𝐶𝜖
−1 .𝑋)−1 

 

Thus the efficiency for the HRF estimator is 

𝐸 = 1 𝑡𝑟𝑎𝑐𝑒((𝑋𝑇 .𝐶𝜖
−1 .𝑋)−1)  

 

Since the HRF is estimated using the FIR basis set, thus 

the model design matrix is 𝑋𝐹𝐼𝑅 . This gives the estimate 

efficiency for the simulation experiments: 

𝐸 =  1 𝑡𝑟𝑎𝑐𝑒(𝑋𝐹𝐼𝑅
𝑇 𝑋𝐹𝐼𝑅)  

 

The above mentioned GLM model has been used to create 

the experimental setup for the analysis purpose. The 

simulations implicated are described in the next section. 

 

III. EXPERIMENTAL SETUP 
 

This work analyses the experimental design for event-

related fMRI using different inter-stimulus interval (ISI), 

i.e., the interval between the offset of one stimulus to the 

onset of another stimulus. The following steps are 

implemented in the simulations and an analysis is carried 

out comparing random and periodic SOAs based on the 

efficiency and selectivity profile. The simulations were 

carried out on MATLAB platform. 

 

Step 1: Construct a stimulus matrix D, in which columns 
indicate onset of each stimulus condition and rows 

indicate corresponding time at each point. 

Step 2: Generate input sequence.  

Step 3: Create a Design Matrix X, which is the 

convolution of stimulus matrix and     hemodynamic 

response function. 

Step4:  Make a selectivity matrix predicting BOLD 

signals. 

Step 5: Define General Linear Model. 

Step 6: Estimate parameters.     

Step 7: Result. 

 

Simulations: 

Two simulations of event related fMRI are used to analyse 
the event-related fMRI design. The first paradigm is 

randomly presented stimulus onset which is the event-

related fMRI in which the input stimulus are presented 

randomly. The second paradigm is periodically presented 

stimulus onset which is the event-related fMRI in which 

the input stimulus are presented periodically with fixed 

interval sequence or inter-stimulus interval (ISI). The 

efficiency of 20 event sequence at each combination of ISI 

and jitter is estimated. The ISI ranged from 2s to 30s. The 

TR is kept fixed at 1 sec. A noise signal was added to 

estimate HRF. These parameters are used for both 
simulations. 

 

Simulation 1: 

This simulation demonstrates event trials. The stimulus 

train is presented randomly. In simulation 1, a sequence of 

stimulus is generated using the pseudo random number 

generator function available in MATLAB. An input 

sequence of randomly presented stimulus onset is 

generated from the stimulus matrix. For this simulation, a 

BOLD signal is presented which is evoked by 20 stimulus 

onsets that occur at random times over the course of the 80 
second run duration.  

 

Simulation 2: 

This simulation demonstrates events trials over a fixed 

interval of time. In simulation 2, a sequence of 

periodically presented stimulus is generated from the 

stimulus matrix. For this simulation, a stimulus is 

presented periodically 20 times, once every 4 seconds, for 

a run of 80 seconds in duration.  

The results of the simulations are discussed in the 

following segment. 

 

IV. RESULTS AND DISCUSSION 

 

Accurate estimates of the HRFs from different event types 

can be obtained using event-related fMRI with very rapid 

presentation, as long as the inter-stimulus interval is 

randomized. The following section provides detailed 

discussion of the results. 

 

A. Efficiency 

The estimator efficiency is investigated on varying the 

mean ISI in random and periodic stimulus design. Figure 1 
shows the efficiency measure, E, for the maximum 

likelihood HRF estimate for a event type or condition as a 

function of mean ISI, for both random stimulus and 
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periodic similar efficiency measures. For shorter mean 

ISIs, the efficiency of random stimulus designs increases 

dramatically, whereas the efficiency stimulus. Relative 

efficiency of random and periodic ISI experimental 

designs is shown as a function of mean ISI. For very long 

mean ISIs (e.g. >20s), random and periodic stimulus 

designs result in very of periodic stimulus designs 

decreases.  

 

 
 

Figure 1 Efficiency of Periodic and Random Stimulus 

Events 

 
B. Selectivity Profile 

Selectivity is a simple characterization of the function of a 

voxel in terms of its response to each of the different 

experimental conditions. Usually two to eight conditions 

are used in most imaging studies and here too, selectivity 

is varied in this range. 

 

 
Figure 2 Selectivity vs Variance Plot for Random and 

Periodic SOAs. 

 

Figure 2 shows plot for varying variance corresponding to 

shifting selectivity for both random and periodic stimulus 
design. The variance for randomly presented stimulus 

increases monotonically with increasing selectivity 

whereas variance for periodic stimulus barely shows any 

increase with increasing selectivity. 

 

The results drawn out clearly shows that randomly 

presented stimulus onset outperforms in comparison to the 

periodically presented stimulus onset. 

Table 1: Results of simulations for Event-Related fMRI 

Design. 

 

S. No Parameter Simulation 1 Simulation 2 

1. Variance 7.40 0.18 

2. Mean 2.9886 3.9061 

3. Standard 

Error 

0.2706 1.5147 

4. Power 717.0001 716.0006 

 

From these results, it is obvious that the random stimulus 

presentation rate gives rise to more accurate and less 

variable estimates of the HRF function.  
 

The variance of the underlying signal should be large 

compared to the noise so that the signal can be detected. 

The estimated variance of the periodic-based signal is 

0.18. In contrast, the signal evoked by the random 

stimulus presentation schedule varies wildly, reaching 
maximum amplitude that is roughly 2.5 times as large as 

the maximum amplitude of the signal evoked by periodic 

stimuli. The estimated variance of the signal evoked by the 

random stimuli is 7.4, roughly 40 times the variance of the 

signal evoked by the periodic stimulus. Since larger the 

variance lesser the effect of noise on signal and thus more 

information retained. So the random stimulus provides 

more information. Another way for efficient design of an 

experimental design is maximizing the amount of power in 

the resulting evoked BOLD responses.  
 

The efficiency exhibited by randomly presented stimulus 

onset is much larger as compared to the periodically 
presented stimulus onset. Thus, randomly presented 

stimulus onset for event-related fMRI design gives better 

results and so, while considering  design considerations for 

fMRI, the stimulus must be presented randomly rather 

than at fixed interval. The efficiency of random stimulus 

designs increases with decreasing inter-stimulus interval 

(ISI). Thus, the simulations presented here clearly 

demonstrate the advantages of using random stimulus 

design rather than periodic stimulus design in event-

related fMRI experiments. 

 

V. CONCLUSIONS 

 

In this paper, the comparative study focuses on the 

analysis of event-related fMRI design for two paradigms 

i.e. periodic SOAs and random SOAs. The most widely 

used model viz. GLM for the fMRI design has been 

implemented using MATLAB platform and the results 

corresponding to the simulations are presented in terms of 

variance, standard error, mean and power. The results 

clearly distinguish the performance of randomly presented 

stimulus being better than the periodically presented 

stimulus. The selectivity profile has been varied for both 
stimuli and the results depict that the variance for the 

random stimuli increases monotonically as opposed to the 

periodic stimuli. Random stimulus provides higher 

variance than periodic thus resulting in more information 
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and lesser noise with increase in selectivity. It has been 

gathered from the simulations that it is difficult to attain 

optimal efficiency using longer ISI and hence it is suitable 

to use randomly presented SOA for the event-related fMRI 

designs. 
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