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Abstract: Mobile malware is rapidly becoming a serious threat. In this paper, we survey the current state of mobile 

malware in the wild. We analyse the incentives behind 46 pieces of iOS, Android, and Symbian malware that spread in 

the wild from 2009 to 2011. We also use this data set to evaluate the effectiveness of techniques for preventing and 

identifying mobile malware. After observing that 4 pieces of malware use root exploits to mount sophisticated attacks 

on Android phones, we also examine the incentives that cause non-malicious smartphone tinkerers to publish root 

exploits and survey the availability of root exploits. 
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I. INTRODUCTION 

 

People use smartphones for many of the same purposes as 

desktop computers: web browsing, social networking, 

online banking, and more. Smartphones also provide 

features that are unique to mobile phones, like SMS 

messaging, constantly-updated location data, and 

ubiquitous access. As a result of their popularity and 

functionality, smartphones are a burgeoning target for 

malicious activities. In order to understand the motives of 

real mobile malware, we classify the malware in our data 

set by behaviour.  
 

We find that the most common malicious activities are 

collecting user information (61%) and sending premium-

rate SMS messages (52%), in addition to malware that was 

written for novelty or amusement, credential theft, SMS 

spam, search engine optimization fraud, and ransom.  
 

We describe the incentives that promote each type of 

malicious behaviour and present defences that disincentive 

some of the behaviours. In particular, malware that abuses 

SMS messages could be prevented with small changes to 

the Android and Symbian platforms. We also discuss 

incentives that we believe will motivate future mobile 

malware. 

 

II. LITERATURE SURVEY 

 

We consider that there are three critical issues in machine-

learning-based Android malware detection. [4] The first 

issue is the machine learning model used. In this study, we 

selected deep learning because it can learn high-level 

representations by associating features from static analysis 

with those from dynamic analysis, [1] which makes it 

possible to better characterize Android malware. Our 

experiments also demonstrated that the deep learning 

model significantly outperforms traditional machine 

learning models. Which are described as follows: 

 

 

[1] Droid Detector: Android Malware Characterization 

and Detection Using Deep Learning. In this paper Deep 

learning is a new area of machine learning research that 

has gained increasing attention in artificial intelligence. In 

this study, we propose to associate the features from the 

static analysis with features from dynamic analysis of 

Android apps and characterize malware using deep 

learning techniques. 
 

[2] A Machine Learning Approach: Android Malware 

Detection, Automated Mining and Characterization of 

Fine-grained Malicious Behaviours in Android 

Applications, focuses on  The problem of using a machine 

learning-based classifier to detect malware presents two 

main challenges: first, given an application, we must 

extract some sort of feature representation of the 

application; second, we have a data set that is almost 

exclusively benign, so we must choose a classifier that can 

be trained on only one class. To address the first problem, 

we extract a heterogeneous feature set, and process each 

feature independently using multiple kernels To address 

the second problem, we use a One-Class Support Vector 

Machine, which we train using only benign applications. 

We have presented a novel machine learning-based 

malware detection system for the Android operating 

system. Our system has shown promising results in that it 

has a very low false negative rate, but also much room for 

improvement in its high false positive rate. There are a 

number of possible improvements that could be 

investigated. 
 

[3] Droid Miner: Droid Miner, which uses static analysis 

to automatically mine malicious program logic from 

known Android malware, abstracts this logic into a 

sequence of threat modalities, and then seeks out these 

threat modality patterns in other unknown Android apps. 

Droid Miner can scan a new Android app to (i) determine 
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whether it contains malicious modalities, (ii) diagnose the 

malware family to which it is most closely associated, (iii) 

and provide further evidence as to why the app is 

considered to be malicious by including a concise 

description of identified malicious behaviours. 

 

[4] DREBIN: Effective and Explainable Detection of 

Android Malware in Your Pocket. In this paper, we 

propose DREBIN, a lightweight method for detection of 

Android malware that enables identifying malicious 

applications directly on the smartphone. DREBIN 

performs a broad static analysis, gathering as many 

features of an application as possible. 

 

III. MOTIVATION AND SYSTEM GOALS 

 

Motivations 

We motivate our system design by introducing the inner 

working of a real-world Android malware. It attempts to 

perform the following malicious behaviours in the 

background after the phone is booted: stealing users‟ 

personal sensitive information (e.g., IMEI and IMSI) and 

sending them to remote servers, sending and deleting SMS 

messages, downloading unwanted apps, and issuing HTTP 

search requests to increase websites‟ search rankings on 

the search engine. As illustrated in Figure 1, once the 

phone is booted, the receiver will send out an alarm every 

two minutes and trigger another receiver (named 

“MyAlarmReceiver”) by using three API calls: 

AlarmManager(), getServiceSystem(), and getBroadcast(). 

Then, MyAlarmReceiver starts a background service 

(named “MyService”) by calling startService() in its 

lifecycle call onReceive(). Once the service is triggered, it 

will read the device ID (getDeviceId()) and subscriber ID 

(getSubscriberId()) in the phone, and register an object 

handler to access the short message database 

(content://sms/). Meanwhile, the service monitors changes 

to the SMS Inbox database (content://sms/inbox/) by 

calling ContentObserver.onChange() and deleting 

particular messages using delete (), and also attempts to 

download unwanted APK files (e.g., “myupdate.apk”). 

More details can be found in our extended technical 

report. 

 

 
Figure 1. Capabilities embedded in malware from the 

ADRD family. 

The sample achieves its malicious functionalities by 

mainly invoking a series of framework APIs in order.  

 

IV. THREAT MODEL 

 

We present three types of threats posed by third-party 

smartphone applications and discuss the security measures 

that are intended to detect and prevent them.  Threat Types 

The mobile threat model includes three types of threats: 

malware, grayware, and personal spyware. We distinguish 

between the three based on their delivery method, legality, 

and notice to the user. This paper focuses specifically on 

malware; personal spyware and grayware use different 

attack vectors, have different motivations, and require 

different defense mechanisms. Malware. Malware gains 

access to a device for the purpose of stealing data, 

damaging the device, or annoying the user, etc.  

 

The attacker defrauds the user into installing the malicious 

application or gains unauthorized remote access by taking 

advantage of a device vulnerability. Malware provides no 

legal notice to the affected user. This threat includes 

Trojans, worms, botnets, and viruses. Malware is illegal in 

many countries, including the United States, and the 

distribution of it may be punishable by jail time. Personal 

Spyware. Spyware collects personal information such as 

location or text message history over a period of time. 

With personal spyware, the attacker has physical access to 

the device and installs the software without the user‟s 

knowledge. Personal spyware sends the victim‟s 

information to the person who installed the application 

onto the victim‟s device, rather than to the author of the 

application.  

 

For example, a person might install personal spyware onto 

a spouse‟s phone. It is legal to sell personal spyware in the 

U.S. because it does not defraud the purchaser (i.e., the 

attacker). Personal spyware is honest about its purpose to 

the person who purchases and installs the application. 

However, it may be illegal to install personal spyware on 

another person‟s smartphone without his or her 

authorization. Grayware. Some legitimate applications 

collect user data for the purpose of marketing or user 

profiling. Grayware spies on users, but the companies that 

distribute grayware do not aim to harm users. Pieces of 

grayware provide real functionality and value to the users.  

 

The companies that distribute grayware may disclose their 

collection habits in their privacy policies, with varying 

degrees of clarity. Grayware sits at the edge of legality; its 

behavior may be legal or illegal depending on the 

jurisdiction of the complaint and the wording of its privacy 

policy.  

Unlike malware or personal spyware, illegal grayware is 

punished with corporate fines rather than personal 

sentences. Even when the activity of grayware is legal, 

users may object to the data collection if they discover it. 

Application markets may choose to remove or allow 

grayware when detected on a case-by-case basis. 
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Feature Extraction 

To systematically characterize Android apps (i.e., both 

malware and benign apps), we conduct static and dynamic 

analyses to extract features from each app, as shown in 

Fig. 1. All the features fall under one of three types: 

required permissions, sensitive APIs, and dynamic 

behaviours.  

 

Among them, required permissions and sensitive APIs are 

extracted through the static analysis, whereas dynamic 

behaviours are extracted through dynamic analysis. 

Specifically, all we need is the installation file (i.e., apk 

file) of each Android app. 

 

 
Fig. 2 Feature extraction for an Android app 

 

In the static phase, we uncompress the .apk file with the 7-

Zip tool and then focus on parsing the two files 

AndroidManifest.xml and classes.dex. By parsing the 

Android Manifest.xml file with the tool AXML-Printer2 

and the parser TinyXml, we can obtain the permissions 

required by the app. For example, android.permission.call 

phone is the permission required for an app to make a 

phone call and android.permission.camera is the 

permission required for an app to access the camera. In 

this step, we looked for a total of 120 permissions.  

 

By parsing the classes.dex file with the disassembler 

baksmali, we can know which API functions are called. 

For example, chmod is a sensitive API that might be used 

for changing users‟ permissions on files and 

ContentResolver;->delete is a sensitive API that might be 

used for deleting users‟ messages or contacts. In this step, 

we looked for a total of 59 sensitive API functions. In the 

dynamic phase, we install and run each app in DroidBox.  

 

DroidBox is an Android application sandbox that extends 

TaintDroid, which can execute a dynamic taint analysis 

with system hooking at the application framework level 

and monitor a variety of app actions such as information 

leaks, network and file input/output, cryptography 

operations, Short Message Services (SMS), and mobile 

phone calls. In this study, we ran the apps inside DroidBox 

for a period of time to obtain the executed app actions 

(i.e., dynamic behaviours) of each app. In this phase, we 

monitored a total of 13 app actions. For instance, action 

sendnet is the action that sends data over the network, 

action phonecalls is the action that makes a phone call, and 

action sendsms is the action that sends SMS messages.  

 

In this way, we obtained a total of 192 features for each 

app through static and dynamic analyses. Note that each 

feature is binary, indicating that when a feature occurs in 

an app, its feature value is 1; otherwise, its feature value is 

0. In addition, all the tools (i.e., 7-Zip, AXMLPrinter2, 

TinyXml, baksmali, and DroidBox) referred to in this 

section are open source for use by the public. 

 

V. MALWARE DETECTION WITH PERMISSIONS 

 

 Contrasting permission pattern 

 Considering a training dataset, it is split into two subsets: 

One containing malicious android applications and other 

containing clean applications. By applying Associative 

Rule mining on these two subsets, three types of 

permission patterns were created:  

 

(1) Malicious Permission Patterns: These are unique 

frequently required permission patterns found only in 

malware dataset. Hence, the support degree of their item 

sets in clean dataset is 0.  

 

(2) Clean Permission Patterns: These are unique frequently 

required permission patterns found only in clean dataset. 

Hence, the support degree of their item sets in malware 

dataset is 0.  

 

(3) Commonly required Permission Patterns: These are the 

frequently required permission patterns that are found in 

both the dataset. In such case these patterns have different 

support degree in two datasets These frequent item-sets 

are called as Contrasting Permission Patterns.  

 

If an unknown application has more malicious permission 

patterns than the clean patterns, then it can be said that the 

application is a malware and vice versa. But if the 

unknown application contains commonly required 

permission patterns the difference in support degrees in 

respective datasets is considered for distinguishing the 

application. Suppose the common permission pattern has a 

higher support degree in malware dataset then the app is 

more likely to be a malware. 

 

VI. CONCLUSION 

 

In this paper, a malware detection in android platform 

using Contrasting permission patterns is presented. These 

contrasting permission patterns and their support degrees 

are the characteristics that help us in selective and 

classifying malicious applications from clean applications. 
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