
IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51008 46

Protection of Android Application against

Malware Attack

Priyanka Rane
1
, Madhuri Dalal

2

Student, Department of Computer Engineering, Mumbai University, Mumbai, India
1

Assistant Professor, Department of Computer Engineering, Mumbai University, Mumbai, India
2

Abstract: Mobile malware is rapidly becoming a serious threat. In this paper, we survey the current state of mobile

malware in the wild. We analyse the incentives behind 46 pieces of iOS, Android, and Symbian malware that spread in

the wild from 2009 to 2011. We also use this data set to evaluate the effectiveness of techniques for preventing and

identifying mobile malware. After observing that 4 pieces of malware use root exploits to mount sophisticated attacks

on Android phones, we also examine the incentives that cause non-malicious smartphone tinkerers to publish root

exploits and survey the availability of root exploits.

Keywords: Android malware, Android detector, Benign apps, Droid Box, Malicious apps.

I. INTRODUCTION

People use smartphones for many of the same purposes as

desktop computers: web browsing, social networking,

online banking, and more. Smartphones also provide

features that are unique to mobile phones, like SMS

messaging, constantly-updated location data, and

ubiquitous access. As a result of their popularity and

functionality, smartphones are a burgeoning target for

malicious activities. In order to understand the motives of

real mobile malware, we classify the malware in our data

set by behaviour.

We find that the most common malicious activities are

collecting user information (61%) and sending premium-

rate SMS messages (52%), in addition to malware that was

written for novelty or amusement, credential theft, SMS

spam, search engine optimization fraud, and ransom.

We describe the incentives that promote each type of

malicious behaviour and present defences that disincentive

some of the behaviours. In particular, malware that abuses

SMS messages could be prevented with small changes to

the Android and Symbian platforms. We also discuss

incentives that we believe will motivate future mobile

malware.

II. LITERATURE SURVEY

We consider that there are three critical issues in machine-

learning-based Android malware detection. [4] The first

issue is the machine learning model used. In this study, we

selected deep learning because it can learn high-level

representations by associating features from static analysis

with those from dynamic analysis, [1] which makes it

possible to better characterize Android malware. Our

experiments also demonstrated that the deep learning

model significantly outperforms traditional machine

learning models. Which are described as follows:

[1] Droid Detector: Android Malware Characterization

and Detection Using Deep Learning. In this paper Deep

learning is a new area of machine learning research that

has gained increasing attention in artificial intelligence. In

this study, we propose to associate the features from the

static analysis with features from dynamic analysis of

Android apps and characterize malware using deep

learning techniques.

[2] A Machine Learning Approach: Android Malware

Detection, Automated Mining and Characterization of

Fine-grained Malicious Behaviours in Android

Applications, focuses on The problem of using a machine

learning-based classifier to detect malware presents two

main challenges: first, given an application, we must

extract some sort of feature representation of the

application; second, we have a data set that is almost

exclusively benign, so we must choose a classifier that can

be trained on only one class. To address the first problem,

we extract a heterogeneous feature set, and process each

feature independently using multiple kernels To address

the second problem, we use a One-Class Support Vector

Machine, which we train using only benign applications.

We have presented a novel machine learning-based

malware detection system for the Android operating

system. Our system has shown promising results in that it

has a very low false negative rate, but also much room for

improvement in its high false positive rate. There are a

number of possible improvements that could be

investigated.

[3] Droid Miner: Droid Miner, which uses static analysis

to automatically mine malicious program logic from

known Android malware, abstracts this logic into a

sequence of threat modalities, and then seeks out these

threat modality patterns in other unknown Android apps.

Droid Miner can scan a new Android app to (i) determine

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51008 47

whether it contains malicious modalities, (ii) diagnose the

malware family to which it is most closely associated, (iii)

and provide further evidence as to why the app is

considered to be malicious by including a concise

description of identified malicious behaviours.

[4] DREBIN: Effective and Explainable Detection of

Android Malware in Your Pocket. In this paper, we

propose DREBIN, a lightweight method for detection of

Android malware that enables identifying malicious

applications directly on the smartphone. DREBIN

performs a broad static analysis, gathering as many

features of an application as possible.

III. MOTIVATION AND SYSTEM GOALS

Motivations

We motivate our system design by introducing the inner

working of a real-world Android malware. It attempts to

perform the following malicious behaviours in the

background after the phone is booted: stealing users‟

personal sensitive information (e.g., IMEI and IMSI) and

sending them to remote servers, sending and deleting SMS

messages, downloading unwanted apps, and issuing HTTP

search requests to increase websites‟ search rankings on

the search engine. As illustrated in Figure 1, once the

phone is booted, the receiver will send out an alarm every

two minutes and trigger another receiver (named

“MyAlarmReceiver”) by using three API calls:

AlarmManager(), getServiceSystem(), and getBroadcast().

Then, MyAlarmReceiver starts a background service

(named “MyService”) by calling startService() in its

lifecycle call onReceive(). Once the service is triggered, it

will read the device ID (getDeviceId()) and subscriber ID

(getSubscriberId()) in the phone, and register an object

handler to access the short message database

(content://sms/). Meanwhile, the service monitors changes

to the SMS Inbox database (content://sms/inbox/) by

calling ContentObserver.onChange() and deleting

particular messages using delete (), and also attempts to

download unwanted APK files (e.g., “myupdate.apk”).

More details can be found in our extended technical

report.

Figure 1. Capabilities embedded in malware from the

ADRD family.

The sample achieves its malicious functionalities by

mainly invoking a series of framework APIs in order.

IV. THREAT MODEL

We present three types of threats posed by third-party

smartphone applications and discuss the security measures

that are intended to detect and prevent them. Threat Types

The mobile threat model includes three types of threats:

malware, grayware, and personal spyware. We distinguish

between the three based on their delivery method, legality,

and notice to the user. This paper focuses specifically on

malware; personal spyware and grayware use different

attack vectors, have different motivations, and require

different defense mechanisms. Malware. Malware gains

access to a device for the purpose of stealing data,

damaging the device, or annoying the user, etc.

The attacker defrauds the user into installing the malicious

application or gains unauthorized remote access by taking

advantage of a device vulnerability. Malware provides no

legal notice to the affected user. This threat includes

Trojans, worms, botnets, and viruses. Malware is illegal in

many countries, including the United States, and the

distribution of it may be punishable by jail time. Personal

Spyware. Spyware collects personal information such as

location or text message history over a period of time.

With personal spyware, the attacker has physical access to

the device and installs the software without the user‟s

knowledge. Personal spyware sends the victim‟s

information to the person who installed the application

onto the victim‟s device, rather than to the author of the

application.

For example, a person might install personal spyware onto

a spouse‟s phone. It is legal to sell personal spyware in the

U.S. because it does not defraud the purchaser (i.e., the

attacker). Personal spyware is honest about its purpose to

the person who purchases and installs the application.

However, it may be illegal to install personal spyware on

another person‟s smartphone without his or her

authorization. Grayware. Some legitimate applications

collect user data for the purpose of marketing or user

profiling. Grayware spies on users, but the companies that

distribute grayware do not aim to harm users. Pieces of

grayware provide real functionality and value to the users.

The companies that distribute grayware may disclose their

collection habits in their privacy policies, with varying

degrees of clarity. Grayware sits at the edge of legality; its

behavior may be legal or illegal depending on the

jurisdiction of the complaint and the wording of its privacy

policy.

Unlike malware or personal spyware, illegal grayware is

punished with corporate fines rather than personal

sentences. Even when the activity of grayware is legal,

users may object to the data collection if they discover it.

Application markets may choose to remove or allow

grayware when detected on a case-by-case basis.

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51008 48

Feature Extraction

To systematically characterize Android apps (i.e., both

malware and benign apps), we conduct static and dynamic

analyses to extract features from each app, as shown in

Fig. 1. All the features fall under one of three types:

required permissions, sensitive APIs, and dynamic

behaviours.

Among them, required permissions and sensitive APIs are

extracted through the static analysis, whereas dynamic

behaviours are extracted through dynamic analysis.

Specifically, all we need is the installation file (i.e., apk

file) of each Android app.

Fig. 2 Feature extraction for an Android app

In the static phase, we uncompress the .apk file with the 7-

Zip tool and then focus on parsing the two files

AndroidManifest.xml and classes.dex. By parsing the

Android Manifest.xml file with the tool AXML-Printer2

and the parser TinyXml, we can obtain the permissions

required by the app. For example, android.permission.call

phone is the permission required for an app to make a

phone call and android.permission.camera is the

permission required for an app to access the camera. In

this step, we looked for a total of 120 permissions.

By parsing the classes.dex file with the disassembler

baksmali, we can know which API functions are called.

For example, chmod is a sensitive API that might be used

for changing users‟ permissions on files and

ContentResolver;->delete is a sensitive API that might be

used for deleting users‟ messages or contacts. In this step,

we looked for a total of 59 sensitive API functions. In the

dynamic phase, we install and run each app in DroidBox.

DroidBox is an Android application sandbox that extends

TaintDroid, which can execute a dynamic taint analysis

with system hooking at the application framework level

and monitor a variety of app actions such as information

leaks, network and file input/output, cryptography

operations, Short Message Services (SMS), and mobile

phone calls. In this study, we ran the apps inside DroidBox

for a period of time to obtain the executed app actions

(i.e., dynamic behaviours) of each app. In this phase, we

monitored a total of 13 app actions. For instance, action

sendnet is the action that sends data over the network,

action phonecalls is the action that makes a phone call, and

action sendsms is the action that sends SMS messages.

In this way, we obtained a total of 192 features for each

app through static and dynamic analyses. Note that each

feature is binary, indicating that when a feature occurs in

an app, its feature value is 1; otherwise, its feature value is

0. In addition, all the tools (i.e., 7-Zip, AXMLPrinter2,

TinyXml, baksmali, and DroidBox) referred to in this

section are open source for use by the public.

V. MALWARE DETECTION WITH PERMISSIONS

 Contrasting permission pattern

 Considering a training dataset, it is split into two subsets:

One containing malicious android applications and other

containing clean applications. By applying Associative

Rule mining on these two subsets, three types of

permission patterns were created:

(1) Malicious Permission Patterns: These are unique

frequently required permission patterns found only in

malware dataset. Hence, the support degree of their item

sets in clean dataset is 0.

(2) Clean Permission Patterns: These are unique frequently

required permission patterns found only in clean dataset.

Hence, the support degree of their item sets in malware

dataset is 0.

(3) Commonly required Permission Patterns: These are the

frequently required permission patterns that are found in

both the dataset. In such case these patterns have different

support degree in two datasets These frequent item-sets

are called as Contrasting Permission Patterns.

If an unknown application has more malicious permission

patterns than the clean patterns, then it can be said that the

application is a malware and vice versa. But if the

unknown application contains commonly required

permission patterns the difference in support degrees in

respective datasets is considered for distinguishing the

application. Suppose the common permission pattern has a

higher support degree in malware dataset then the app is

more likely to be a malware.

VI. CONCLUSION

In this paper, a malware detection in android platform

using Contrasting permission patterns is presented. These

contrasting permission patterns and their support degrees

are the characteristics that help us in selective and

classifying malicious applications from clean applications.

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 10, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51008 49

REFERENCES

1. Zhenlong Yuan, Yongqiang Lu, and Yibo Xue “DroidDetector:

Android Malware Characterization and Detection Using Deep

Learning “ Volume 21, Number 1, February 2016
2. Chao Yang1, „et al‟ “DroidMiner: Automated Mining and

Characterization of Fine-grained Malicious Behaviors in Android
Applications” .

3. Daniel Arp1 , Michael Spreitzenbarth2 , Malte Hubner ¨ 1 , Hugo

Gascon1 , Konrad Rieck1 “DREBIN: Effective and Explainable
Detection of Android Malware in Your Pocket”.

4. Justin Sahs and Latifur Khan “A Machine Learning Approach to

Android Malware Detection” Volume 21, Number 1, February
2016

5. Chinmay Sanjay Kapare „et al‟ “DroidDetector: An Android

application based on Contrasting Permission Patterns” Volume 5
Issue 3, March 2016.

6. A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A

survey of mobile malware in the wild, in Proceedings of the 1st

ACM Workshop on Security and Privacy in

SmartphonesandMobileDevices”(SPSM),2011,pp.3–14.

7. Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, Hey, You, “Get off of
my market: Detecting malicious apps in official and alternative

Android markets, in Proceedings of the 19th Annual Symposium on

Network and Distributed System Security (NDSS)”, 2012.
8. M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, Riskranker:

“Scalable and accurate zero-day Android malware detection, in

Proceedings of the 10th International Conference on Mobile
Systems, Applications, and Services” (MobiSys), 2012, pp. 281–

294.

9. V. Rastogi, Y. Chen, and X. Jiang, Droidchameleon: “Evaluating
Android anti-malware against transformation attacks, in

Proceedings of the 8th ACM Symposium on Information, Computer

and Communications Security “(ASIA CCS), 2013, pp. 329–334. .
10. S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna,

Execute “Analyzing unsafe and malicious dynamic code loading in

Android applications, in Proceedings of the 21th Annual
Symposiumon Network and Distributed System Security” (NDSS),

2014.

