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Abstract: The world is generating a massive amount of data. Therefore, there is a need for efficient methods to analyze 

and visualize enormous amount of valuable data being generated every day. Many methods are available for data 

mining, which extracts knowledge from data. But there is no method available which outperforms rest of them. 

Therefore, we have developed an algorithm based on a classic apriori algorithm and fp-growth algorithm to extract 

knowledge from data. We have used trie data structure to improve the performance by reducing the number of database 

scans. We have tested our algorithm on End of Day (EOD) data from November 2003 to August 2016 of Multi 

Commodity Exchange (MCX) of India. We found that our algorithm is faster than classic apriori algorithm. 
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I. INTRODUCTION 
 

With the increase of globalization and evolution of 

information technology, a massive amount of data are 

being generated therefore, there is a need for automated 

solutions for effective utilization of data to support 

decision making. [1] We have an enormous amount of 

valuable data available with us which we can analyze to 

discover some useful knowledge. This knowledge can be 

used for prediction or to better understand the overall 

process. A Huge amount of data is available in the form of 

terabytes which have drastically changed the areas of 

science and engineering. [2]  
 

Data mining is science and technology for exploring data 

collected from various sources to discover previously 

unknown knowledge. Data mining algorithms can answer 

so many questions those traditionally are time-consuming 

to resolve. Data mining techniques can help us to reveal 

important data patterns that would otherwise remain 

unnoticed when using a simple type of analysis for 

massive amount of data available in data warehouses. [3] 

Data patterns exhibit some interesting facts about data 

which leads us to predict something that will be useful for 

decision making. Data mining and knowledge discovery 

applications have got a rich focus due to its significance in 

decision making and it has become an essential component 

in various organizations. [4] Various techniques are 

available to mine data like association rules, clustering, 

classification, regression, anomaly detection, decision tree, 

sequential pattern mining, etc.  
 

For data mining, association rule mining is a most popular 

and well-researched method for discovering interesting 

relations between variables in large databases. [1] In 

association rule mining, we are actually trying to find 

interesting correlations between a large set of data items.  

 

 

From association rules, we can find out data items which 

occur together in the database. For example, if X occurs in 

the database along with Y many times then we can form a 

rule that if X occurs in the database then Y also occurs. If 

there are many items available in the database then there 

may be lots of rules and some of them may be useless. It is 

always difficult to select the appropriate data mining 

algorithm for specific database, there are many algorithms 

through which we can generate rules but it is always a 

problem to get rules with higher accuracy. [5] Therefore, 

interestingness measures are available to measure the 

quality of rules. One of them is confidence which is 

widely used measure to filter interesting rules from the 

whole set of rules. The best example of an association rule 

is market basket analysis. Market basket analysis provides 

frequent itemsets which express the customer’s buying 

pattern. We can find out various combinations of products 

which are being purchased together by customers at 

supermarkets. The same concept can be applied to the 

stock market, derivatives market, banking, insurance, 

medical science, etc. There are so many algorithms 

available for association rule mining. Some of them are 

apriori, fp growth, eclat, aprioridp, context based 

association rule mining, node set based algorithms, etc. 
 

Apriori is a classic algorithm for frequent item set mining 

and association rule learning from transactional databases. 

[6] Apriori algorithm was first proposed by R. Agrawal 

and R. Srikant. [7] Amongst all the other association rule 

mining algorithms, apriori can be used directly to generate 

association rules. Apriori algorithm is one of the most 

popular and widely used algorithms. It can be used to find 

frequent items from a transaction database. Apriori 

algorithm finds all sets of items which have support value 

more than the minimum support specified. To find 
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frequent itemsets, apriori algorithm scans transaction 

database multiple times. After the first scan, it finds 

individual frequent items. After each subsequent scan, it 

finds larger pairs of frequent items. It stops when largest 

itemsets are found. Apriori algorithm has two major 

limitations (1) It generates large candidate sets (2) It 

requires too many database scans. [8] It prunes unwanted 

items and itemsets.  

 

Based on the support value, apriori algorithm removes 

non-frequent items and itemsets. Confidence is another 

interestingness measure which is used to form association 

rules from frequent itemsets found by using the apriori 

algorithm. Support is the total number of transactions 

where all items in A and B are together. Confidence 

determines how frequently items in B appear in 

transactions that contain A. [9] The formal definitions of 

both these metrics are given below, 

 

Support (A → B) = σ (A and B) 

Confidence (A → B) = σ (A and B)/ σ (A) 

 

II. LITERATURE REVIEW 

 

M. J. Zaki, S. Parthasarathy, M. Ogihara, and W . Li [10] 

have proposed an algorithm for frequent itemset mining 

which scans the database only once. They have used 

clustering techniques to approximate the set of potentially 

maximal frequent itemsets. Their algorithm uses lattice 

traversal techniques to generate frequent itemsets 

contained in each cluster. They have used vertical database 

layout to cluster related transactions together. They first 

cluster itemsets using equivalence classes. Then they 

generate itemsets from each cluster using bottom-up 

traversal. They claim that their algorithm is better than the 

previously known algorithms for frequent itemset mining. 

 

Jiawei Han, Jian Pei and Runying Mao [11] have proposed 

an algorithm to mine frequent itemset without generating 

candidates. They have used FP-tree which is an extended 

prefix tree structure.  They have used FP-tree to store 

complex and crucial information of frequent patterns. 

They have developed FP-growth method which is based 

on FP-tree. By using this method they have reduced costly 

and repeated database scans.  

 

They claim that their method is more efficient than not 

only apriori algorithm but other frequent pattern mining 

methods too. Despite being oldest and popular algorithm 

for mining association rules, FP-Tree is difficult to be used 

in an interactive mining system. [12]  

 

Huan Wu, Zhigang Lu, Lin Pan and Rongsheng Xu [13] 

have proposed Apriori-based Algorithm (IAA). To reduce 

data scan they have used generation record. They have 

used a new count-based method to prune candidate 

itemsets. Their algorithm improves prune operation by 

using a count-based method; the count occurrence 

operation is improved by decreasing the scan data using 

generation record. They claim that their algorithm 

outperforms the original Apriori and some other existing 

Association Rule Mining (ARM) algorithms.  

  X. Luo and W. Wang [14] have proposed an algorithm to 

improve the apriori algorithm. In algorithm first, they 

make a Matrix library. The matrix library contains a 

binary representation where 1 indicates item present in 

transaction and 0 indicates it is absent. By counting the 

number of 1’s in the matrix they find the occurrence of an 

item. For 2-itemset they multiply the binary representation 

of the items to get the occurrence of items together.  

 

Support of two items can be calculated by a dividing 

number of times they appear together by total transactions. 

Similarly, the same procedure was followed for all 

possible itemsets. Their algorithm needs to scan the 

database only once and also does not require finding the 

candidate set when searching for frequent itemsets.  

 

Abhijit Sarkar, Apurba Paul, Sainik Kumar Mahata and 

Deepak Kumar [15] have proposed a new algorithm for 

segregating data. They have modified the traditional 

Apriori algorithm. The amount of space required to store 

the data is considerably reduced by their approach. 

According to their method, first, they find 1 itemset and 

then they find frequent items. They construct a tree using 

the 1-itemset. The root node of a tree contains frequent 

itemsets which were derived from the 1 itemset.  

 

Then, they create child nodes using frequent items found 

in the root node. They have used the formula level=n-1 to 

find the level of a tree, where n is the number of items in 

the root node of the tree. They create child nodes using all 

possible combination of (n-1) itemsets. Using bottom-up 

approach, they traverse the tree. They reject the parent if 

its child is infrequent. They claim that their algorithm 

outperforms apriori algorithm. 

 

Jaishree Singh, Hari Ram and Dr. J.S. Sodhi [16] have 

proposed an Improved Apriori algorithm which cuts down 

unwanted transaction records to reduce scanning time. 

During pruning, they reduce the redundant sub-items. 

They directly from a set of frequent items and eliminate 

infrequent candidates. In their proposed method, they have 

used an attribute Size_Of_Transaction (SOT).  SOT is a 

number of items in the individual transaction. 

 

Harpreet Singh and Renu Dhir [17] have proposed a 

method based on transactional matrix and transaction 

reduction for finding frequent itemsets more efficiently. 

To remove deficiencies of a classic apriori algorithm like 

the generation of a large number of candidate itemsets and 

scanning the database too many times, they have proposed 

Matrix Based Algorithm with Tags (MBAT) which finds 

the frequent itemsets directly from the transactional matrix 

which is generated from the database to generate 

association rules. They claim that their algorithm greatly 

reduces the number of candidate itemsets, mainly 

candidate 2-itemsets. 
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III. PROPOSED ALGORITHM 

 

In our algorithm, we have used trie data structure to store 

frequent patterns. Trie data structure is used to store and 

retrieve words of a dictionary. A trie is a rooted and 

labeled tree. The depth of the root node is 0. A node at 

depth d points to nodes at depth d+1. Each parent node 

points to child nodes. There is an edge or link between 

each pair of parent and child nodes. An example of a trie is 

shown in figure 1.  

 

 
Figure1 Example of Trie 

 

Tries are suitable for storing and retrieving not only words 

but any finite sets. [18] Therefore, we have used edges to 

store frequent items and nodes to store frequency count. 

Each edge of a tree contains a label and a link to the child 

node. Filtered transactions were stored into main memory 

and not on disk to reduce input output cost. In filtered 

transactions, we have eliminated infrequent items. 

Therefore, each filtered transaction contains only frequent 

items. We have also used a counter for repeated 

transactions to save memory and execution time. In 

APRIORI algorithm, collecting filtered transactions has a 

significant influence on run-time. [18]  For counting 

support value, we took ordered transactions one by one. If 

we found a subset of the transaction in the trie, then we 

have increased the support count by a value which 

represents number of occurrences for a subset of the 

transaction. In our approach, trie stores not only 

candidates but frequent itemsets as well.  After the first 

scan of the database, we have frequencies for each item. 

So to make search faster, we have used the order of 

frequency codes instead of actual items. The most frequent 

item was first then second frequent item and so on and so 

forth. Storing frequency codes and their inverses increase 

the memory need slightly, in return it increases the speed 

of retrieving the occurrence of the itemsets. [19] 

Frequency codes improve the speed of association rules 

generation but it slows down candidate generation. The 

difference of space requirement is negligible for candidate 

generation as compared to the improvement in speed of 

association rules generation. In FIM algorithms, tries are 

used to quickly determine the support of itemsets having 

size greater than two. [18] Therefore, we have used an 

array to count support for itemsets of size one and two. 

For itemsets having size more than two, we have used a 

trie to count support value. Classic APRIORI spends most 

of the time in determining the support of small and 

medium-sized candidates. In such cases, most edges lead 

to leaves hence removing other edges does not accelerate 

the algorithm too much. [18] Therefore, we have reduced 

pruning steps.  
 

To improve the performance of our algorithm, we have 

performed pruning operation only in an array and not in a 

trie. Experiments show that memory need may be 

negligible to the third or the quarter. [18] We have created 

a trie which contains all possible combinations of sorted 

frequent itemsets. We do not scan transaction file to 

generate child nodes after itemsets of size 2.  
 

Join Step: Ck is generated by joining Lk-1with itself  

Prune Step: Any (k-1)-itemset that is not frequent cannot 

be a subset of a frequent k-itemset  
 

Pseudo-code of the algorithm is as follows: 

T : Transaction database 

R : Reduced transaction 

ROT : Reduced and optimized transaction database 

Ck: Candidate itemset of size k  

Lk : Frequent itemset of size k  

L1 : Frequent items of size 1 

j : Size of the candidate itemset 

min_support : Minimum support 

FindFrequentItems(k) : Function to find frequent itemset 

of size k 

 

 

Improved Apriori Algorithm 

 

Input: A transaction database T and a minimum support 

min_support 

Output: UkLk  the set of all frequent itemsets  

 

1) j = 1; 

2) L1  = CALL FindFrequentItems(j) 

3) FOR EACH transaction t in T 

4)   FOR EACH item i in t 

5)     IF L1 contains i THEN 

6)       GENERATE Frequency Code Fk for i 

7)       ADD Fk in R 

8)     END IF 

9)   END FOR 

10)   IF ROT contains R THEN 

11)     INCREMENT the count for R in ROT 

12)   ELSE 

13)     ADD R in ROT 

14)   END IF 

15) END FOR 

16) WHILE Lk < > ∅ 

17)   j = j + 1; 

18)   Uk Lk  = CALL FindFrequentItems(j) 

19) END WHILE 
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FUNCTION FindFrequentItems(k) 

 

1) IF k < > 1 THEN 

2)   TD = ROT 

3) END IF 

4) Ck+1 = candidates generated from Lk 

5) FOR EACH transaction t in TD 

6)   INCREMENT the count of all candidates in Ck+1 

that are   contained in t 

7)   IF k < 3 THEN 

8)     Lk+1=candidates in Ck+1 with min_support 

9)   ELSE 

10)     Lk+1= all candidates in Ck+1 

11)   End IF 

12) END FOR 

13) RETURN Lk 

14) END FUNCTION 

 

Above algorithm requires 3 times scan of transactions. For 

the first time, it scans transaction file and for the second 

and third time, it scans filtered transactions from memory 

which takes even less time than the previous scan. For 

itemset size 3 onwards, there are very few or may be no 

more non-frequent itemsets available in the candidate set. 

[18]  Therefore, pruning operation is performed twice. 

After itemset size 2, pruning operation is not performed 

because most of the unwanted itemsets were removed 

during first two pruning operations.  

This results in some unwanted memory waste but this can 

be compensated by improved performance. This algorithm 

follows a classic apriori algorithm to generate itemsets of 

size 1 and 2. From itemset size 3 onwards, we have 

modified the classic apriori algorithm to reduce the 

number of database scans which ultimately improves the 

performance. We have used reduced and transformed 

database. For frequent itemset of size 1, we are using 

original codes of each item contained in the transaction 

database. But after itemset size 1 we are creating 

frequency codes based on the frequency count value. An 

item with highest frequency count will be allocated 

frequency code 1 and second highest will be allocated 2 

likewise rest of the frequent itemsets will be allocated 

frequency codes in order of their frequencies. From the 

original transaction database, we are creating reduced and 

optimized transaction file which contains frequency codes 

of only frequent itemsets. While creating optimized 

transactions in memory, we perform sorting on frequent 

items in each transaction. To make the search faster for 

counting support of frequent itemsets, we have sorted 

nodes in trie and items in transactions. Overall 

optimization takes little bit more time but that time will be 

compensated by the time saved while searching frequent 

items in a trie. Our algorithm generates more number of 

nodes as compared to classic apriori algorithm for itemset 

size 3 onwards because from itemset size 3 onwards 

numbers of unwanted itemsets are very less. 

 

IV. COMPARATIVE ANALYSIS 

TABLE I COMPARISON OF WIDELY USED FREQUENT ITEMSET MINING ALGORITHMS USING 

IMPORTANT PARAMETERS 

 

 

PARAMETERS 

 

APRIORI [19] 
 

FP GROWTH [20] 
 

ECLAT [21] 
 

IMPROVED APRIORI 

Number of Scans Multiple Two One One from transactions file 

and  two from filtered 

transactions in memory 

Storage Structure Array and Tree FP-Tree Matrix Array and Trie 

Memory 

Requirement 

Low Average High Low 

Running Time High Average Less Average 

Search Type Breadth First 

Search 

Divide and Conquer 

Search 

Depth First Search Hybrid 

Technique Join and Prune Conditional 

frequency pattern tree 

Transaction lists 

intersection 

Join and Prune 

Database Sparse/Dense Large and medium Small and Sparse Sparse/Dense 

 

V. EXPERIMENTAL RESULTS 

 

In our experiment, we have used a system having 2.2GHz 

Core 2 Duo processor with 4GB main memory. We have 

used database populated from End of Day (EOD) price of 

future contracts of Multi Commodity Exchange of India 

(MCX). Sample of data collected from MCX for our 

experiment is shown in table II. We have pre-processed 

data to make it suitable for mining.  

 

 

The pre-processed data contains 2450 instances and 27356 

attributes. Dimensionality of our database is higher 

because multiple contracts for the same commodity are 

available for a particular day. Each attribute in database 

describes a combination of commodity name, expiry 

month and percentage change in commodity price as 

compared to the end of day price of the same contract of 
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the previous working day. Using apriori algorithm, we 

have tried to find correlated contracts of fundamentally 

different commodities. 

From the result of an experimental study, it is clear that 

the performance of improved apriori algorithm is better 

than a classic apriori algorithm. 

 

TABLE II SAMPLE DATA OF MULTI COMMODITY EXCHANGE (MCX) 

 

Date Commodity Name Expiry Date Close Price 

02-05-2016 GOLD 03-02-2017 31173 

02-05-2016 GOLD 05-12-2016 30873 

02-05-2016 GOLDGUINEA 31-08-2016 24555 

02-05-2016 GOLDGUINEA 29-07-2016 24490 

02-05-2016 GOLDGUINEA 30-06-2016 24443 

02-05-2016 GOLDGUINEA 31-05-2016 24409 

02-05-2016 GOLDPETAL 31-08-2016 3043 

02-05-2016 GOLDPETAL 29-07-2016 3020 

02-05-2016 GOLDPETAL 30-06-2016 3016 

02-05-2016 GOLDPETAL 31-05-2016 3010 

 

From the study, we have noticed that as the support value 

decreases, the time taken by the apriori algorithm 

drastically increases. The time taken by improved apriori 

algorithm was always less than the classic apriori 

algorithm. 
 

 
Figure 2 Execution time with increasing support value for 

future contract price data 
 

Figure 2 is based on 12 years data of Multi Commodity 

Exchange (MCX) of India. It shows that when support 

value decreases, the execution time for both the algorithms 

increases.  

 

 
Figure 3 Execution time with increasing support value for 

one year future contract price data 

The result also reveals the fact that the increase in 

execution time for improved apriori algorithm is always 

less than or equal to the time taken by the apriori 

algorithm. Figure 3 shows the trend for one-year data of 

Multi Commodity Exchange (MCX) of India. It shows that 

if support value increases then execution time decreases.  

As we reduce support value, both algorithms take more 

time to mine data. Improved apriori requires less or equal 

time as compared to the classic apriori algorithm. 

 

 
Figure 4 Execution time with increasing support value for 

three years future contract price data 

 

Figure 4 is based on three years data of Multi Commodity 

Exchange (MCX) of India. It is based on more instances 

and attributes as compared to Figure 2. Still, both 

represent the common trend that as we reduce support 

value, improved apriori requires less or equal time than an 

apriori algorithm.  

 

Figure 5 shows the result of an experiment done using six 

years future contracts of Multi Commodity Exchange 

(MCX) of India. The result portrays the same fact that we 

have seen in other figures based on various number of 

transactions. 
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Figure 5 Execution time with increasing support value for 

six years future contract price data 

 

 
Figure 6 Execution time with increasing support value for 

nine years of future contract price data 

 

Figure 6 shows the result which we have seen in figure 2 

to figure 5. In our experiment with data of Multi 

Commodity Exchange (MCX) from November 2003 to 

August 2016, we got the result that improved version of 

apriori algorithm works faster than classic apriori 

algorithm. The result was confirmed from the experiments 

carried out by using data of one year, three years, six years 

and nine years. In our experimental study, we have used 

different numbers of transactions along with different 

support values. In all cases, our algorithm outperforms 

original apriori algorithm. 

 

VI. CONCLUSION 

 

Our algorithm is based on a classic apriori algorithm. We 

have tried to overcome limitations of the classic apriori 

algorithm. We have used trie data structure with filtered 

transactions. We have used reduced pruning technique to 

improve the performance of our algorithm. Our improved 

algorithm scans transaction file only once. From our 

experimental study, we can conclude that our algorithm is 

faster than the apriori algorithm to process transaction data 

regardless of the transaction database size. 
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