
IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 11, November 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51160 283

Design and Analysis of Fairness Aware Round

Robin CPU Scheduling Strategy

Sumandeep Kaur Sidhu
1
, Rakesh Kumar Bansal

2
, Savina Bansal

3

Research Scholar, Dept. of Electronics & Communication Engineering, GZSCCET, Bathinda, Punjab (India)
1

Professor, Dept. of Electronics & Communication Engineering, GZSCCET, Bathinda, Punjab (India)
2, 3

Abstract: Round Robin (RR), CPU scheduling algorithm, is widely accepted scheduling strategy for many time shared

operating systems. The traditional Fixed quantum Round Robin (FRR) scheme works well for fair share scheduling

though the large number of context switches lead to excessive system overhead. On the other hand, the available

dynamic quantum based RR algorithm (DRR) reduces context switches though at the cost of fairness and results in

service degradation to an individual process. In this paper, a new variant of RR named as adaptive Round Robin is

proposed that trades off between fairness and context switches parameters in a judicious way and provide a better

balancing among these conflicting parameters. The proposed algorithm chooses the time quantum adaptively based on

existing burst time of the available jobs in the job pool. In this way, both smaller and larger size jobs get fair time for

their execution. The performance of the suggested technique has been analyzed using extensive simulations on a wide

variety of jobs. The paper also presents the comparative analysis of proposed algorithm with existing FRR and DRR

scheduling algorithms on the basis of varying time quantum, average waiting time, average turnaround time,

performance ratio and number of context switches.

Keywords: CPU scheduling, Round Robin CPU scheduling algorithm, Turnaround time, Waiting time, Context

switching, Performance ratio, Simulation analysis.

I. INTRODUCTION

Operating System allocate computing resources among the

potentially competing requirements of multiple processes

in an optimal way is known as scheduling. Scheduling is

the most repetitively used fundamental concept in

operating system.

It deals with allocation and arrangement of jobs to the

processors, with the objective to reduce overall execution

time of all the jobs. It is a key feature in multitasking,

multiprocessing and real-time operating system design, in

which, it is also necessary to allocate the resources in a

fair manner to all the competing processes/jobs.

Scheduling is of two types: Non-preemptive and

Preemptive scheduling. In non-preemptive scheduling,

CPU is assigned to a process until it's execution is

completed, while in the latter, running process is forced to

release the CPU by the newly arrived process [SGG].

Efficient resource utilization is achieved by sharing system

resources amongst multiple users and system processes.

Optimum resource sharing depends on the efficient

scheduling of competing users and system processes for

the processor, which renders process scheduling an

important aspect of a multiprogramming operating system.

Over the years, scheduling has been the focus of intensive

research, and many algorithms have been developed.

CPU scheduling is a technique used by computer

operating systems to manage the usage of the computer‟s

central processing unit and it is the basis of

multiprogramming systems. Almost all computer

resources are scheduled before use.

The processes are scheduled according to the given burst

time, arrival time and their priority. The number of

resources including Memory, CPU, etc is used for

execution of processes. Scheduler selects the ready

processes from memory and allocates resource/CPU as per

requirements.

When there are multiple ready processes, it is the CPU

scheduling which decides which processes should be run.

Whenever one process waits for some other resource,

scheduler selects next process and allocates CPU to it.

This process continues till the system request for

termination of execution and then the last CPU burst ends

up with it.

Allocating CPU to a process requires careful awareness to

assure justice and avoid process starvation for CPU.

Number of scheduling algorithms has been suggested with

the aim to reduce: turnaround time, response time, average

waiting time and the number of context switches. For job

scheduling, commonly used algorithms are: First-Come

First-Served (FCFS) Scheduling, Shortest-Job-First (SJF)

Scheduling, Priority scheduling and Round Robin (RR)

with varying degree of performances. However Round

Robin scheduling algorithm is quite popular for

timesharing and real time operating systems [6]. These

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 11, November 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51160 284

scheduling algorithms are widely used in communication

networks and in operating systems to allocate resources to

competing tasks. In the recent years, several researchers

have tried to improve upon the time slice value which is

the most crucial parameter in RR and proposed to choose

time slice as dynamic and adaptive. Following section

deals with some of the suggested expressions used by

researchers with varying degree of performance.

These are Median method-based time quantum [3], Smart

Time Slice based method [6], Median method based on

threshold value of time quantum [7], Dynamic Time

Quantum based method [9], and proposes a new adaptive

round robin algorithm.

II. PROPOSED ALGORITHM

A. Adaptive Round Robin CPU Scheduling Algorithm

The proposed „Adaptive Round Robin‟ (ARR) strategy

based on fair-share-scheduling provides a tradeoff

between the fixed quantum RR algorithm and the

Dynamic Round Robin.

It chooses the time quantum adaptively based on existing

Burst Time (BT) of the available jobs in the job pool.

Initially, on the basis of minimum and maximum job burst

time, a small fixed time quantum is selected so that all

available jobs get a fair share of CPU time without too

much waiting.

In the next round, to provide higher time quantum to CPU

intensive jobs, time quanta is incremented in an

exponential way. This process is repeated in every round

until and unless the ready queue becomes empty. In this

way, both smaller and larger size jobs get a fair time slice

for their execution.

Time Quantum (at round n)= (Min BT +Max BT)/2+(Min

BT +Max BT)/(8-n-1)

Where n is no. of rounds (1, 2, 3 ………)

The performance has been analyzed using extensive

simulations on a wide variety of jobs where performance

analysis has been carried out in terms of Turnaround time,

Waiting time, context switches and performance ratio.

Turnaround Time is total time (from entry to exit) which is

spent to complete the process. Waiting Time is the total

time that a process has been waiting in ready queue before

the allocation of processor/CPU.

Context Switch is process of storing and restoring context

(state) of a preempted process, so that execution can be

resumed from same point at a later time. Performance

Ratio (PR) is the ratio of turnaround time to service time.

This value indicates the relative delay experienced by a

process. The minimum possible value for this ratio is 1.0;

increasing values correspond to a decreasing level of

service fairness. PR= Tr/Ts, where Tr is Total turnaround

time and Ts gives Total service time

B. Case Study

The performance of the proposed algorithm ARR has been

compared with the available traditional Fixed RR and

Dynamic RR algorithms [10] which choose TQ as follows:

For the FRR algorithm, the TQ remains fixed in all rounds

(let us take it as 20% of the highest burst time in the initial

job queue).

Whereas, for the DRR algorithm considered [10], it keeps

varying in every round.

Step 1: Arrange the jobs in ascending order in a queue Q,

Step2: let Y= process name in the Q, and n= number of

processes

Step3: let M denote median = Y(n+2)/2if n is odd and

M=1/2 (Yn/2 + Yn/2+1), if n is even).

Step4: TQDRR= [M + highest burst time]/2,

The ARR shows better results in ascending, descending

and random order and in this research paper, random order

(worst case) is taken for ARR.

C. Example

 We consider five processes P1, P2, P3, P4 and P5 arriving

at time 0 with burst time 26, 82, 70, 31 and 40 respectively

shown in Table 1. Table 2 shows the experimental result

of RR, DRR and the proposed algorithm ARR.

Table 1: Data in Random Order

Process Arrival Time Burst Time

P1 0 26

P2 0 82

P3 0 70

P4 0 31

P5 0 40

Fig1 illustrate the working of these three algorithms

individually with the help of Gantt chart for the data

available in Table 1.

Table 2: Results for the case example using ARR, DRR and FRR alg

 Jobs Algorithm TQ Avg WT Avg TAT Avg PR CS

5 ARR 40.5,45 112.3 162.1 3.23 6

 DRR 61,15,6 133.4 183.2 3.75 7

 FRR 20 137.4 187.2 4.03 14

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 11, November 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51160 285

Gantt chart using DRR

Fig1. Gantt chart using ARR, FRR and DRR (for Table 1)

Fig 2: Performance Comparison of FRR, ARR and DRR

From Fig 2, it has been observed that the proposed ARR

scheduling algorithm gives better results than Fixed RR

and DRR scheduling algorithms in terms of reducing

fairness degradation (PR) and context switches. Further

the proposed ARR algorithm also reduces average waiting

time and turnaround time to a great extent. The main

motive for developing this algorithm to improve the

performance of the system in terms of reducing fairness

degradation and number of context switches fulfils

whereas Fixed RR and DRR fail to do so.

Table 3 shows the individual performance PR of each

process using RR, DRR and ARR. Further the results of

Table 3 are shown in line graph in Fig 3.

Table 3: Individual performance ratio of each process

Jobs Burst Time ARR DRR RR

P1 26
1 1 4.077

P2 82
2.677 3.037 3.037

P3 70
3.557 3.514 3.529

P4 31
4.452 5.774 5.065

P5 40
4.45 5.475 4.425

Fig 3: Individual performance ratio of each process

0

2

4

6

8

10

12

14

16

Avg PR No. of CS

Scheduling Parameters

FRR

ARR

DRR

0

50

100

150

200

Avg WT Avg TAT

T
im

e

Scheduling Parameters

FRR

ARR

DRR

0

1

2

3

4

5

6

P1 P2 P3 P4 P5

P
er

fo
rm

a
n

ce
 R

a
ti

o

No. of Processes

RR

ARR

DRR

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 11, November 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51160 286

III. SIMULATION BASED PERFORMANCE

ANALYSIS

The proposed algorithm is analyzed using large number of

job sets to ascertain its effectiveness and the simulation

parameters used for the data set is as shown in Table 4.

This section focuses on the overall results i.e. extract from

extensive simulations on a wide variety of jobs. In each

case, the proposed algorithm‟s results can be compared

with the results of traditional FRR and DRR algorithms.

Table 4: Simulation parameters

No. of

Jobs

50, 100, 200, 500

Execution

time

25-100; 25-500; 25-800; 25-1000; 25-

1500; 25-2500;

25-10000; 25-25000; 25-50000; 25-

100000;

25-2500000; 25-5000000; 25-10000000

Arrival

Time

0

A. No. of processes=50

Table 5: Comparison of fairness degradation and no. of CS

using ARR and DRR alg. w.r.t. FRR alg

Sr.N

o.

Jobs_minET-

maxET

ARR

(%

degradation)

DRR

(%degradati

on)

 PR CS PR CS

1 50_25-100 16 50 28 64

2 50_25-500 6 41 9 58

3 50_25-800 2 40 3 58

4 50_25-1000 0 39 0 57

5 50_25-1500 2 40 -1 57

6 50_25-2500 2 40 -1 57

7 50_25-10000 -1 39 -5 57

8 50_25-25000 0 39 -5 57

9 50_25-50000 -1 39 -5 57

10 50_25-100000 -1 39 -5 57

11 50_25-

2500000

-1 39 -5 57

12 50_25-

5000000

-1 39 -5 57

13 50_25-

10000000

-1 39 -5 57

 Avg

degradation

1.7 40.2

4

0.15 57.7

From Table 5, the calculations shows that the average

degradation of proposed ARR algorithm is 1.7% better

while DRR algorithm is only 0.15% better than FRR

algorithm and improvement in average context switches

of ARR is 40.24% better while DRR is 57.7% better

than the than FRR algorithm. The above results are plotted

in bar graph form are shown in Fig 4.

 Fig 4: Comparison results using ARR and DRR w.r.t

FRR

B. No. of processes= 100

Table 6: Comparison of fairness degradation and no. of CS

using ARR and DRR alg. w.r.t. FRR alg

Sr.N

o.

Jobs_minET-

maxET

ARR(%

degradation)

DRR(%degra

dation)

 PR CS PR CS

1 100_25-100 14 51 23 63

2 100_25-500 -3 41 -11 57

3 100_25-800 -9 39 -22 56

4 100_25-1000 -12 39 -27 56

5 100_25-1500 -15 39 -34 56

6 100_25-2500 -19 38 -43 56

7 100_25-10000 -33 38 -73 55

8 100_25-25000 -39 38 -85 55

9 100_25-50000 -41 38 -91 55

10 100_25-100000 -43 38 -94 55

11 100_25-

2500000

-44 38 -98 55

12 100_25-

5000000

-44 38 -98 55

13 100_25-

10000000

-44 38 -98 55

 Avg

degradation

-

25.54

39.62 -

57.77

56.08

Fig 5: Comparison results using ARR and DRR w.r.t. to

FRR

In case of 100 processes, Table 6 and Fig 5 shows that the

average fairness degradation suffered by proposed ARR

algorithm is only -25.54% while for DRR algorithm it is -

0

10

20

30

40

50

60

ARR DRR

P
R

/
C

S

Scheduling Algorithms

Comparison of ARR and DRR w.r.t. FRR

PR

CS

-60

-40

-20

0

20

40

60

ARR DRRP
R

/
C

S

Scheduling Algorithms

Comparison of ARR and DRR w.r.t. FRR

PR

CS

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 11, November 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51160 287

57.77% with respect to FRR algorithm and improvement

in average context switches of ARR is 39.62% better

while DRR is 56.08% better than FRR algorithm.

Similarly, the simulation results were obtanied for 200 and

500 job sets.

C. Overall degradation analysis

Table 7: Overall Avg. performance degradation of ARR

and DRR w.r.t. FRR alg

Fig 6: Overall average degradation w.r.t. FRR of ARR and

DRR alg.

In Table7 and Fig 6, the negative value indicates more

degradation in terms of performance ratio (unfairness of

the jobs) and positive value shows betterness in terms of

performance ratio and improvements in terms of context

switches w.r.t to FRR and DRR.

 With respect to FRR, the overall average percentage

degradation suffered by ARR algorithm for 50, 100, 200

and 500 jobs set is only -13.4% while for DRR algorithm

it is -33%. This exhibits that ARR suffers 20% less

degradation in terms of unfairness w.r.t. DRR algorithm.

 Similarly with respect to FRR, the overall percentage

improvement in average context switches by ARR

algorithm for 50, 100, 200 and 500 jobs set is 40.3%,

while for DRR algorithm it is 57.5%.

IV. CONCLUSION

From the performance analysis, it can be gathered that the

proposed ARR scheduling algorithm is better able to

handle the fairness and context switches issue

simultaneously in comparison to the traditional and

available FRR and DRR scheduling algorithms.

FUTURE SCOPE

Time Quantum is the bottleneck facing RR algorithms. In

this paper, the main concentration in proposing ARR

scheduling algorithm is to choose the time quantum

adaptively in order to reduce fairness ratio and number of

context switches which are the most crucial parameters of

upcoming works. Recent works are giving more

importance to fair scheduling practices and also the

individual service degradation suffered by various jobs.

So, there is a need to develop more improvements in RR

scheduling algorithm to solve the problem of time

quantum chosen in order to reduce fairness ratio and

context switches overhead.

REFERENCES

[1] Mohammed Abdullah, Hassan Al Hagery, “A selective Quantum

of Time for RR Algorithm to increase CPU Utilization”,

International Journal of Computer Information Systems, Vol. 3,

No. 2, Qassim, Kingdom of Saudi Arabia, August, 2011.
[2] Ajit, S, Priyanka, G and Sahil, B, “An Optimized Round Robin

Scheduling Algorithm for CPU Scheduling”, International Journal

on Computer Science and Engineering (IJCSE), Vol. 02, No. 07, pp
2382-2385.

[3] H.S.Behera, R.Mohanty, Debashree Nayak. “A New Proposed

Dynamic Quantum With Re-Adjusted Round Robin Scheduling
Algorithm and Its Performance Analysis “International Journal of

Computer Applications (0975 – 8887) Vol. 5, No.5, August 2010.
[4] H. M. Chaskar and U. Madhow, “Fair scheduling with tunable

latency: a round robin approach”, IEEE/ACM Trans. Net.,

11(4):592–601, 2003.
[5] Tarek Helmy, Abdelkader Dekdouk, “Burst Round Robin as a

Proportional-Share Scheduling Algorithm”, IEEE Proceedings of

the fourth IEEE-GCC Conference on towards Techno-Industrial
Innovations, pp. 424-428, Bahrain, November 2007.

[6] Saroj Hiranwal and K. C. Roy “Adaptive Round Robin Scheduling

Using Shortest Burst Approach Based On Smart Time Slice”
International Journal of Computer Science and Communication

Vol. 2, No. 2, pp. 319-323 July-December 2011.

[7] Rami J. Matarneh, "Self-Adjustment Time Quantum in Round
Robin Algorithm Depending on Burst Time of the Now Running

Processes", American Journal of Applied Sciences Vol.6, No. 10,

pp. 1831-1837, 2009.
[8] Manish Kumar Mishra and Abdul Kadir Khan, “An Improved

Round Robin CPU Scheduling Algorithm” JGRCS Journal of

Global Research in Computer Science ISSN: 2229-371X, Volume
3, No. 6, June 2012.

[9] Abbas Noon, Ali Kalakech Seifedine Kadry, “A New Round

Robin Based Scheduling Algorithm for Operating System:
Dynamic Quantum Using the Mean Average” IJCSI International

Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May

2011.
[10] Debashree Nayak, Sanjeev Kumar Malla, Debashree

Debadarshini, “Improved Round Robin Scheduling using Dynamic

Time Quantum” International Journal of Computer Applications
(0975-8887), Volume 38-No.5, January 2012.

[11] Abraham Silberschatz, Peter B. Galvin, Greg Gagne, “Operating

System Concepts”, 8th edition.`

-40

-20

0

20

40

60

ARR DRR

P
R

 /
 C

S

Scheduling Algorithms

PR

CS

Sr.

No.

Jobs ARR alg

(% degradation

w.r.t. FRR)

DRR alg

(%degradation

w.r.t. FRR)

 PR CS PR CS

1 50 1.7 40.24 0.15 57.7

2 100 -25.54 39.62 -57.77 56.08

3 200 -15.39 41.16 -35.31 59.47

3 500 -15.93 40.24 -38.39 56.7

 Overall Avg

degradation

-13.39 40.32 -33 56.47

