
ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICRITCSA

M S Ramaiah Institute of Technology, Bangalore

Vol. 5, Special Issue 2, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE 109

Early Performance Evaluation of Data

Warehouse Systems: From UML to LQN models

Dr. Madhu Bhan
1
, Dr. K. Rajanikanth

2
, Dr. T.V. Suresh Kumar

3

Assistant Professor, Department of Computer Applications, M.S. Ramaiah Institute of Technology, Bangalore, India
1

Professor, Department of Information Science, M.S. Ramaiah Institute of Technology, Bangalore, India
2

Professor, Department of Computer Applications, M.S. Ramaiah Institute of Technology Bangalore, India
3

Abstract: If the performance of a Data Warehouse System is determined to be unacceptable, at the time of “acceptance

testing” it can result in very expensive redesign and consequent delayed delivery or, in the worst case, complete non-

use of the system! There is clearly a need for tools and techniques that enable performance analysis of designs to be

done easily and reliably throughout the development process of Data warehouse systems. In this paper we demonstrate

the derivation of Layered Queuing Network (LQN) Performance Models from a set of UML diagrams and an algorithm

for deriving LQN model. LQN model is a very useful tool to analyse the performance of a system from abstract model

so that the developer of Data warehouse systems is able to understand performance effects of various design decisions

starting at early stages when changes are easy and less expensive.

Keywords: Data warehouse Systems; Software Performance Prediction; UML; Queuing models.

I. INTRODUCTION

The most popular definition of Data Warehouse comes

from Bill Inmon who says, “A Data Warehouse is a

subject-oriented, integrated, time-variant and non-volatile

collection of data in support of management's decision

making process” [1]. Such systems are primarily used for

business intelligence tasks such as analysing statistics

related to business facts like sales, profits, customer

choices along different dimensions like time, region etc.

Data to support such tasks is extracted from

“heterogeneous operational systems and other legacy

systems” and is stored in Data Warehouse. The process of

extracting data from the source systems and transforming

it into an appropriate format and finally loading it into a

Data Warehouse is called as ETL (Extract, Transform,

Load). While operational systems maintain current

information, a Data Warehouse is a very large database

containing historical data. While operational systems

maintain current information, a Data Warehouse is a very

large database containing historical data. Data Warehouse

systems are highly complex systems with their

performance depending on many interacting factors such

as the nature of the query workload, the views

materialized, the index structures built on the base tables.

Thus assessing the performance of these systems is also a

complex problem. Measuring the performance of a built

system a-posteriori using suitable instrumentation is

feasible. However, should the results of such measurement

indicate mismatch between the performance characteristics

of the system and expectations of the designers and / or

users, it would be highly expensive to alter the

implementation of the system.

Thus, after making initial architectural and design

decisions it is desirable to assess the performance of the

proposed system before proceeding to the implementation

stage [2]. Such an early performance assessment would

allow economical exploration of alternative choices of

architectures, designs, hardware and software components.

While this is indeed an extremely difficult problem, this

paper discusses the basic operations for converting a UML

model to a performance model in order to conduct a

quantitative performance analysis. A case study of Data

warehouse system is used to illustrate the transformation

procedure.

II. SOFTWARE PERFORMANCE ENGINEERING

Software Performance Engineering (SPE), an approach

introduced by C.U. Smith, proposes to use quantitative

methods and performance models in order to assess the

performance effects of different architectures, designs and

implementation alternatives during the development of a

software system. SPE supports the idea that integrating

performance analysis into the software development

process, from the initial stages to the end, can ensure the

system to meet its performance goals. This would

eliminate the need for “late-fixing” of performance

problems, a frequent practical approach that postpones any

performance concerns until the system is completely

implemented. Late fixes tend to be very expensive and

inefficient, and the product may never reach its original

performance requirements. SPE is a software oriented

approach that focuses on architecture, design and

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICRITCSA

M S Ramaiah Institute of Technology, Bangalore

Vol. 5, Special Issue 2, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE 110

implementation choices. It uses model predictions to

evaluate trade-offs in software functions, hardware size,

quality of results and resource requirements. The models

assist developers by enabling them to select architecture

and design alternatives with acceptable performance

characteristics. These models avoid in tracking

performance throughout the development process and

prevent problems from surfacing late in the life cycle

when they are difficult and expensive to correct. The

process of building a system's performance model before

the system is completely implemented starts with

identifying a small set of key performance scenarios

representative of the way in which the system will be used

[3],[4]. The performance analysts must understand first the

system behavior for each scenario by talking with the

system developers and/or by using design specifications.

The analyst, helped by the developers, will follow the

execution path through the software for each scenario,

from component to component, identifying the

quantitative demands for resources made by each

component (such as CPU execution time and I/O

operations), as well as the various reasons for queuing

delays (such as competition for hardware and software

resources). The scenario descriptions thus obtained are

mapped onto a performance model. By solving the model,

the analyst will obtain performance results such as

response times, throughput, utilization of different

resources by different software components, etc. Trouble

spots can be thus identified, and alternative solutions for

eliminating them assessed in a similar way.

III. LQN MODELS

In general, a performance model can be classified either as

an analytic or as a simulation model. While an analytical

model captures the essence of modeled system as a set of

mathematical equations, a simulation model mimics the

structure and behavior of the real system, Some well-

known examples of analytic performance models are

Queuing Network Models (QN) and their extensions,

timed Petrinets and Stochastic Process Algebra. Although

QN models have been successfully used in the context of

traditional time sharing computers they often fail to

capture complex interactions among various hardware and

software components in client/server distributed

processing systems. Layered Queuing Network (LQN)

was developed as an extension of this well-known

Queuing Network model for handling such complex

interactions [5], [6]. LQN Systems are particularly well

suited to analyzing software performance because they

model layered resources and logical resources in a natural

way and they scale up well for large systems. An LQN

model is an acyclic graph, with nodes (named tasks) that

represent software entities and hardware devices, and arcs

denote service requests. The LQN tasks are classified into

three categories: pure clients, pure servers and active

servers. Each server has an implicit message queue called

the request queue where the incoming requests are waiting

their turn to be served. A software or hardware server node

can be either a single-server or a multi-server. A multi

server is composed of more than one identical clones and

work in parallel and share the same request queue. The

tasks are represented by parallelograms and the processors

by circles. LQN task can denote more than one kind of

service, each modeled by a smaller parallelogram nested

inside a task. An entry is like a port or an address of a

particular service offered by a task. Each entry has its own

execution time and demands for other services. An entry

can be further decomposed into activities if more details

are required to describe its execution. Arcs in LQN denote

requests from one entry to other. Requests for service from

one server to other can be made via three kinds of

messages in LQN models: synchronous, asynchronous and

forwarding.

The main difference between QN and LQN is that LQN

can easily represent nested services. Also a server can

become in turn a client to other servers from which it

requires nested services, while serving its own clients. The

word "layered" in the LQN name does not imply a strict

layering of tasks (for example, tasks in a layer may call

each other or skip over layers). The LQN model structure

is generated from the high-level software architecture that

shows the high-level architectural components and their

relationships, and from deployment diagrams that

indicates the allocation of software components to

hardware devices. The LQN model parameters are

obtained from annotated UML models of key performance

scenarios.

IV. UML PERFORMANCE PROFILE

The Unified Modeling Language (UML) is the most

widely used design notation for software at this time,

unifying a number of popular approaches to specifying

structure and behavior. To enable users to capture time

and performance requirements and to evaluate those

properties from early specifications , a language extension

called the UML profile for Schedulability, Performance

and Time (SPT) has been defined and adopted.

The "UML Profile for SPT" defines a general resource

model, time modeling, general concurrency, schedulability

and performance modeling. The SPT profile allows UML

diagrams to be annotated with performance information.

Particularly, the Performance Profile provides mechanisms

for capturing performance requirements and for

associating performance related QoS characteristics with

the UML model. The Performance Profile facilitates the

following

 capturing performance requirements within the design

context,

 associating performance-related QoS characteristics

with selected elements of the UML model,

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICRITCSA

M S Ramaiah Institute of Technology, Bangalore

Vol. 5, Special Issue 2, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE 111

 specifying execution parameters which can be used

by modeling tools to compute predicted performance

characteristics,

 presenting performance results computed by

modeling tools or found by measurement

The performance profile describes a model that contains

the basic values used in performance analysis, including

resources used, key scenarios and user workloads. The

performance profile maps classes of the domain model to

stereotypes which are then applied to various UML

elements. The class attributes are mapped to tagged values

[7]. For instance the main stereotypes include

<<PAclosedLoad>> to represent a closed workload. It has

the following tags PArespTime, PApriority, PApopulation,

PAextDelay.

Through these stereotypes and tags performance

annotations can be attached to a UML model. For

performance analysis the UML model should capture

important system features such as high level software

architecture, the allocation of software components to

hardware resources and the key performance scenarios

in the system .The importance of UML profile lies in the

fact that it provides a standard way of attaching

quantitative performance attributes to UML models. These

attributes may represent values that are required, assumed,

measured values or computed from a model. A set of rules

has been defined for mapping a UML model annotated

with performance information to a queuing-based

performance model named Layered Queuing Network

(LQN). The SPT profile allows UML diagrams to be

annotated with performance information [8].

V. CASE STUDY: PERFORMANCE MODEL FOR

DATA WAREHOUSE SYSTEMS

In this section we introduce a case study of Data

warehouse system used to illustrate the generation of LQN

models from annotated UML models. SPE approach can

be used to predict the performance of a Data warehouse

system before the system is actually implemented. We

introduce the data warehouse architecture based on web

which has four levels as given in [9]. The first is client,

which provides users functions and convenient browsing

of data stored in the data warehouse. At this level there is

only a need to install the web browser connected to the

internet; no need to install special client applications. Web

Server is the second level, which is the interface between

the client and the OLAP server and involves input and

output of information between them. The third level is

OLAP server which creates the data cube and builds multi

dimensional models. The fourth level is that of a Data

warehouse server. The OLAP structure based on Web is

shown as below in Figure 1. The various OLAP operations

that can be performed are rollup, drilldown, slice dice and

pivot [10], [11]. However only one scenario namely roll-

up is presented here.

The basic procedure for deriving an LQN model from

UML model has the following steps.

a) The High-level software architecture of a software

system is represented by one or more collaboration

diagrams. These diagrams shows the concurrent or

distributed components represented as active objects and

the architectural patterns they participate in.

b) The components of high-level software architecture

need to be allocated to hardware devices, represented as a

deployment diagram.

c) A set of key performance scenarios annotated with

performance information as per the UML Performance

Profile. Each scenario can be represented as either as a

sequence or as an activity diagram.

Figure 1.The OLAP structure based on Web

The output of the transformation algorithm is an LQN

model that can be read and solved by the existing LQN

solvers.

This section presents the algorithm for transformation of

the UML to LQN notation level. The main steps of the

algorithm are as follows:

Generate the LQN model structure

1.1. Identify the LQN software tasks from the high-level

architecture

1.2. Identify the hardware devices from deployment

diagram

2. Produce LQN details on entries, phases, activities from

scenarios

2.1. For each scenario process the corresponding activity

diagram

2.1.1. Match the communication pattern from the

architectural pattern with the messages between

components given in the activity diagram

2.1.2. Identify the activity diagram elements

corresponding to different LQN entries, phases, and

activities, and create the LQN elements

3. Traverse the LQN elements, compute their parameters

and write out the model file.

In this section we present the UML models of a Data

warehouse system used to generate the LQN model. Step

1 develops the LQN structure (i.e, the software and

hardware tasks and their connecting arcs) from the high

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICRITCSA

M S Ramaiah Institute of Technology, Bangalore

Vol. 5, Special Issue 2, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE 112

level architecture of the UML model given in Figure 2 and

from the deployment of software parts to hardware devices

given in Figure 3.

Figure 2. High-level architecture

Figure 3. Deployment diagram

Figure 2 shows the high level architecture of a Data

warehouse model as a collaboration diagram. The different

processes are associated as shown, according to client

server pattern. All the processes are treated as logical

resources as indicated by the stereotype <<PAresource>>

defined in the UML Performance Profile. Figure 3 shows a

deployment diagram where the hardware components are

linked according to the design blueprint. The stereotype

<<PAhost>> is used to represent the processor nodes.

The processes are running on processors as indicated by

the deployment relationships. The network resources, both

Internet and local LAN, are also shown, since they will

have to be represented in the performance model. The

Internet will be modeled as a "delay server" since the user

data will suffer a delay, but it would hardly affect the

contention level of the overall traffic carried in the

Internet. On the other hand, the local LAN will be

modeled as a finite server with queue, since the user traffic

may change the congestion level of the local traffic.

The activity diagram in Figure 4 represents the only

scenario considered in this example, "roll up query ". The

activities performed by each concurrent process are

represented inside a “swimlane”. Inter-process messages

are indicated by transitions that cross the swimlane

boundaries. (The type of the call, either synchronous or

asynchronous, is denoted in the collaboration diagram and

matches the interaction from the architectural pattern). The

synchronization bar is used to represent fork or join calls

between concurrent components. In the given scenario 1)

Clients submit analysis request through the web browser

2) Web server receives the users analysis request and

submits them to analysis server(OLAP server) 3) Analysis

server calls the data from the data warehouse, finishes

analysis operations and returns the results back to web

server, which in turn forwards the results to the clients. 4)

Client supports various OLAP operations in order to

analyze the data. Annotations are added to activity

diagram with performance information as per the UML

Performance Profile [7],[12]. A scenario is composed of

steps that can be shown in sequence, loops, branches,

fork/joins, etc. In Figure 4, the stereotypes and the tagged

values are given in notes attached to different activity

diagram state. The scenario contains four synchronous

calls representing client-server interactions (i.e., a request

followed by a reply). The starting step of the scenario

carries an additional note characterizing the workload:

closed workload with population represented by the

variable $N and an external delay (think time) of 15s. In

step 1 we take into account only the structural aspect of

the architectural patterns; Their behavioural are considered

in step 2. Step 2.1 processes the activity diagram for each

roll up scenario and generates the LQN elements; entries,

phases and activities. Step 2.1.1 starts by identifying the

messages between concurrent components (i.e messages

crossing the swim lane boundaries). The intent is to

overlay the behavioural aspect of the architectural pattern

over the activity diagram in order to verify whether the

scenario is consistent with the patterns. The activity

diagram is then divided into sub graphs and further

mapped to different LQN elements. The corresponding

LQN elements (entries, phases, activities) are generated as

nodes in step 2.1.2. The CPU demand of a LQN phase

(activity) is obtained by summing up the CPU demands of

all the states (i.e scenario steps) contained in the

corresponding sub graph.

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICRITCSA

M S Ramaiah Institute of Technology, Bangalore

Vol. 5, Special Issue 2, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE 113

Figure 4.ActivityDiagram

Figure 5. LQN Sub model generated for scenario “rollup”

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICRITCSA

M S Ramaiah Institute of Technology, Bangalore

Vol. 5, Special Issue 2, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE 114

The LQN model obtained by applying the above algorithm

is shown in Figure 5. A LQN task was generated for each

of the four software components from Figure 3.

An additional task is generated for network component.

The OLAP server has many entries, one for each type of

requests it accepts.

Only the roll up query is determined from this scenario.

The rollup entry with internal branching is represented as a

LQN activity graph that mirrors the scenario steps from

the activity diagram of Figure 4. The purpose of this paper

is to present the proposed UML to LQN transformation, so

no performance analysis results are presented here.

VI. CONCLUSION

Our experience with the UML Performance Profile shows

that it is relatively easy to understand, and that it provides

enough performance annotations for generating working

LQN models for a Data warehouse system.

This is the first step towards a methodology for

performance evaluation of Data warehouse systems based

on UML and Layered modeling.

This paper focuses on transformation process only and

does not use performance model to improve the original

system. Therefore our future work will include validation

of the performance model against real measurements and

identification of bottlenecks in the data warehouse design.

REFRENCES

[1]. S. Chaudhuri and U. Dayal. “An Overview of Data Warehousing

and OLAP Technologies”. ACM SIGMOD Record 26(1), Marc

1997.

[2]. Andrew Holdsworth. “ Data Warehouse Performance
Management Techniques”. White paper , Oracle Services Ad

vanced Technologies Data Warehouse,1997.

[3]. C. U. Smith, Performance Engineering of Software Systems,
Reading, MA, Addison-Wesley, 1990

[4]. C.U.Smith, L.G.Williams, Performance Solutions: A practical

guide to to creating responsive ,Scalable Software, Addison
Wesley, 2001.

[5]. Gordon Gu, D.C. Petriu, "XSLT Transformation from UML

Models to LQN Performance Models", Proc. of 3rd Int. Workshop
on Software and Performance WOSP'2002, pp.227-234, Rome,

Italy, 2002.

[6]. V.Cortellessa, R.Mirandola, “J. Huang "Deriving a Queuing
Network based performance model from UML Diagrams ", in Proc

of WOSP 2000,pp58-70,2000.

[7]. Object Management Group, “ UML Profile for
Schedulability, Performance, and Time Specification”,OMG

Adopted Specification

 ptc/2005.
[8]. Simonetta Balsamo, Moreno Marzolla “Performance evaluation of

UML software architectures with mul ticlass Queueing Network

models”, WOSP 2005: 37-42
[9]. Chunhua Ju,Minghua Han,”Effectiveness of OLAP-based Sales

Analysis in Retail Enterprises” ISECS International Colloquium

on computing, Communication, Control and Management 2008.

[10]. E.F.Codd,S.B.Codd,C.T.Bally.”Providing OLAP to user -
Analysis”:An IT Mandate, 1993. Codd and Date Inc.1993.

[11]. H .Hassan,P.Hyland,”Using OLAP and Multidimensional data for

 decision making”: Faculty commerce papers , 2001, University of
 Wollongong. At http://ro.uow.edu.au/commpapers/4

[12]. Gordon Ping, Gu,Dorina .C.Petriu, “Early evaluation of software

performance based on UML performance Profile” Proc.
CASCON2003:pp 66-79

http://ro.uow.edu.au/commpapers/4

