
ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICRITCSA

M S Ramaiah Institute of Technology, Bangalore

Vol. 5, Special Issue 2, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE 150

An Efficient Technique for Optimization of Test

Cases with the Aid of HNN-MCS for Assessing

Software Reliability

Lakshminarayana P
1
, Dr T V Suresh Kumar

2

Associate Professor, Department of Computer Applications, BMS College of Engineering, Bangalore, India
1

Professor and Head, Department of Computer Applications, MSRIT, Bangalore, India
2

Abstract: The advance in software development has resulted in need for efficient and reliable software products. In

recent the growth of software demands high reliability and safety, software reliability prediction becomes more and

more essential. Software reliability is a key part of software quality. Various techniques for predicting software

reliability have been proposed and evaluated in terms of their prediction performance; however, their actual

contribution to business objectives such as quality improvement and cost reduction has been rarely assessed. The main

aim of this work is to develop an efficient software reliability prediction method where soft computing is utilized. We

are proposing a novel method of reliability prediction with the aid of Hybrid Neural network incorporated with

optimization algorithm (HNN-MCS). The weight factor is globally optimized using the modified cuckoo search

algorithm. Once the training is done the data are then tested in order to check the prediction accuracy of the proposed

systems. Researchers considered different factors as inputs for training the network. The execution time is utilized in

our proposed system for training the neural network and based on this the testing is done. The results in terms of actual

and predicted failure rate are estimated.

Keywords: Technique for Optimization of Test Cases with the Aid of HNN-MCS

1. INTRODUCTION

Modern society is highly engaged with the roles of

software. Software engineers and software development

organizations seeks great responsibilities on maintaining

quality, reliability and consumer satisfaction with the

software products. Software development testing phase is

generally considered as one of the major quality control

techniques [2]. The goal of software engineering is to

develop the techniques and tools needed to develop high-

quality applications that are more stable and maintainable.

In order to assess and improve the quality of an

application during the development process, developers

and managers use several metrics [5]. Various business

and technical motives such as shorter development cycles,

lower development costs, improved product quality, and

access to source code, more and more software developers

and companies are basing their software products on open

source components [6]. To quantify the failure behavior of

a software system, software reliability is an important

measure to help developers to arrange adequate test

activities. By facilitating the prior estimation of software

reliability, developers can dynamically reallocate the

testing resources, and reduce the cost of fixing bugs after

releasing the software [9], and software reliability

becomes a very important characteristic of the computer

systems.

Software reliability is consequently one of the most

important features for a critical software system.

According to the ANSI definition, software reliability is

defined as the probability of failure-free software

operation for a specified period of time under a specified

environment. In practice, it is very difficult for the project

managers to measure software reliability & quality [7].

In order to calculate and predict the product quality,

software reliability is found as a significant attribute [3].

Software reliability can be defined as a probability of zero-

failure operation of particular software at a specific instant

of time in a specific kind of environment [1]. In order to

ensure the cumulative reliability of software, it is

important to precisely model the software reliability and to

predict the probable trends. Certain, but important metrics

such as time period, MTBF, number of faults and MTTFs

through SRGMS would be helpful for such circumstances

[4].

Predicting software development effort with high

precision is still a largely unsolved problem.

Consequently, there is an ongoing, high level of activity in

this research field. A large number of different prediction

models1 have been proposed over the past twenty years.

So far, the lack of convergence of studies on software

prediction models is poorly understood, and it has been a

puzzle to the research community on software prediction

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICRITCSA

M S Ramaiah Institute of Technology, Bangalore

Vol. 5, Special Issue 2, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE 151

systems for many years. Clearly, the need is to consolidate

the knowledge on software prediction models and research

procedures; it is necessary to understand why we have

obtained so wildly opposing conclusions on this matter

[8]. Being able to predict the number of faults resides in

software helps significantly in specifying/ computing the

software release day and manage project resources

artificial neural network (ANN) with for software

reliability prediction aroused more research interest [10].

Neural-network encompasses a noteworthy lead over

analytic models, nevertheless, because they necessitate

only failure history as input, no postulations. Using that

input, the neural-network model automatically develops its

own internal model of the failure process and predicts

future failures. Similarly Cuckoo search helps in

estimating the weight values and that be utilized in neural

network for predicting the reliability of software. Based on

all these considerations it is proposed modified cuckoo

search based neural network classifier in order to predict

the reliability of the software since it improves the

classification accuracy to a larger extend.

2. RELATED WORK

A number of researches have been proposed by

researchers for the prediction of Software reliability.

Following are few literatures applied for assessment of the

state-of-art work on the reliability prediction models.

Software reliability prediction was very important for

minimizing cost and improving the effectiveness of the

software development process. As an important method,

relative data during software lifecycle was used to analyse

and predict software reliability. However, predicting the

variability of software reliability with time was very

difficult. Recently, support vector regressions (SVR) have

been widely applied to solve non-linear predicting

problems in many fields such as software reliability

prediction and have obtained well performance in many

situations, and it was still difficult to select its parameters.

Previously, intelligence optimization algorithms, such as

genetic algorithm (GA), are mostly used for finding better

parameters of SVR, however existing methods of selecting

parameters require usually has some disadvantages. Jin

[11] have proposed a technique to overcome weaknesses

of GA, such as the local minima and the premature

convergence problems, GA and simulated annealing (SA)

are integrated into an optimize algorithm, called GA-SA, it

is then applied to SVR for predicting software reliability.

Then the proposed GA-SA-SVR model was compared

with other software reliability models through real

software failure data. The experimental result showed that

the proposed GA-SA-SVR model could obtain better

predictions results than the other models and has a fairly

accurate prediction capability. Although many algorithms

and techniques have been developed for estimating the

reliability of component-based software systems (CBSSs),

much more research was needed. Accurate estimation of

the reliability of a CBSS was difficult because it depends

on two factors: component reliability and glue code

reliability. Moreover, reliability was a real-world

phenomenon with many associated real-time problems.

Soft computing techniques could help to solve problems

whose solutions are uncertain or unpredictable. A number

of soft computing approaches for estimating CBSS

reliability have been proposed. These techniques learn

from the past and capture existing patterns in data. The

two basic elements of soft computing are neural networks

and fuzzy logic. Tyagi and Sharma [12] have proposed a

model for estimating CBSS reliability, known as an

adaptive neuro fuzzy inference system (ANFIS), that was

based on these two basic elements of soft computing, and

they compared its performance with that of a plain FIS

(fuzzy inference system) for different data sets.

Early prediction of software reliability might be used to

evaluate design feasibility, compare design alternatives,

identify potential failure areas, trade-off system design

factors, track reliability improvements, and identify the

cost overrun at an early stage and to provide optimal

development strategies. Many researchers have proposed

different approaches to predict the software reliability

based on Markov model but the uncertainty associated

with these approaches is to find the transition probabilities

in between the two states of the Markov chain. Singh et al.

[13] have proposed an approach to address this problem by

modeling the software system through Petri Net,

converting it into Markov chain and solving the linear

system mathematically. The validation of the proposed

approach have also been shown by comparing the

predicted reliability, based on predicted transition

probability, with computed reliability, based on

operational profile of safety critical software of Nuclear

Power Plant.

Software reliability prediction plays a very important role

in the analysis of software quality and balance of software

cost. The data during software lifecycle was used to

analyze and predict software reliability. However,

predicting the variability of software reliability with time

was very difficult. Recently, support vector regression

(SVR) have been widely applied to solve nonlinear

predicting problems in many fields and has obtained good

performance in many situations; however it was still

difficult to optimize SVR’s parameters. Previously, some

optimization algorithms have been used to find better

parameters of SVR, but these existing algorithms usually

are not fully satisfactory. Cong Jina and Shu-Wei Jin [14]

have first improved estimation of distribution algorithms

(EDA) in order to maintain the diversity of the population,

and then a hybrid improved estimation of distribution

algorithms (IEDA) and SVR model, called IEDA-SVR

model, was proposed. IEDA was used to optimize

parameters of SVR, and IEDA-SVR model was used to

predict software reliability. They compared IEDA-SVR

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICRITCSA

M S Ramaiah Institute of Technology, Bangalore

Vol. 5, Special Issue 2, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE 152

model with other software reliability models using real

software failure datasets. In spite of much research efforts

to develop software reliability models, there was no single

model which was appropriate in all circumstances.

Accordingly, some recent studies on software reliability

have attempted to use existing models more effectively in

practice (e.g., model selection and combination).

However, it was not easy to identify which model was

likely to make the most trustworthy predictions and to

assign appropriate weights to models for the combination.

The improper model selection or weight assignment often

causes unsuccessful software reliability prediction in

practice, which leads to cost/schedule overrun. Park and

Baik [15] have proposed a systematic reliability prediction

framework which dynamically selects and combines

multiple software reliability models based on the decision

trees learning of multi-criteria. For the model selection,

the proposed approach uses the empirical patterns of

multi-criteria derived from multi reliability models.

Reduced error pruning decision tree selects the models

with the best predictive patterns and automatically assign a

weight to each model. Then, the likelihood of over- or

under-prediction of the identified models was examined,

and the competitive models in both tendency groups are

combined by their given weights.

Roy [16] has proposed a multi-layer feedforward artificial

neural network (ANN) based logistic growth curve model

(LGCM) for software reliability estimation and prediction.

They developed the ANN by designing different activation

functions for the hidden layer neurons of the network.

They explained the ANN from the mathematical viewpoint

of logistic growth curve modeling for software reliability.

They also proposed a neuro-genetic approach for the ANN

based LGCM by optimizing the weights of the network

using proposed genetic algorithm (GA). They first trained

the ANN using back-propagation algorithm (BPA) to

predict software reliability. After that, they used the

proposed GA to train the ANN by globally optimizing the

weights of the network. The proposed ANN based LGCM

was compared with the traditional Non-homogeneous

Poisson process (NHPP) based software reliability growth

models (SRGMs) and ANN based software reliability

models. They presented the comparison between the two

training algorithms when they are applied to train the

proposed ANN to predict software reliability. The

applicability of the different approaches was explained

through three real software failure data sets.

3. PROPOSED METHODOLOGY:

Basic Concept:

Since software products are rising rapidly in size and

complexity, software reliability prediction has become a

vital task in the software development process. Software

reliability prediction is very important for minimizing cost

and improving the effectiveness of the software

development process. As an important method, relative

data during software lifecycle is used to analyse and

predict software reliability. Subsequently, considering the

importance of proactive action on important factors like

early identification of the cost overrun, to provide optimal

development strategies, track reliability improvements,

and also to overcome the stated problem, the field of early

prediction of software reliability has taken on boost.

The modified cuckoo search is an optimization technique

which is utilized to optimize the weight factor in the

neural network classifier. The optimization of the weight

factor can aid in improving the classification rate thereby

making the neural network more efficient. The modified

cuckoo search is chosen prior to other optimization

techniques as it provide better optimized outcome.

Fig 1: Proposed software reliability assessing model.

3.1 Steps involved in the Software reliability

prediction:

The reliability estimation basically utilizes different

software parameter inorder to calculate the quality of

particular software. The figure 1 shows the steps involved

in our proposed method for the software reliability

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICRITCSA

M S Ramaiah Institute of Technology, Bangalore

Vol. 5, Special Issue 2, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE 153

prediction process. The Proposed technique can help to

make the system more reliable by assisting software

architects in evaluating the impact of their design

decisions on the system reliability. This can help to save

costs, time, and efforts significantly by avoiding

implementing software architectures that do not meet the

reliability requirements. However, existing reliability

prediction approaches for component-based software

systems suffer from the following drawbacks and therefore

are limited in their applicability and accuracy. Here we

will calculate the application reliability which is estimated

based on the reliability of the individual components and

their interconnection mechanisms.

We have proposed a novel method of reliability prediction

with the aid of Hybrid Neural network incorporated with

optimization algorithm (HNN-MCS). The weight factor is

globally optimized using the modified cuckoo search

algorithm. Once the training is done the data are then

tested inorder to check the prediction accuracy of the

proposed systems.

3.2. Test case generation

Test cases are employed to test all feasible combinations

in the application and as well it offers the user to simply

replicate the steps that were assumed to expose a defect

that as identified during test. Test cases can be charted

directly and obtained from use cases examples. Moreover,

when the test cases are produced early, Software

Engineers can frequently discover ambiguities and

inconsistencies in the requirements specification and

design documents. The generated test cases will be fed to

the advanced neural network for classification based on

which the software reliability will be predicted.

3.3 Classification using HNN with MCS:

The Improved Artificial Neural Network is utilized to

ascertain the license plate classification and it is trained by

employing the features values which are extorted from

each and every image. The improved artificial neural

network is well trained by means of the extorted features.

The innovative HNN is home to three input units, n hidden

units and one output unit. The input of the neural network

is the feature vector, which is extracted from the images.

The network is trained under a large set of different

license plate images in order to enable them to effectively

classify the exact query image in the testing phase of

neural network. The neural network works making use of

two phases, one is the training phase and the other is the

testing phase.

A. TRAINING PHASE

In the training phase, the input image is feature extracted

and this feature vector is given as the input to the neural

network. Initially, the nodes are given random weights. As

the output is already known in the training phase, the

output obtained from the neural network is compared to

the original and weights are varied so as to reduce the

error. This process is carried for a large number of images

so as to yield a stable system having weights assigned in

the nodes.

Multilayer feed forward neural network is utilized in our

methodology. The structure is depicted in Fig. 2. The

input layer has || M neurons i.e. number of matrix

elements, the hidden layer has
g

N neurons and the output

layer has N neurons i.e. the number of characters ranging

from A to Z and letters 0 to 9. Back propagation algorithm

is used to train the neural network, which is described

below.

Step 1: Generate arbitrary weights within the interval [0,

1] and assign it to the hidden layer neurons as well as the

output layer neurons. Maintain a unity value weight for all

neurons of the input layer.

Step 2: Input the training dataset I to the classifier and

determine the BP error as follows

outtarerr
CCBP  (1)

In Eq. (1),
tar

I is the target output and
out

I is the network

output, which can be determined as

] [
)(

2

)2(

2

)1(

2

N

out
YYYC  ,

)(

2

)2(

2

)1(

2
,, ,

N

YYY 

are the network outputs. The network outputs can be

determined as






H
N

r

r

l

rYwY

1

112

)(

2
)((2)

where,

)exp(1

1
)(

11

1

inr
Cw

rY


 (3)

Eq. (2) and Eq. (3) represents the activation function

performed in the output layer and hidden layer

respectively.

Step 3: Adjust the weights of all neurons as www 

, where, w is the change in weight which can be

determined as

 P .Y.
err2

Bw  (4)

In Eq. (4),  is the learning rate, usually it ranges from

0.2 to 0.5.

Step 4: Repeat the process from step 2, until BP error gets

minimized to a least value. Practically, the criterion to be

satisfied is 0.1 PB err  .

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICRITCSA

M S Ramaiah Institute of Technology, Bangalore

Vol. 5, Special Issue 2, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE 154

B. TESTING PHASE

In the testing phase, the input image is fed to the trained

neural network having particular weights in the nodes and

the output is calculated so as classify the images based on

the trained dataset. In ordinary neural network the process

will be stopped after testing. In the proposed modified

neural network, for testing process the optimization

algorithm is incorporated in order to optimize the weight

used for testing.

In our proposed method the weights are optimized with the

help of the MCS (Modified Cuckoo Search Algorithm).

By incorporating optimization process the classification

accuracy will be improved there by providing better

recognition of the images. The structure of the artificial

neural network is illustrated in Fig.2.

Fig 2: Structure of Artificial Neural Network

3.3 Weight Optimization Using Modified cuckoo search

algorithm:

The Cuckoo search algorithm represents a meta-heuristic

algorithm which owes its origin to the breeding conduct of

the cuckoos and it is easy of implementation. There is a

multitude of nests in the cuckoo search. Each egg signifies

a solution and an egg of cuckoo corresponds to a novel

solution.

The novel and superior solution replaces the most horrible

solution in the nest. Similar to modified neural network,

the ordinary cuckoo search algorithm is modified by

including the Gauss distribution in the updation phase

where levy flight equation is used. The gauss distribution

adds better results of optimization when compared to the

normal process. The modus operandi of the clustering

procedure is shown as follows:

Step 1: Initialization Phase

The population (mi, where i=1, 2, n) of host nest is initiated

arbitrarily.

Step 2: Generating New Cuckoo Phase

With the help of the levy flights a cuckoo is selected

randomly which generates novel solutions. Subsequently,

the engendered cuckoo is evaluated by employing the

objective function for ascertaining the excellence of the

solutions.

Step 3: Fitness Evaluation Phase

The fitness function is evaluated in accordance with

Equations 9 and 10 shown hereunder, followed by the

selection of the best one.

)5(
max

T

S

p

P
P 

)6(max
max

Ppopularityimumfitness 

Where,

S
P - signifies the selected population

T
P - represents the total population

Step 4: Updation Phase

At the outset, the solution is optimized by the levy flights

by employing the cosine transform. The quality of the

novel solution is evaluated and a nest is selected arbitrarily

from among them. If the quality of novel solution in the

selected nest is superior to the previous solution, it is

replaced by the novel solution (Cuckoo). Otherwise, the

previous solution is treated as the best solution. The levy

flights employed for the general cuckoo search algorithm

is expressed by the Equation 7 shown below:

)7()(
)()1(*

nLevymmm
t

i

t

ii






By suitably adapting Equation 7, levy flight equation using

the gauss distribution is exhibited in Equation 8 here

under:

)8(
)()1(*

s

t

i

t

ii
mmm  



Where,

)9()exp(
0

 
s

 ,
0 - represents the constants

K – Symbolizes the current generation

Step 5: Reject Worst Nest Phase

In this section, the worst nests are ignored, in accordance

with their possibility values and novel ones are

constructed. Subsequently, depending upon their fitness

function the best solutions are ranked. Thereafter, the best

solutions are detected and marked as optimal solutions.

HN2w

w22
2

1

NH

C2

NN2 H
w

2N2 H
w

1N2 H
w

w22N

w222

w221

w21N

w211

N

HN1w

w|M|2

w|M|

1

w12

1

2

I

2

w11

HN|M|w

I

1

1

Input layer Hidden layer Output

layer

|M

|

2

w212
C1

CN I|M|

w21

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICRITCSA

M S Ramaiah Institute of Technology, Bangalore

Vol. 5, Special Issue 2, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE 155

Step 6: Stopping Criterion Phase

Till the achievement of the maximum iteration, the

procedure is continued. By deftly employing the above-

mentioned classification technique, it has been able to

achieve superlative classification accuracy as the number

of images classified is highly accurate in relation to certain

modern techniques.

As an example consider a test case t1, which is at first

generated from the input software. The testcase t1 is then

applied to the classifier (hybrid neural network). The

neural network is modified here in our proposed technique

using MCS for optimization. So let us consider a weight

value w1 as the input to the MCS algorithm. The fitness of

the weight value w1 will be calculated by MCS using the

levy flight equation and based on this fitness value we

select the required weight values. The procedure is

followed for all the generated testcases and number of

weight values and finally we predict the reliability of the

particular input software.

3.4 Software popularity and Maintainability

Once the optimizations of the testcases are done the next

process in our proposed method is to estimate the software

popularity and maintainability. The popularity is based on

the amount of usage of the software among the customers.

The maintainability of the software is the manner by

which software can be adapted and it is regarded to be the

major software quality feature.

The packages and packages with efferent coupling (Ce=0)

and instability (I=0) are grouped under the dependable

packages. The dependable and the Non-Dependable

packages in any software are responsible for improving or

reducing the maintainability of the software. Using the

expression specified beneath the abstractness for the

software is computed,

)10(/
CA

NNA 

Where, NA = total number of abstract class in the

application, NC = total number of classes in the application

, Likewise the instability is computed by means of the

beneath expression,

)11(
)(

)(

te

e

n

cc

c
IyInstabilit




Where,
e

c =Efferent Coupling,
t

c = Total Coupling

4. RESULTS AND DISCUSSION

The proposed quality prediction technique is performed

using the Hybrid neural network with optimization

algorithm involving modified Cuckoo Search (HCS).The

implementation done in JAVA platform with the Netbeans

tool. The implementation through Netbeans is simple and

provides better understanding of the code. The proposed

system of quality prediction is done with the aid of Hybrid

neural network technique. The major advantage of our

proposed technique is the improved rate of predicting

accuracy. Aldo by utilizing the optimization technique in

the proposed classifier, the efficiency of the classifier is

improved as the selection of weight factor is optimized

leading to better classification.

The table 1 given below shows the fitness value of our

proposed method with MCS method using different

iterations. The fig 3 given below shows the comparison of

the fitness value. The graph shows that our proposed

method has delivered better fitness value which aids in

improving the reliability of the software.

No of iterations Fitness value

Before

optimization

Optimization

using MCS

5 9.625 12.658

10 8.256 11.354

15 7.568 10.235

20 6.235 10.121

25 5.521 9.654

Table.1 Fitness value for different iteration.

The fig 3 shows the comparison of the fitness value before

optimization and our proposed method where HNN with

MCS is used. The graph shows that our proposed method

has delivered better fitness value which aids in improving

the reliability of the software.

Fig 3: Graphical representation for iteration before and

after optimization.

The performance of the proposed method is compared

using the classification accuracy with that of some existing

methods [16]. The table 3 given below shows the accuracy

values for proposed and existing method.

Methods Classification Accuracy (%)

SVM 89

QDA 85.49

Proposed HNN-MCS 91.3

0

2

4

6

8

10

12

14

5 10 15 20 25

Before

Optimiza…

ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

ICRITCSA

M S Ramaiah Institute of Technology, Bangalore

Vol. 5, Special Issue 2, October 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE 156

Table 3: Comparison of prediction accuracy measures for

our proposed and existing method. The graphical

representation for prediction accuracy measure for the

proposed HNN-MCS algorithm and existing methods are

shown in the below fig 4,

Fig 4: Graphical representation of prediction accuracy

measures for our proposed and existing method

5. CONCLUSION AND FUTURE SCOPE

In this paper, it is proposed a system to predict better

software reliability using HNN-MCS. The test cases are

applied to the classifier which is incorporated with hybrid

cuckoo search algorithm in order to make the

classification process more accurate. Next, the reliability

of the software is measured with the aid of popularity and

maintainability.

From the comparative analysis it is clear that our proposed

method achieved better reliability compared to other

existing methods. In future, the work can be refined by

suggesting some other classifier so that the defect

predicting accuracy can be improved to some better

extend.

REFERENCES

1. Chin-Yu Huang, Sy-Yen Kuo and Michael R. Lyu, "An Assessment

of Testing-Effort Dependent Software Reliability Growth Empirical

Software Engineering, Vol. 12, No. 2, pp. 161–182, Apr

2007.Models," IEEE Transactions on Reliability, Vol. 56, No. 2,
pp. 198-211, Jun 2007.

2. Carina Andersson, "A replicated empirical study of a selection

method for software reliability growth models," Journal of

3. Khurshid Ahmad Mir, "A Software Reliability Growth Model,"

Journal of Modern Mathematics and Statistics, Vol. 5, No. 1, pp.

13-16, 2011.
4. S. M. K. Quadri, N. Ahmad and Sheikh Umar Farooq, "Software

Reliability Growth modeling with Generalized Exponential testing

–effort and optimal Software Release policy," Global Journal of
Computer Science and Technology, Vol. 11, No. 2, pp. 27-42, Feb

2011.

5. Jehad Al Dallal ,"Mathematical Validation of Object-Oriented
Class Cohesion Metrics", International Journal Of Computers , Vol.

4,No.2, 2010.

6. Heikki Orsila, Jaco Geldenhuys, Anna Ruokonen and Imed
Hammouda," Update Propagation Practices in Highly Reusable

Open Source Components",In.proc.of 20th World Computer

Congress on Open Source Software,Milano, Italy,Vol. 275 ,pp.159-
170, Sep 7-10, 2008.

7. Chin-Yu Huang and Michael R. Lyu, "Optimal Release Time for
Software Systems Considering Cost, Testing-Effort, and Test

Efficiency", IEEE Transactions On Reliability, Vol.54, No.4, 2005.

8. Ingunn Myrtveit, Erik Stensrud and Martin Shepperd, "Reliability
and Validity in Comparative Studies of Software Prediction

Models", IEEE Transactions On Software Engineering, Vol.31,

No.5, 2005.
9. Chao-Jung Hsu and Chin-Yu Huang, "An Adaptive Reliability

Analysis Using Path Testing for Complex Component-Based

Software Systems", IEEE Transactions On Reliability, Vol. 60, No.
1,2011.

10. Rita G. Al gargoor and Nada N. Saleem, "Software Reliability

Prediction Using Artificial Techniques", IJCSI International Journal

of Computer Science Issues, Vol. 10, Issue 4, No 2,2013.

11. C. Jin, "Software reliability prediction based on support vector

regression using a hybrid genetic algorithm and simulated
annealing algorithm", IET Software, Vol.5, No.4, pp. 398–405,

2011.

12. Kirti Tyagi and Arun Sharma, "An adaptive neuro fuzzy model for
estimating the reliability of component-based software systems",

Applied Computing and Informatics, Vol.10, No.2, pp.38–51, 2014.

13. Lalit K. Singh, Gopika Vinod and Anil K. Tripathi, "Approach for
parameter estimation in Markov model of software reliability for

early prediction: a case study", IET Software, Vol. 9, No.3, pp.65–

75,2015.
14. Cong Jina and Shu-Wei Jin, "Software reliability prediction model

based on support vector regression with improved estimation of

distribution algorithms”, Applied Soft Computing, Vol.15, pp.113–
120, 2014.

15. Jinhee Park and Jongmoon Baik, "Improving software reliability

prediction through multi-criteria based dynamic model selection
and combination", Journal of Systems and Software, Vol.101,

pp.236-244, 2015.

16. Pratik Roy, G.S. Mahapatra and K.N. Dey, "Neuro- genetic

approach on logistic model based software reliability prediction",

Expert Systems with Applications, Vol.42, No.10, 2015.

82

84

86

88

90

92

Classification

Accuracy

