
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 5, May 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.7546 235

Distributed Load Balancing and Scheduling

Algorithm for Resource Allocation in Cloud

AR. Meenakshi
1
, R. Divya Sopna

2

ME Scholar, Department of Computer Science and Engineering and Technology,

Sri Raaja Raajan College of Engineering and Technology, Amaravthi Pudur, Tamil Nadu, India
 1

Assistant Professor, Department of Computer Science and Engineering and Technology,

Sri Raaja Raajan College of Engineering and Technology, Amaravthi Pudur, Tamil Nadu, India
 2

Abstract: Cloud computing is the latest distributed computing paradigm and it offers tremendous opportunities to solve

large scale scientific problems. However, it presents various challenges that need to be addressed in order to be

efficiently utilized for workflow applications. Although the workflow scheduling problem has been widely studied,

there are very few initiatives tailored for Cloud environments. Furthermore, the existing works fail to either meet the

user‟s Quality of Service (QoS) requirements or to incorporate some basic principles of Cloud computing such as the

elasticity and heterogeneity of the computing resources. This work proposes a resource provisioning and scheduling

strategy for scientific workflows on Infrastructure as a Service (IaaS) Clouds. We present an algorithm based on the

meta-heuristic optimization technique, Particle Swarm Optimization (PSO), which aims to minimize the overall

workflow execution cost while meeting deadline constraints. Our heuristic is evaluated using CloudSim and various

well-known scientific workflows of different sizes. The results show that our approach performs better than the current

state-of-the-art algorithms.

Keywords: QoS, PSO, SLAs, IaaS, PaaS, SLA, SAAS, GAP.

I. INTRODUCTION

Cloud computing is the delivery of computing as a service rather than a product, whereby shared resources, software

and information are provided to users over the network. Cloud computing providers deliver application via the Internet,

which are accessed from web browser, while the business software and data are stored on servers at a remote location.

Cloud computing is a new and emerging trends in distributing computing that facilitate software application platforms,

and hardware infrastructures as a service. Cloud service provider offers these services based on customized Service

Level Agreements (SLAs), which defined user‟s required Quality of Service (QoS) parameters. Cloud computing

reduces investments on various resource like hardware and software resource allows to be leased and released. It

reduces initial investment, maintenance costs and operating cost. Cloud services are hosted on service provider‟s own

infrastructures or on third parties cloud infrastructure providers. Mainly three kinds of services are delivered; Platform

as a Service (PaaS), Infrastructure as a Service (IaaS) and Software as a Services (SaaS). Cloud users using this service,

whenever needed to a according to their demands using pay-per-use models. Clouds provided the ability to adjust

resources capacity according to the changing demands of the applications, often called auto scaling. However, giving

users more controls also required the developments of new method for task scheduling and resource provisioning.

Resource management decision is required to cloud scenarios not only have to take into account performance related

metrics such as workflows make spam or resource utilizations, but must also considers budget constraints, since the

resources from commercial clouds, Usually have a monetary costs associated with them. To gain insight to resource a

management challenges, when executing a scientific workflow ensembles on clouds. We address a new and important

problems of maximizing the numbers of completed workflows from an ensembles a under both budget and deadline

constraint.

Besides many applications, cloud computing environment can be used for workflow execution also. Execution of a

workflow involves workflow scheduling. Workflow scheduling involves mapping of workflow tasks with available

resources in such a way that some predefined criteria is met. Workflow scheduling is well known NP-complete

problem [4] and key issue in workflow management system. Moving workflows to Cloud computing enable us to

exploit the benefits of cloud for workflow execution. Scheduling can be multi objective also. The multi objective nature

of scheduling is more difficult to solve. Many heuristic and meta-heuristic approaches have been proposed by different

researchers for workflow scheduling. At present, workflow scheduling algorithms for cloud systems focus on two

major parameters viz. cost and time. As cloud uses pay-as-you-go model, all services incur cost. Cost mainly

dependents on QoS (Quality of Service) offered. Service providers charge higher for higher QoS and lower for lower

QoS. Early and reliable execution of jobs is another important factor from cloud user‟s point of view, but it incurs more

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 5, May 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.7546 236

cost. Users may require earlier reliable completion of their workflow tasks within manageable cost along with other

QoS requirements. These kinds of requirements make workflow scheduling on clouds more important and complex.

II. LITERATURE REVIEW

Ranjit Singh et al In this paper we consider deadline as the major constraint and propose a score based deadline

constrained workflow scheduling algorithm that executes workflow within manageable cost while meeting user defined

deadline constraint. The algorithm uses the concept of score which represents the capabilities of hardware resources.

This score value is used while allocating resources to various tasks of workflow application. The algorithm allocates

those resources to workflow application which are reliable and reduce the execution cost and complete the workflow

application within user specified deadline. [1]

S.Mohana priya et al we develop the concepts of “dynamic data flows” which utilize alternating tasks as additional

control over the data flows cost and QoS. Further, we formalize an optimization problem to representing deployment

and runtime resources provisioning that allows us to balance the application‟s QoS, value and the resource costs. We

proposed two greedy heuristics, centralized and shared, based on the variable sized been packing algorithm and

compare against a Genetic Algorithm (GA) based heuristics that gives a near optimal solution. A large scale simulation

study, using the linear roads benchmark and VM performances trace from the AWS public cloud, shows that while GA

based heuristic provides a better quality schedule, the greedy heuristics are more practical, and can intelligently utilize

cloud elasticity to mitigate the effect of variability, both in input data rates and cloud resource performance, to meet the

QoS of fast data applications. [2]

Anterpreet Kaur et al A cloud workflow system is a type of platform service which facilitates the automation of

distributed applications based on the novel cloud infrastructure. Many scheduling policies have been proposed till now

which aim to maximize the amount of work completed while meeting QoS constraints such as deadline and budget.

However many of them are not optimal to incorporate some basic principles of Cloud Computing such as the elasticity

and heterogeneity of the computing resources. [3]

J. M. Wilson et al The generalized assignment problem (GAP), the 0–1 integer programming (IP) problem of

assigning a set of n items to a set of m knapsacks, where each item must be assigned to exactly one knapsack and there

are constraints on the availability of resources for item assignment, has been further generalized recently to include

cases where items may be shared by a pair of adjacent knapsacks. This problem is termed the generalized assignment

problem with special ordered sets of type 2 (GAPS2) [4].

M. Qiu et al each varied execution time as a probabilistic random variable and solves heterogeneous assignment with

probability(HAP) problem. The solution of the HAP problem assigns a proper FU type to each task such that the total

cost is minimized while the timing constraint is satisfied with a guaranteed confidence probability. A probabilistic

approach to high-level synthesis of special-purpose architectures for real-time embedded systems using heterogeneous

functional units with probabilistic execution times. For the heterogeneous assignment with probability(HAP) problem,

algorithms Path Assign and Tree Assign, were proposed to give optimal solutions when the input graphs are a simple

path and a tree, respectively. Two other algorithms, one is optimal and the other is near-optimal heuristic, were

proposed to solve the general problem. [5].

III. PREVIOUS STUDIES

In recent years ad-hoc parallel data processing has emerged to be one of the killer applications for Infrastructure-as-a-

Service (IaaS) clouds. Major Cloud computing companies have started to integrate frameworks for parallel data

processing in their product portfolio, making it easy for customers to access these services and to deploy their

programs. However, the processing frameworks which are currently used have been designed for static, homogeneous

cluster setups and disregard the particular nature of a cloud. Consequently, the allocated compute resources may be

inadequate for big parts of the submitted job and unnecessarily increase processing time and cost. To reduce the impact

of performance variation of public Cloud resources in the deadlines of workflows, we proposed a new

algorithm, called EIPR, which takes into consideration the behavior of Cloud resources during the scheduling

process and applies replication of tasks to increase the chance of meeting application deadlines.A.EIPR Algorithm

The existing algorithm performs following steps

1. Combined Provisioning and Scheduling

2. Data-Transfer Aware Provisioning Adjust

3. Task Replication

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 5, May 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.7546 237

Combined Provisioning and Scheduling The first step of the EIPR algorithm consists in the determination of the

number and type of VMs to be used for workflow execution as well as start and finish time of each VM (provisioning)

and the determination of ordering and placement of tasks on such allocated resources (scheduling). The

provisioning and scheduling problems are closely related, because the availability of VMs affects the scheduling,

and the scheduling affects finish time of virtual VMs. Therefore, a more efficient scheduling and provisioning

can be achieved if both problems are solved as one rather than independently.

A. Demerits of Existing Work

 A policy issue remains as how to decide the mapping adaptively so that the resource demands of VMs are met

while the number of PMs used is minimized.

 This is challenging when the resource needs of VMs are heterogeneous due to the diverse set of applications

they run and vary with time as the workloads grow and shrink. The two main disadvantages are overload avoidance and

green computing.

 Expensive

 Complex

 Increases data base organization

 The processing framework then takes care of distributing the program among the available nodes and executes

each instance of the program on the appropriate fragment of data. Most notably, Nephele is the first data processing

framework to include the possibility of dynamically allocating/ deallocating different compute resources from a cloud

in its scheduling and during job execution.

IV. PROPOSED WORK

A. Proposed work

The proposed priority algorithm helps cloud admin to decide priority among the users and allocate resources efficiently

according to priority. This resource allocation technique is more efficient than grid and utility computing because in

those systems there is no priority among the user request and cloud administrator is randomly taking decision and he is

giving priority to those user who have submitted their job first that is based on first come first serve method. But with

the advent of cloud computing and by using this implemented priority algorithm, the cloud admin can easily take

decision based on different parameters discussed earlier to decide priority among different user request so that admin

can efficiently allocate the available resources and with cost-effectiveness as well as satisfaction from users. Once the

user‟s request will be received at the cloud end, after that according to the user‟s requirement, the resources will be

checked for assigning to the user. Batches of the user‟s requirement will be created according to the type of task, the

amount of processor required by the user, and time for the execution of the user. If the resources are not available then

the user needs to wait for the resources to be available. The user‟s waiting request will be compared with all the waiting

resources and priority will be assigned accordingly. The throughput value is calculated according to the usage of the

processor and ram. If the request of two same requirements having the same priority then at that point of time the

resources will be allocated on the basis of FCFS(First Come First Served).

B. Advantages of proposed system

The advantages of proposed systems are as follows:

 Dynamic resource allocation

 Parallelism is implemented

 Designed to run data analysis jobs on a large amount of data

 Many Task Computing (MTC) has been developed

 Less expensive

 More Effective

 More Faster

 In this work, present the design and implementation of an automated resource management system that

achieves a good balance between the two goals. Two goals are overload avoidance and green computing.

 Overload avoidance: The capacity of a PM should be sufficient to satisfy the resource needs of all VMs

running on it. Otherwise, the PM is overloaded and can lead to degraded performance of its VMs.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 5, May 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.7546 238

 Green computing: The number of PMs used should be minimized as long as they can still satisfy the needs of

all VMs. Idle PMs can be turned off to save energy.

V. METHODOLOGY

A. Network Simulator

Network Simulator is a name for series of discrete event network simulators, specifically NS-1, NS-2 and NS-3. All of

them are discrete-event network simulators, primarily used in research and teaching. NS-3 is free software, publicly

available under the GNU GPLv2 license for research, development, and use. The goal of the ns-2 project is to create an

open simulation environment for networking research that will be preferred inside the research community. It should be

aligned with the simulation needs of modern networking research. It should encourage community contribution, peer

review, and validation of the software. Since the process of creation of a network simulator that contains a sufficient

number of high-quality validated, tested and actively maintained models requires a lot of work, ns-2 project spreads this

workload over a large community of users and developers. Presently, ns-2 consists of over 300,000 lines of source

code, and there is probably a comparable amount of contributed code that is not integrated directly into the main

distribution (many forks of ns-2 exist, both maintained and unmaintained). It runs on GNU/Linux, FreeBSD, Solaris,

Mac OS X and Windows versions that support Cygwin. It is licensed for use under version 2 of the GNU General

Public License. Though NS-3 is actively developed this is not compactable for the work done in NS-2. So for this

project NS-2 is highly supportive.

B. CYGWIN

Cygwin is a Unix-like environment and command-line interface for Microsoft Windows. Cygwin provides native

integration of Windows-based applications, data, and other system resources with applications, software tools, and data

of the Unix-like environment. Thus it is possible to launch Windows applications from the Cygwin environment, as

well as to use Cygwin tools and applications within the Windows operating context.

It consists of two parts: a dynamic-link library (DLL) as an API compatibility layer providing a substantial part of the

POSIX API functionality, and an extensive collection of software tools and applications that provide a Unix-like look

and feel.Cygwin was originally developed by Cygnus Solutions, which was later acquired by Red Hat. It is free and

open source software, released under the GNU General Public License version 3. Today it is maintained by employees

of Red Hat, NetApp and many other volunteers.

VI. SCHEDULING ALGORITHM

In proposed priority based scheduling algorithm we have modified the scheduling heuristic for executing highest

priority task with advance reservation by preempting best-effort task as done. Algorithm shows the pseudo codes of

priority based scheduling algorithm (PBSA). Scheduling is presented which helps in achieving Service Level

Agreement with quick response from the service provider. In our proposed approach Quality of Service metric such as

response time is achieved by executing the high priority jobs (deadline based jobs) first by estimating job completion

time and the priority jobs are spawned from the remaining job with the help of Task Scheduler. Scheduling and

proposed a particle swarm optimization (PSO) algorithm which is based on small position value rule. In order to

improve the efficiency the optimizing task scheduling is necessary. In cloud computing resources distribute all over the

world, and the data usually is bigger and the bandwidth often is narrower, these problems are more important. In this

paper, the author presented the task scheduling optimizing method in cloud computing, and formulates a model for task

scheduling to minimize the cost of the problem and solved it by a PSO algorithm. Experimental result manifests that

the PSO algorithm both gains optimal solution and converges faster in large tasks than the other two. Moreover,

running time is shorter than the other two too and it is obvious that PSO is more suitable to cloud computing.

A. Priority based Job Scheduling Algorithm in Cloud Computing

Proposed a new job scheduling algorithm in cloud computing by using mathematical statistics. This algorithm made its

foundation on the priority property that why it is known as Priority-Based Algorithm. It is based on multiple criteria

decision making model. In 1980 Thomas Saaty was first on to develop a model that make pair wise comparison based

on multiple criteria and multiple attributes and named it as Analytical Hierarchy Process (AHP). AHP is purely based

on Consistent Comparison Matrix, so by making the use of AHP, comparison matrices are computed according to the

attributes and criteria‟s accessibilities. In this algorithm, each job requests a resource which has a pre-determined

priority. So according to resources accessibilities, comparison matrices of each jobs is computed. Author also computes

the comparison matrix of resources which will help later for jobs picking. Then author compute priority vectors (vector

of weights) for each the comparison matrix and finally a normal matrix of all jobs is computed named as Δ. Similarly,

normal matrix of all resources is computed and marks this matrix as γ. The next step of the algorithm is to compute

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 5, May 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.7546 239

Priority Vector of S (PVS), where S is set of jobs. PVS is calculated by multiplying matrix Δ with matrix γ. At final

step, algorithm chooses the job with maximum calculated priority on basis of that suitable resource is allocated to that

job. Now the list of jobs is updated and the scheduling process continues till all the jobs are assigned to suitable

resource. Experimental results indicate that the algorithm has reasonable complexity. But there some issues such as

complexity, consistency and finish time.

ALGORITHM: Priority Based Scheduling Algorithm (PBSA)

1. Input: UserServiceRequest

2. //call Algorithm 2 to form the list of task based on priorities

3. get globalAvailableVMList and gloableUsedVMList and also available ResourceList from each cloud schedular

4. // find the appropriate VMList fromeach cloud scheduler

5. if AP(R,AR) != ф then

6. // call the algorithm 1 load balancer

7. deployableVm=load-balancer(AP(R,AR))

8. Deploy service on deployableVM

9. deploy=true

10. Else if R has advance reservation and best-effort task is running on any cloud then

11. // Call algorithm 3 CMMS for executing R

with advance reservation

12. Deployed=true

13. Else if globalResourceAbleToHostExtraVM then

14. Start newVMInstance

15. Add VMToAvailbaleVMList

16. Deploy service on newVM

17. Deployed=true

18. Else

19. queue serviceReuest until

20. queueTime > waitingTime

21. Deployed=false

22. End if

23. If deployed then

24. return successful

25. terminate

26. Else

27. return failure

28. Terminate

B. Cloud min-min scheduling (CMMS)

Min-min scheduling is popular greedy algorithm. The dependences among tasks not careful in original min min

algorithm. Thus in the dynamic min-min algorithm used , authors uphold the task dependences by updating the map

able task set in every preparation step. The tasks whose precursor tasks are all assigned are placed in the map able task

set. Algorithm 3 shows the quasi codes of the CMMS algorithm. A cloud scheduler record implementation schedule of

all resources using a slot. Once an AR task is assigned to a cloud, first reserve availability in this cloud will be checked

by cloud scheduler. Then best-effort task can be pre-empted by AR task, the only case once most of resources are

earmarked by some other AR task. Later there are not enough resources left for this AR task in the obligatory time slot.

If the AR task is not disallowed, which means there are enough resources obtainable for the task, a set of required VMs

are selected randomly. The estimated finish time of task may not be same as real finish time due to the resource

argument within individual cloud. Later to adjust the resource allocation animatedly based on the

latest available information writers propose an online adaptive scheduling process. In future online adaptive procedure

the remaining static resource distribution will be re-evaluate recurrently with a predefined incidence. In each

reevaluation, the schedulers will re-calculate the projected finish time of their tasks. Note that a scheduler of a assumed

cloud will only reconsider the tasks that are in the jobs succumbed to this cloud, not the errands that are assigned to this

cloud.

Algorithm 3 Cloud min-min scheduling (CMMS)

Require: A set of tasks, m different clouds ETM matrix

Ensure: A schedule generated by CMMS

1. For a mappable task set P

2. While there are tasks not assigned do

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 5, May 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.7546 240

3. Update mappable task set P

4. For I = task vi ∈ P do

5. Send task check requests of vi to all other cloud schedulers

6. Receive the earliest resource available time response and And list of task with their priorities form all other cloud

scheduler

7. Find the cloud Cmin(vi) giving the earliest finish time of vi, assuming no other task preempts vi

8. End for

9. Find the task-cloud pair (vk, Cmin(vk)) with earliest finish time in the pairs generated in forloop

10. Assign task v k to cloud Dmin(vk)

11. Remove v k form P

12. Update the mappbale task set P

13. End while

Algorithm: To compute and assign the priority for each request based on the threshold value and

allocate the service to each request„s.

Step 1: [Read the clients request data i.e, time, importance, price, node and requested server name] Insert all values into

the linked list

Step 2: [For each request and its tasks find the time priority value based on the predefined conditions] Assign priority

value to each task for the client„s request.

t_p[i] = priority value

Step 3: [For each request and its tasks find the node priority value based on the predefined conditions]

Assign priority value to each task for the client„s request.

n_p[i] = priority value;

Step 4: [For each client„s input data check whether it is within the threshold value or not]

if (input value is within the threshold limit and total node <= available node)

[Add respective computed time and node priority value and other parameters like importance and price]

Sum[k] = t_p[i] + n_p[i] + importance + price

Print ―Ready to execute available node = available node – total node

else if (input value is within the threshold limit)

sum[k] = t_p[i] + n_p[i] + importance + price

print ―within the limit but it is in queue

else

print ―Exeed the condition

Step 5: [Sort the sum[k] values]

Step 6: Client„s request is ready to execute from least values of sum[k]

Stop

In order to run particular model huge computational resources such as server, memory in terms of storage disk,

processors, software etc are needed. Also some jobs are to be executed in parallel and some others in sequential

manner. In that situation job type is also very important parameter.

In a cloud environment type of user that is whether the user is internal to a cloud (in case of private cloud) or he is

external to cloud(in case of public cloud) is also another important parameter to be considered during job submission.

So the developed priority algorithm discusses in detail how efficiently it will help cloud admin to decide or calculate

priority among the user requests.

After the successful execution of resource allocation algorithm, the jobs requested by users needs to be submitted. The

main difficulties in the resource allocation in a cloud system are to take proper decision for job scheduling, execution of

job, managing the status of job etc. Apart from traditional best fit and bin packing algorithm in this paper an algorithm

is developed for the job allocation in the cloud environment to be decided by the cloud administrator. priority based on

the client and server requirements and requests by the users. In the present algorithm to decide the resource allocation

in a better and impartial way, a technique based on threshold of all the parameters (both client and server side) is

considered. For example the requested number of processors cannot be more than 20 etc. (server) and a job maximum

run time will be 200 hrs (user).

VII. RESULTS AND DISCUSSION

A. Setup

We evaluate our performance based on the priority by simulating scheduling algorithm. One by one Simulation of the

working group completed in 10 games. In each execution Simulation, a group of 70 different analog service

Applications (ie jobs), and each includes a service request up to 18 subtasks. We believe in Simulation of clouds. All 70

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 5, May 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.7546 241

will be subject to random cloud service requests any time soon. In these requests services 70, 15 Application is in AR

mode, while the rest is the best way to work with different SLA objectives. That Table 1 Parameter set randomly in

simulation According to their maximum and minimum values. Since we only focus on the planning algorithms, we do

simulations locally without implementing in any exiting cloud system or using VM interface API.

TABLE I

PARAMETERS AND ITS RANGE

Parameter Minimum Maximum

No. of virtual machine in cloud 23 120

No. of CPU in a VM 1 7

Disk Space 8000 100000

Memory 16 2048

Speed 100 1000

B. Result

In Fig 1 shows the average execution job loose situation. We realized that the algorithm PBSA. The minimum average

execution time. Resource Parameters when work occurs AR work best be replaced by. Such as Resource contention at

least loosened, it is expected that Target part-time work is nearing completion of the actual time. Therefore Adaptation

procedure does not affect the date of execution significant.

Fig 1. Average job execution time in loose situation

Under prove difficult situation shown in Fig 2 PBSA behavior CMMS better. In stressful situations the scramble for

resources more so when the work actually completed it is often later than expected arrival. Because AR preemption

works the best, the process of adaptation and upgrade Information more meaningful works in a difficult situation.

Fig 2. Average job execution time in tight situation

680

700

720

740

760

780

0.1 0.2 0.3

R
e

so
u

rc
e

 J
o

b
 S

iz
e

Time in sec

PBSA

CMMS

1100
1200
1300
1400
1500
1600

0 0.1 0.2 0.3R
e

so
u

rc
e

 J
o

b
 S

iz
e

Time in sec

PBSA

CMMS

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 5, May 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.7546 242

This requires dynamically estimating the energy consumed by methods during execution. This take inspiration from the

recent PowerTutor model which accounts for power consumption of CPU, LCD screen, GPS, WiFi, 3G, and audio

interfaces on HTC Dream and HTC Magic phones. Power Tutor indicates that the variation of estimated power on

different types of phones is very high, and presents a detailed model for the HTC Dream phone which is used in our

experiments. We modify the original PowerTutor model to accommodate the fact that certain components such as GPS

and audio have to operate locally and cannot be migrated to the cloud.

By measuring the power consumption of the phone under different cross products of the extreme power states,

PowerTutor model further indicates that the maximum error is 6.27% if the individual components are measured

independently. This suggests that the sum of independent component-specific power estimates is sufficient to estimate

overall system power consumption. Using this approach we devise a method with only minor deviations from the

results obtained by PowerTutor. We implement this energy estimation model inside the ThinkAir Energy Profiler and

use it to dynamically estimate the energy consumption of each running method.

VIII. CONCLUSION AND FUTURE WORK

Cloud computing resources means that in the selection, implementation and management time, management software

(e.g., database server, load Balancers, etc.) and hardware resources (for example, CPU Storage, networking, etc.), in

order to ensure security application performance. These techniques to improve response time, performance, save

Energy, quality of service, SLA. The ultimate goal of resources Configuration is to maximize the benefits of the cloud

Prospects for service providers and cloud the user's perspective, in order to reduce costs. There are many current

challenges Strategic resource allocation. A mechanism to overcome the challenges faced by the prior art It must be

used. The architecture must be proposed it is suitable for data-intensive applications and high performance computing

Also on the actual workload. Mechanism must It recommends that effective use of cloud computing resources to enable

QoS and SLA violations in meeting minimization Dynamic Allocation of clouds. Also These mechanisms should also

be used to conFig SaaS and IaaS users.

REFERENCES

[1] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, “Cloud computing andemerging IT platforms: vision, hype, and reality for

delivering computing as the 5th utility”, Future Generation ComputerSystems 25 (2009) 599–616.
[2] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle swarm optimization-based heuristic for scheduling work flow applicationsin

cloud computing environments,” in AINA ‟10: Proceedings of the 2010, 24th IEEE International Conference on Advanced Information

Networking and Applications, pages 400–407, Washington, DC, USA, 2010, IEEE Computer Society.
[3] M. Salehi and R. Buyya, “Adapting market-oriented scheduling policies for cloud computing,”I n Algorithms and Architectures for Parallel

Processing, volume 6081 of Lecture Notes in Computer Science, pages 351–362.Springer Berlin / Heidelberg, 2010.

[4] J. M. Wilson, “An algorithm for the generalized assignment problemwith special ordered sets,” Journal of Heuristics, 11(4):337–350, 2005.
[5] M. Qiu and E. Sha, “Cost minimization while satisfying hard/soft timing constraints for heterogeneous embedded systems,” ACM

Transactions on Design Automation of Electronic Systems (TODAES), vol. 14, no. 2, pp. 1–30, 2009.

[6] M. Qiu, M. Guo, M. Liu, C. J. Xue, and E. H.-M. S. L. T. Yang, “Loop scheduling and bank type assignment for heterogeneous multibank
memory,” Journal of Parallel and Distributed Computing(JPDC), vol. 69, no. 6, pp. 546–558, 2009.

[7] A. Dogan and F. Ozguner,“Matching and scheduling algorithms for minimizing execution time and failure probability of applications in
heterogeneous computing,” IEEE Transactions on Parallel and Distributed Systems, pp. 308–323, 2002.

[8] T. Hagras and J. Janecek, “A high performance, low complexity algorithm for compile-time task scheduling in heterogeneous systems,”

Parallel Computing,vol. 31, no. 7, pp. 653–670, 2005.

[9] “Adaptive Management of Virtualized Resources in Cloud Computing Using Feedback Control,” in First International Conference on

Information Science and Engineering, April 2010, pp. 99-102.

[10] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das, “Utility Functions in Autonomic Systems,” in ICAC‟04: Proceedings of the First
International Conference on Autonomic Computing. IEEE Computer Society, pp. 70–77, 2004.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 5, May 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.7546 243

[11] Jiayin Li, Meikang Qiu, Jian-Wei Niu, Yu Chen, Zhong Ming, “Adaptive Resource Allocation for Preempt able Jobs in Cloud Systems,” in

10th International Conference on Intelligent System Design and Application, Jan. 2011, pp. 31-36.
[12] Yazir Y.O., Matthews C., Farahbod R., Neville S., Guitouni A., Ganti S., Coady Y., “Dynamic resourceal location based on distributed

multiple criteria decisions in computing cloud,” in 3rd International Conference on Cloud Computing, Aug. 2010, pp. 91-98.

[13] Goudarzi H., Pedram M., “Multi-dimensional SLA-based Resource Allocation for Multi-tier Cloud Computing Systems,”in IEEE
International Conference on Cloud Computing, Sep. 2011, pp. 324- 331.

[14] Shi J.Y., Taifi M., Khreishah A.,“Resource Planning for Parallel Processing in the Cloud,” in IEEE 13th International Conferenceon High

Performance and Computing, Nov. 2011, pp. 828-833.
[15] Aoun R., Doumith E.A., Gagnaire M., “Resource Provisioning for Enriched Services in Cloud Environment,” IEEE Second International

Conference on Cloud Computing Technology and Science, Feb. 2011, pp. 296-303.

[16] T. Erl, “Service-oriented Architecture: Concepts, Technology, and Design”, Upper Saddle River, Prentice Hall, 2005.
[17] F. Chong, G. Carraro, and R. Wolter,“Multi-Tenant Data Architecture”, Microsoft Corporation, 2006.

[18] E. Knorr, “Software as a service: The next big thing”, InfoWorld, March 2006.
[19] PLAStiCC: Predictive Look-Ahead Scheduling for Continuous dataflows on Clouds by Alok Kumbhare, Yogesh Simmhan and Viktor K.

Prasanna.

[20] Efficient Parallel Data Processing in the Cloud by Thanapal.P, Nishanthi.S.P

[21] Sheng Di and Cho-Li Wang,” Dynamic Optimization of Multi-Attribute Resource Allocation in Self-Organizing Clouds”, IEEE

Transactions on parallel and distributed systems, - 2013.

[22] V.Vinothina, Dr.R.Sridaran, Dr.padmavathiganapathi,” A Survey on Resource Allocation Strategies in Cloud Computing “International
Journal of Advanced Computer Science and Applications, Vol. 3, No.6, 2012.

[23] Qi Zhang, Eren G¨urses, Raouf Boutaba, Jin Xiao,” Dynamic Resource Allocation for Spot Markets in Clouds”, Journal of computer

science-2012.
[24] Zhen Xiao, Senior Member, IEEE, Weijia Song, and Qi Chen,” Dynamic Resource Allocation Using Virtual Machines for Cloud

Computing Environment”, IEEE Transactions on parallel and distributed systems, vol. 24, no. 6, June 2013.

[25] Ts`epomofolo, R Suchithra,” Heuristic Based Resource Allocation Using Virtual Machine Migration: A Cloud Computing Perspective”,
International Refereed Journal of Engineering and Science (IRJES) Volume 2, Issue 5(May 2013)

[26] S. Callaghan, P. Maechling, P. Small, K. Milner, G. Juve, T. Jordan, E. Deelman, G. Mehta,

K. Vahi, D. Gunter, K. Beattie, and C. X. Brooks, “Metrics for heterogeneous scientific workflows: A case study of an earthquake science
application,” International Journal of High Performance Computing Applications, vol. 25, 2011.

[27] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, “The cost of doing science on the cloud: The montage example,” in 2008

ACM/IEEE Conference on Supercomputing (SC 08), 2008.
[28] J. V¨ockler, G. Juve, E. Deelman, M. Rynge, and G. B. Berriman, “Experiences using cloud computing for a scientific workflow

application,” in 2nd Workshop on Scientific Cloud Computing 2011.

[29] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema, “A performance analysis of EC2 cloud computing services
for scientific computing,” in Cloud Computing, ser. Lecture Notes of the Institute for Computer Sciences, Social Informatics and

Telecommunications Engineering, O. Akan et al., Eds. Springer Berlin, 2010.

[30] K. Keahey, M. Tsugawa, A. Matsunaga, and J. Fortes, “Sky computing,” IEEE Internet Computing, vol. 13, no. 5, 2009.
[31] D. Durkee, “Why cloud computing will never be free,” Communications of the ACM, vol. 53, no. 5, May 2010.

[32] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya, “CloudSim: a toolkit for modeling and simulation of cloud

computing environments and evaluation of resource provisioning algorithms,” Software: Practice and Experience, vol. 41, no. 1, Jan. 2011.
[33] L. Fernando, B. Edmundo, M. Madeira M, “HCOC: A Cost Optimization Algorithm for Workflow Scheduling in Hybrid Clouds”, Journal

of Internet Services and Applications, Springer,2011.

[34] P. Marshall, K. Keahey, and T. Freeman, “Elastic site: Using clouds to elastically extend site resources,” in 10th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid 2010), 2010.

[35] H. Kim, Y. el-Khamra, I. Rodero, S. Jha, and M. Parashar, “Autonomic management of application workflows on hybrid computing

infrastructure,” Scientific Programming, vol. 19, April 2011.
[36] J. Yu, R. Buyya, and C. Tham, “Cost-Based scheduling of scientific workflow application on utility grids,” in First International

Conference on e-Science and Grid Computing, 2005.

[37] S. Abrishami, M. Naghibzadeh, and D. Epema, “Cost-driven scheduling of grid workflows using partial critical paths,” in 11th IEEE/ACM
International Conference on Grid Computing, 2010

